Valorization of Date Fruit (Phoenix dactylifera L.) as a Potential Functional Food and Ingredient: Characterization of Fiber, Oligosaccharides, and Antioxidant Polyphenols
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Properties
2.2. Nutritive Composition
2.3. Dietary Fiber and Oligosaccharides Quantification
2.4. Phenolic Composition and Antioxidant Capacity
2.4.1. Total Phenolic and Total Flavonoid Content
2.4.2. Individual Phenolic Compounds
2.4.3. Antioxidant Capacity
3. Materials and Methods
3.1. Raw Materials
3.2. Reagents
3.3. Proximate Composition Analysis
3.4. Simple Sugars and Oligosaccharides Quantification
3.5. Solid-Phase Extraction (SPE) Cartridges Clean-Up of Phenolic Compounds
3.6. Total Phenolic (TPC) and Flavonoid (TFC) Content
3.7. HPLC-ESI-MS Analysis of Phenolic Compounds
3.8. Antioxidant Capacity Assays
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, D.V.; Al-Khayri, J.M.; Jain, S.M. Seedling Date Palms (Phoenix dactylifera L.) as Genetic Resources. Emir. J. Food Agric. 2013, 25, 809–830. [Google Scholar] [CrossRef]
- Chao, C.T.; Krueger, R.R. The Date Palm (Phoenix dactylifera L.): Overview of Biology, Uses, and Cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef]
- FAO. Crop Prospects and Food Situation #1, March 2023: Quarterly Global Report; Crop Prospects and Food Situation; FAO: Rome, Italy, 2023; ISBN 978-92-5-137698-0. [Google Scholar]
- Ben Amor, R.; Aguayo Giménez, E.; de Miguel Gómez, M.D. The Competitive Advantage of the Tunisian Palm Date Sector in the Mediterranean Region. Span. J. Agric. Res. 2015, 13, 10. [Google Scholar] [CrossRef]
- Sporchia, F.; Patrizi, N.; Pulselli, F.M. Date Fruit Production and Consumption: A Perspective on Global Trends and Drivers from a Multidimensional Footprint Assessment. Sustainability 2023, 15, 4358. [Google Scholar] [CrossRef]
- Al Ohali, Y. Computer Vision Based Date Fruit Grading System: Design and Implementation. J. King Saud Univ.-Comput. Inf. Sci. 2011, 23, 29–36. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Ghnimi, S. Classification of Date Fruit (Phoenix dactylifera, L.) Based on Chemometric Analysis with Multivariate Approach. Food Meas. 2018, 12, 1020–1027. [Google Scholar] [CrossRef]
- Ashraf, Z.; Hamidi-Esfahani, Z. Date and Date Processing: A Review. Food Rev. Int. 2011, 27, 101–133. [Google Scholar] [CrossRef]
- Awad, M.A.; Al-Qurashi, A.D.; Mohamed, S.A. Biochemical Changes in Fruit of an Early and a Late Date Palm Cultivar During Development and Ripening. Int. J. Fruit Sci. 2011, 11, 167–183. [Google Scholar] [CrossRef]
- Amira, E.A.; Guido, F.; Behija, S.E.; Manel, I.; Nesrine, Z.; Ali, F.; Mohamed, H.; Noureddine, H.A.; Lotfi, A. Chemical and Aroma Volatile Compositions of Date Palm (Phoenix dactylifera L.) Fruits at Three Maturation Stages. Food Chem. 2011, 127, 1744–1754. [Google Scholar] [CrossRef]
- Zhang, C.-R.; Aldosari, S.; Vidyasagar, P.; Shukla, P.; Nair, M. Determination of the Variability of Sugars in Date Fruit Varieties. J. Plant. Crops 2015, 43, 53–61. [Google Scholar]
- Khatib, M.; Al-Tamimi, A.; Cecchi, L.; Adessi, A.; Innocenti, M.; Balli, D.; Mulinacci, N. Phenolic Compounds and Polysaccharides in the Date Fruit (Phoenix dactylifera L.): Comparative Study on Five Widely Consumed Arabian Varieties. Food Chem. 2022, 395, 133591. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.-W.; Yu, E.-Z.; Feng, Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, J.; Zhong, Y.; Liu, S.; Liu, L.; Mu, X.; Chen, C.; Yang, S.; Li, G.; Zhang, D.; et al. Insoluble/Soluble Fraction Ratio Determines Effects of Dietary Fiber on Gut Microbiota and Serum Metabolites in Healthy Mice. Food Funct. 2024, 15, 338–354. [Google Scholar] [CrossRef] [PubMed]
- Silabdi, S.; Khali, M.; Tenore, G.C.; Stiuso, P.; Vanacore, D.; Novellino, E. Phoenix dactylifera Polyphenols Improve Plasma Lipid Profile in Hyperlipidemic Rats and Oxidative Stress on HepG2 Cells. J. Herbs Spices Med. Plants 2021, 27, 161–176. [Google Scholar] [CrossRef]
- Ismail, A.I.H.; Hassaballa, A.A.; Almadini, A.M.; Daffalla, S. Analyzing the Spatial Correspondence between Different Date Fruit Cultivars and Farms’ Cultivated Areas, Case Study: Al-Ahsa Oasis, Kingdom of Saudi Arabia. Appl. Sci. 2022, 12, 5728. [Google Scholar] [CrossRef]
- UNESCO, U.W.H. Al-Ahsa Oasis, an Evolving Cultural Landscape. Available online: https://whc.unesco.org/en/list/1563/ (accessed on 25 April 2024).
- Siddiqi, S.A.; Rahman, S.; Khan, M.M.; Rafiq, S.; Inayat, A.; Khurram, M.S.; Seerangurayar, T.; Jamil, F. Potential of Dates (Phoenix dactylifera L.) as Natural Antioxidant Source and Functional Food for Healthy Diet. Sci. Total Environ. 2020, 748, 141234. [Google Scholar] [CrossRef]
- Alsirhani, A.; Siddiqi, M.H.; Mostafa, A.M.; Ezz, M.; Mahmoud, A.A. A Novel Classification Model of Date Fruit Dataset Using Deep Transfer Learning. Electronics 2023, 12, 665. [Google Scholar] [CrossRef]
- WITS Fruit, Edible; Dates, Fresh or Dried Exports by Country in 2021. Available online: https://wits.worldbank.org/trade/comtrade/en/country/ALL/year/2021/tradeflow/Exports/partner/WLD/product/080410# (accessed on 25 April 2024).
- Yahia, E.M.; Kader, A.A. Date (Phoenix dactylifera L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E.M., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Shaston, UK, 2011; pp. 41–81e. ISBN 978-1-84569-735-8. [Google Scholar]
- Al-Farsi, M.A.; Lee, C.Y. Nutritional and Functional Properties of Dates: A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar] [CrossRef]
- Saikiran, K.C.S.; Reddy, N.S.; Mn, L.; Venkatachalapathy, N. Different Drying Methods for Preservation of Dates: A Review. Curr. J. Appl. Sci. Technol. 2018, 29, 1–10. [Google Scholar] [CrossRef]
- Food Safety—European Commission. Available online: https://food.ec.europa.eu/index_en (accessed on 25 June 2024).
- Ahmed, J.; Al-Jasass, F.M.; Siddiq, M. Date Fruit Composition and Nutrition. In Dates; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 261–283. ISBN 978-1-118-29241-9. [Google Scholar]
- Siddeeg, A.; Zeng, X.-A.; Ammar, A.-F.; Han, Z. Sugar Profile, Volatile Compounds, Composition and Antioxidant Activity of Sukkari Date Palm Fruit. J. Food Sci. Technol. 2019, 56, 754–762. [Google Scholar] [CrossRef]
- Ismail, I.; Altuwairki, D. Chemical Composition and Antimicrobial Efficacy of Date Palm Fruit of Saudi Arabia. World Appl. Sci. J. 2016, 34, 140–146. [Google Scholar]
- Assirey, E.A.R. Nutritional Composition of Fruit of 10 Date Palm (Phoenix dactylifera L.) Cultivars Grown in Saudi Arabia. J. Taibah Univ. Sci. 2015, 9, 75–79. [Google Scholar] [CrossRef]
- Lieb, V.M.; Kleiber, C.; Metwali, E.M.R.; Kadasa, N.M.S.; Almaghrabi, O.A.; Steingass, C.B.; Carle, R. Fatty Acids and Triacylglycerols in the Seed Oils of Saudi Arabian Date (Phoenix dactylifera L.) Palms. Int. J. Food Sci. Technol. 2020, 55, 1572–1577. [Google Scholar] [CrossRef]
- Thebaudin, J.Y.; Lefebvre, A.C.; Harrington, M.; Bourgeois, C.M. Dietary Fibres: Nutritional and Technological Interest. Trends Food Sci. Technol. 1997, 8, 41–48. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S. Composition, Properties and Health Benefits of Indigestible Carbohydrate Polymers as Dietary Fiber: A Review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Disca, V.; Capuano, E.; Arlorio, M. Colonic Fermentation of Enzymatically Treated Cocoa Bean Shells (CBSs) and Short Chain Fatty Acids (SCFAs) Production. LWT 2024, 202, 116311. [Google Scholar] [CrossRef]
- Vinelli, V.; Biscotti, P.; Martini, D.; Del Bo’, C.; Marino, M.; Meroño, T.; Nikoloudaki, O.; Calabrese, F.M.; Turroni, S.; Taverniti, V.; et al. Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients 2022, 14, 2559. [Google Scholar] [CrossRef]
- Alyassin, M.; Campbell, G.M. Chapter 15 Challenges and Constraints in Analysis of Oligosaccharides and Other Fibre Components. In The Value of Fibre; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 257–277. ISBN 978-90-8686-342-6. [Google Scholar]
- Ghfar, A.A.; Wabaidur, S.M.; Ahmed, A.Y.B.H.; Alothman, Z.A.; Khan, M.R.; Al-Shaalan, N.H. Simultaneous Determination of Monosaccharides and Oligosaccharides in Dates Using Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Food Chem. 2015, 176, 487–492. [Google Scholar] [CrossRef]
- Gribaa, A.; Dardelle, F.; Lehner, A.; Rihouey, C.; Burel, C.; Ferchichi, A.; Driouich, A.; Mollet, J.-C. Effect of Water Deficit on the Cell Wall of the Date Palm (Phoenix dactylifera ‘Deglet Nour’, Arecales) Fruit during Development. Plant Cell Environ. 2013, 36, 1056–1070. [Google Scholar] [CrossRef]
- Lawag, I.L.; Nolden, E.S.; Schaper, A.A.M.; Lim, L.Y.; Locher, C. A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey. Appl. Sci. 2023, 13, 2135. [Google Scholar] [CrossRef]
- Assirey, E.A. The Chemical Composition, Total Phenolic and Antioxidant Content of Four Date Palm Saudi Cultivars. J. Taibah Univ. Sci. 2021, 15, 282–287. [Google Scholar] [CrossRef]
- Zihad, S.M.N.K.; Uddin, S.J.; Sifat, N.; Lovely, F.; Rouf, R.; Shilpi, J.A.; Sheikh, B.Y.; Göransson, U. Antioxidant Properties and Phenolic Profiling by UPLC-QTOF-MS of Ajwah, Safawy and Sukkari Cultivars of Date Palm. Biochem. Biophys. Rep. 2021, 25, 100909. [Google Scholar] [CrossRef] [PubMed]
- Safia, A.; Rachida, A. Algerian Date Palm (Phoenix dactylifera L.) Fruit Cultivars: HPLC Fingerprinting and Antibacterial Activity. Foods Raw Mater. 2022, 11, 17–24. [Google Scholar] [CrossRef]
- Mehmood, T.; Khan, Z.A.; Karim, A.; Shaheen, M.A.; Akram, M.; Afzal, A.; Siddique, F. Variation in Bioactive Composition, Antioxidant Attributes and Fatty Acids Profile of Phoenix Dectylifera L. Fruits in Relation to Different Extraction Solvents. Pure Appl. Biol. 2016, 5, 996–1007. [Google Scholar] [CrossRef]
- Ali Haimoud, S.; Allem, R.; Merouane, A. Antioxidant and Anti-Inflammatory Properties of Widely Consumed Date Palm (Phoenix dactylifera L.) Fruit Varieties in Algerian Oases. J. Food Biochem. 2016, 40, 463–471. [Google Scholar] [CrossRef]
- Odeh, I.; Al-Rimawi, F.; Abbadi, J.; Obeyat, L.; Qabbajeh, M.; Hroub, A. Effect of Harvesting Date and Variety of Date Palm on Antioxidant Capacity, Phenolic and Flavonoid Content of Date Palm (Phoenix Dactylifera). J. Food Nutr. Res. 2014, 2, 499–505. [Google Scholar] [CrossRef]
- Hussain, M.I.; Farooq, M.; Syed, Q.A. Nutritional and Biological Characteristics of the Date Palm Fruit (Phoenix dactylifera L.)—A Review. Food Biosci. 2020, 34, 100509. [Google Scholar] [CrossRef]
- Mansouri, A.; Embarek, G.; Kokkalou, E.; Kefalas, P. Phenolic Profile and Antioxidant Activity of the Algerian Ripe Date Palm Fruit (Phoenix Dactylifera). Food Chem. 2005, 89, 411–420. [Google Scholar] [CrossRef]
- Kumari, R.; Chopra, S.; Thakur, N.; Rana, M.; Thakur, P.; Raina, K.; Anand, V.; Sharma, R.; Chaudhary, A. An Insight into Quantitative, Qualitative, and Analytical Methods for the Measurement of Antioxidant Activity through Various Assays. Vegetos 2024, 1–11. [Google Scholar] [CrossRef]
- AlFaris, N.A.; AlTamimi, J.Z.; AlMousa, L.A.; AlGhamidi, F.A.; Alzaheb, R.A.; Albaridi, N.A. Antioxidant Content Determination in Ripe Date Fruits (Phoenix dactylifera L.): A Scoping Review. Food Anal. Methods 2021, 14, 897–921. [Google Scholar] [CrossRef]
- Al-Turki, S.M. Antioxidant Properties of Date Palm (Phoenix dactylifera L.) Cultivars. ProQuest Dissertations & Theses, Colorado State University, Fort Collins, CO, USA, 2008. [Google Scholar]
- de Oliveira, I.R.N.; Teófilo, R.F.; de Oliveira, E.B.; Ramos, A.M.; de Barros, F.A.R.; Maia, M.d.P.; Stringheta, P.C. Evaluation of Potential Interfering Agents on in Vitro Methods for the Determination of the Antioxidant Capacity in Anthocyanin Extracts. Int. J. Food Sci. Technol. 2017, 52, 511–518. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.A.; Nicácio, A.E.; Boeing, J.S.; Garcia, F.P.; Nakamura, C.V.; Visentainer, J.V.; Maldaner, L. Rapid Extraction Method Followed by a D-SPE Clean-up Step for Determination of Phenolic Composition and Antioxidant and Antiproliferative Activities from Berry Fruits. Food Chem. 2020, 309, 125694. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.; Al-Hajhoj, M.; Al-Saikhan, M.; Alqahtani, N.; Zayed, M.; Moawad, M.; Alsenaien, W.; Mohamed, M.E. Green Extraction of Date Palm Fruits via Ultrasonic-Assisted Approach: Optimizations and Antioxidant Enrichments. Processes 2022, 10, 1049. [Google Scholar] [CrossRef]
- Alam, M.Z.; Alhebsi, M.S.R.; Ghnimi, S.; Kamal-Eldin, A. Inability of Total Antioxidant Activity Assays to Accurately Assess the Phenolic Compounds of Date Palm Fruit (Phoenix dactylifera L.). NFS J. 2021, 22, 32–40. [Google Scholar] [CrossRef]
- Jaouhari, Y.; Ferreira-Santos, P.; Disca, V.; Oliveira, H.; Martoccia, M.; Travaglia, F.; Gullón, B.; Mateus, N.; Coïsson, J.D.; Bordiga, M. Carbohydrases Treatment on Blueberry Pomace: Influence on Chemical Composition and Bioactive Potential. LWT 2024, 206, 116573. [Google Scholar] [CrossRef]
- Becker Pertuzatti, P.; Teixeira Barcia, M.; Gómez-Alonso, S.; Teixeira Godoy, H.; Hermosin-Gutierrez, I. Phenolics Profiling by HPLC-DAD-ESI-MSn Aided by Principal Component Analysis to Classify Rabbiteye and Highbush Blueberries. Food Chem. 2021, 340, 127958. [Google Scholar] [CrossRef]
- Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Bordiga, M.; Arlorio, M. Phenolic Composition of Nebbiolo Grape (Vitis vinifera L.) from Piedmont: Characterization during Ripening of Grapes Selected in Different Geographic Areas and Comparison with Uva Rara and Vespolina Cv. Eur. Food Res. Technol. 2016, 242, 1057–1068. [Google Scholar] [CrossRef]
- del Río, P.G.; Pérez-Pérez, A.; Garrote, G.; Gullón, B. Manufacturing of Hemicellulosic Oligosaccharides from Fast-Growing Paulownia Wood via Autohydrolysis: Microwave versus Conventional Heating. Ind. Crops Prod. 2022, 187, 115313. [Google Scholar] [CrossRef]
- Locatelli, M.; Gindro, R.; Travaglia, F.; Coïsson, J.-D.; Rinaldi, M.; Arlorio, M. Study of the DPPH-Scavenging Activity: Development of a Free Software for the Correct Interpretation of Data. Food Chem. 2009, 114, 889–897. [Google Scholar] [CrossRef]
- Gullón, B.; Eibes, G.; Moreira, M.T.; Dávila, I.; Labidi, J.; Gullón, P. Antioxidant and Antimicrobial Activities of Extracts Obtained from the Refining of Autohydrolysis Liquors of Vine Shoots. Ind. Crops Prod. 2017, 107, 105–113. [Google Scholar] [CrossRef]
Sample Variety | Dimension (mm) | Weight (g) | Percentage of Flesh (%) | |||
---|---|---|---|---|---|---|
Length | Thickness | Fruit | Flesh | Seed | ||
Ajwa | 32.7 ± 2.0 c | 20.58 ± 0.5 b | 8.50 ± 0.75 b | 7.18 ± 0.74 b | 1.33 ± 0.11 a | 84.3 ± 1.9 b |
Anbar | 50.0 ± 1.73 a | 22.0 ± 2.0 ab | 12.7 ± 0.8 a | 11.8 ± 0.72 a | 0.928 ± 0.058 b | 92.7 ± 0.4 a |
Safawi | 43.6 ± 1.4 b | 20.7 ± 1.5 b | 11.4 ± 0.9 a | 10.6 ± 0.9 a | 0.843 ± 0.101 b | 92.6 ± 0.8 a |
Sagai | 40.5 ± 1.3 b | 21.7 ± 1.5 ab | 11.4 ± 1.1 a | 10.5 ± 1.1 a | 0.834 ± 0.072 b | 92.6 ± 0.8 a |
Sukari | 35.7 ± 1.2 c | 26.2 ± 0.0 a | 12.2 ± 1.5 a | 11.1 ± 1.5 a | 1.18 ± 0.06 a | 90.2 ± 1.7 a |
Sample Variety | Moisture (%) | Ash (g/100 g dw) | Protein (g/100 g dw) | Lipids (g/100 g dw) | Sugars (g/100 g dw) | |||
---|---|---|---|---|---|---|---|---|
Glucose | Fructose | Sucrose | Total | |||||
Ajwa | 14.6 ± 1.4 a | 2.82 ± 0.09 a | 3.24 ± 0.23 a | 0.101 ± 0.002 c | 38.0 ± 1.1 a | 33.4 ± 1.5 a | ND | 71.4 ± 2.6 |
Anbar | 15.2 ± 1.3 a | 2.19 ± 0.07 b | 2.58 ± 0.11 c | 0.082 ± 0.000 d | 39.8 ± 0.4 a | 36.3 ± 0.7 a | ND | 76.1 ± 1.1 |
Safawi | 12.7 ± 0.8 ab | 1.45 ± 0.09 c | 2.83 ± 0.10 abc | 0.047 ± 0.003 e | 41.0 ± 0.5 a | 36.6 ± 0.6 a | ND | 77.7 ± 1.0 |
Sagai | 11.4 ± 0.7 b | 2.02 ± 0.06 b | 2.69 ± 0.09 bc | 0.200 ± 0.001 a | 40.0 ± 0.6 a | 36.4 ± 0.3 a | ND | 76.5 ± 0.9 |
Sukari | 14.3 ± 1.2 ab | 2.20 ± 0.20 b | 3.12 ± 0.09 ab | 0.142 ± 0.001 b | 24.9 ± 3.2 b | 20.7 ± 1.2 b | 28.0 ± 1.9 | 73.6 ± 6.3 |
Sample Variety | Dietary Fiber (g/100 g dw) | Oligosaccharides (g/100 g dw) | ||||
---|---|---|---|---|---|---|
IDF | SDF | TDF | FOSs | AOSs | Total | |
Ajwa | 7.12 ± 0.80 | 1.14 ± 0.21 | 8.26 ± 0.59 ab | 1.33 ± 0.11 b | 1.09 ± 0.04 a | 2.42 ± 0.08 b |
Anbar | 7.49 ± 0.92 | 0.560 ± 0.100 | 8.05 ± 0.82 ab | 0.676 ± 0.013 b | ND | 0.676 ± 0.013 c |
Safawi | 6.09 ± 0.21 | 0.514 ± 0.049 | 6.61 ± 0.26 b | ND | 0.553 ± 0.042 c | 0.553 ± 0.042 c |
Sagai | 8.25 ± 0.10 | 0.594 ± 0.199 | 8.85 ± 0.10 a | ND | 0.869 ± 0.063 ab | 0.869 ± 0.063 c |
Sukari | 7.78 ± 0.70 | 1.14 ± 0.26 | 8.92 ± 0.44 a | 2.71 ± 0.24 a | 0.661 ± 0.000 bc | 3.37 ± 0.24 a |
Components | Sample Variety | ||||
---|---|---|---|---|---|
Ajwa | Anbar | Safawi | Sagai | Sukari | |
TPC (mg GAE/100 g dw) | 50.5 ± 2.8 a | 37.7 ± 2.1 b | 55.1 ± 1.5 a | 50.1 ± 5.4 a | 38.3 ± 3.1 b |
TFC (mg CE/100 g dw) | 27.1 ± 1.8 a | 14.7 ± 2.0 c | 28.5 ± 2.0 a | 23.0 ± 0.8 b | 18.2 ± 1.3 c |
Individual phenolic compounds (µg/100 g dw) | |||||
Phenolic acids | |||||
Ferulic acid | 194 ± 13 b | 132 ± 10 c | 140 ± 2 c | 222 ± 8 b | 307 ± 6 a |
p-Coumaric acid | 175 ± 0 a | 97.7 ± 0.6 b | 53.4 ± 0.7 d | 106 ± 3 b | 73.2 ± 1.9 c |
Protocatechuic acid | 154 ± 5 a | 33.3 ± 0.2 d | 115 ± 1 b | 61.6 ± 3.1 c | 51.6 ± 1.2 c |
Gallic acid | 19.1 ± 0.1 a | 2.00 ± 0.06 c | 17.3 ± 0.8 a | 11.1 ± 0.4 b | 0.32 ± 0.00 c |
Syringic acid | 1.84 ± 0.14 b | 1.60 ± 0.06 b | 1.03 ± 0.01 c | 1.82 ± 0.03 b | 3.32 ± 0.07 a |
p-Hydroxybenzoic acid | 22.4 ± 0.9 a | 13.5 ± 0.2 b | 5.15 ± 0.18 d | 14.6 ± 0.7 b | 10.3 ± 0.3 c |
Vanillic acid | 3.70 ± 0.03 a | 3.22 ± 0.09 b | 1.21 ± 0.05 d | 2.15 ± 0.02 c | 2.42 ± 0.14 c |
Salicylic acid | 0.680 ± 0.032 bc | 1.14 ± 0.08 a | 0.521 ± 0.017 c | 0.876 ± 0.028 b | 0.769 ± 0.031 bc |
Flavonoids | |||||
Rutin | 109 ± 4 c | 223 ± 8 bc | 431 ± 57 a | 445 ± 144 a | 373 ± 21 ab |
Naringenin | 2.08 ± 0.42 c | 54.6 ± 0.1 a | 40.2 ± 0.9 b | 2.93 ± 0.58 c | 4.65 ± 0.28 c |
Luteolin | 175 ± 5 b | 24.2 ± 0.4 b | 270 ± 11 a | 128 ± 4 c | 142 ± 8 bc |
Catechin | 3.20 ± 1.09 | 2.69 ± 0.11 | 4.42 ± 0.19 | 2.07 ± 0.08 | 2.11 ± 0.01 |
Epicatechin | 1.45 ± 0.01 d | 15.7 ± 0.3 b | 35.5 ± 1.2 a | 5.59 ± 0.26 c | 3.95 ± 0.24 cd |
Phenolic aldehydes | |||||
Syringaldehyde | 18.0 ± 1.2 b | 19.9 ± 0.2 b | 9.50 ± 0.00 c | 28.2 ± 1.1 a | 31.9 ± 0.5 a |
Vanillin | 15.3 ± 0.7 b | 19.5 ± 0.0 a | 8.22 ± 0.06 c | 18.1 ± 0.8 ab | 16.3 ± 1.0 ab |
Total | 895 ± 28 b | 645 ± 19 c | 1132 ± 45 a | 1049 ± 29 ab | 1024 ± 40 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaouhari, Y.; Disca, V.; Ferreira-Santos, P.; Alvaredo-López-Vizcaíno, A.; Travaglia, F.; Bordiga, M.; Locatelli, M. Valorization of Date Fruit (Phoenix dactylifera L.) as a Potential Functional Food and Ingredient: Characterization of Fiber, Oligosaccharides, and Antioxidant Polyphenols. Molecules 2024, 29, 4606. https://doi.org/10.3390/molecules29194606
Jaouhari Y, Disca V, Ferreira-Santos P, Alvaredo-López-Vizcaíno A, Travaglia F, Bordiga M, Locatelli M. Valorization of Date Fruit (Phoenix dactylifera L.) as a Potential Functional Food and Ingredient: Characterization of Fiber, Oligosaccharides, and Antioxidant Polyphenols. Molecules. 2024; 29(19):4606. https://doi.org/10.3390/molecules29194606
Chicago/Turabian StyleJaouhari, Yassine, Vincenzo Disca, Pedro Ferreira-Santos, Adela Alvaredo-López-Vizcaíno, Fabiano Travaglia, Matteo Bordiga, and Monica Locatelli. 2024. "Valorization of Date Fruit (Phoenix dactylifera L.) as a Potential Functional Food and Ingredient: Characterization of Fiber, Oligosaccharides, and Antioxidant Polyphenols" Molecules 29, no. 19: 4606. https://doi.org/10.3390/molecules29194606
APA StyleJaouhari, Y., Disca, V., Ferreira-Santos, P., Alvaredo-López-Vizcaíno, A., Travaglia, F., Bordiga, M., & Locatelli, M. (2024). Valorization of Date Fruit (Phoenix dactylifera L.) as a Potential Functional Food and Ingredient: Characterization of Fiber, Oligosaccharides, and Antioxidant Polyphenols. Molecules, 29(19), 4606. https://doi.org/10.3390/molecules29194606