Impact of Preparative Isolation of C-Glycosylflavones Derived from Dianthus superbus on In Vitro Glucose Metabolism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Separation of Fr41
2.2. Verification of the Purity and the Structural Identification of Fr4111 and Fr4121
2.3. Molecular Docking of 2″-O-rhamnosyllutonarin and 6‴-O-rhamnosyllutonarin
2.4. 2″-O-rhamnosyllutonarin and 6‴-O-rhamnosyllutonarin Can Enhance Glucose Uptake in IR-HepG2 Cells
2.5. P-AKT and P-AMPK Levels of 2″-O-rhamnosyllutonarin and 6‴-O-rhamnosyllutonarin
3. Materials and Methods
3.1. Sample Separation and Purity Assay
3.2. Molecular Docking
3.3. Cell Culture
3.4. MTT Assay
3.5. 2-NBDG Uptake Assay
3.6. Western Blot Analysis
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kotwas, A.; Karakiewicz, B.; Zabielska, P.; Wieder-Huszla, S.; Jurczak, A. Epidemiological factors for type 2 diabetes mellitus: Evidence from the Global Burden of Disease. Arch. Public Health 2021, 79, 110. [Google Scholar] [CrossRef] [PubMed]
- Zick, C.D.; Curtis, D.S.; Meeks, H.; Smith, K.R.; Brown, B.B.; Kole, K.; Kowaleski-Jones, L. The changing food environment and neighborhood prevalence of type 2 diabetes. SSM Popul. Health 2023, 21, 101338. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 101338. [Google Scholar] [CrossRef] [PubMed]
- Astudillo, M.; Tosur, M.; Castillo, B.; Rafaey, A.; Siller, A.F.; Nieto, J.; Sisley, S.; McKay, S.; Nella, A.A.; Balasubramanyam, A.; et al. Type 2 diabetes in prepubertal children. Pediatr. Diabetes 2021, 22, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.; Bain, S.; Kanamarlapudi, V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab. Syndr. Obes. 2021, 14, 3567–3602. [Google Scholar] [CrossRef]
- Padhi, S.; Dash, M.; Behera, A. Nanophytochemicals for the treatment of type II diabetes mellitus: A review. Environ. Chem. Lett. 2021, 19, 4349–4373. [Google Scholar] [CrossRef]
- Zhu, J.; Han, J.; Liu, L.; Liu, Y.; Xu, W.; Li, X.; Yang, L.; Gu, Y.; Tang, W.; Shi, Y.; et al. Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2023, 197, 110568. [Google Scholar] [CrossRef]
- Yoon, J.J.; Park, J.H.; Kim, H.J.; Jin, H.G.; Kim, H.Y.; Ahn, Y.M.; Kim, Y.C.; Lee, H.S.; Lee, Y.J.; Kang, D.G. Dianthus superbus Improves Glomerular Fibrosis and Renal Dysfunction in Diabetic Nephropathy Model. Nutrients 2019, 11, 553. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, G.S.; Nile, A.S.; Kwon, Y.D.; Enkhtaivan, G.; Nile, S.H. Utilization of Dianthus superbus L and its bioactive compounds for antioxidant, anti-influenza, and toxicological effects. Food Chem. Toxicol. 2019, 125, 313–321. [Google Scholar] [CrossRef]
- Sun, J.; Yu, J.H.; Song, J.L.; Jiang, C.S.; Tao, Y.; Zhang, H. Two new quinolone alkaloids from Dianthus superbus var. superbus. Tetrahedron Lett. 2019, 60, 161–163. [Google Scholar] [CrossRef]
- Ren, Y.N.; Xu, X.B.; Zhang, Q.L.; Lu, Y.Z.; Li, X.M.; Zhang, L.; Tian, J.K. Isolation, characterization, and in rats plasma pharmacokinetic study of a new triterpenoid saponin from Dianthus superbus. Arch. Pharmacal Res. 2017, 40, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Luo, J.G.; Wang, R.; Wang, X.B.; Kong, L.Y. New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus. Bioorganic Med. Chem. Lett. 2012, 22, 1908–1911. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.L.; Gao, Y.Q.; Yang, J.H.; Liu, H.W.; Bai, M.M.; Wu, Z.H.; Li, C.H.; Tian, J.M.; Gao, J.M. Phytoecdysteroids from Dianthus superbus L.: Structures and anti-neuroinflammatory evaluation. Phytochemistry 2023, 212, 113710. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.; Je, K.H.; Guillen Quispe, Y.N.; Shin, K.O.; Kim, H.Y.; Kim, K.H.; Arce, P.H.G.; Lim, S.S. Separation and Identification of Antioxidants and Aldose Reductase Inhibitors in Lepechinia meyenii (Walp.) Epling. Plants 2021, 10, 2773. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Cui, Y.; Li, S.; Sang, D.; Liu, W.; Zhao, T.; Gu, X.; Chen, T.; Li, Y. The applicability of high-speed counter-current chromatography for preparative separation of biosynthesis products: Glycosylation products as example. J. Sep. Sci. 2021, 44, 4368–4375. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, Y.; Zhan, Y.; Liu, L.; Xu, Y.; Xu, T.; Liu, T. Preparative isolation and purification of five flavonoid glycosides and one benzophenone galloyl glycoside from Psidium guajava by high-speed counter-current chromatography (HSCCC). Molecules 2013, 18, 15648–15661. [Google Scholar] [CrossRef]
- Yuan, C.; Dang, J.; Han, Y.; Liu, C.; Yu, S.; Lv, Y.; Cui, Y.B.; Wang, Z.H.; Li, G. Preparative isolation of maltol glycoside from Dianthus superbus and its anti-inflammatory activity in vitro. RSC Adv. 2022, 12, 5031–5041. [Google Scholar] [CrossRef]
- Ma, L.J.; Cao, J.L.; Meng, F.C.; Wang, S.P.; Deng, Y.; Wang, Y.T.; Li, P.; Wan, J.B. Quantitative Characterization of Ginsenoside Biotransformation in Panax notoginseng Inflorescences and Leaves by Online Two-Dimensional Liquid Chromatography Coupled to Mass Spectrometry. J. Agric. Food Chem. 2020, 68, 5327–5338. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Wu, Y.J.; Liu, X.M.; Li, B.W.; Hu, D.P.; Huang, S.; Ma, M.; Chen, B. Pulsed elution modulation for online comprehensive two-dimensional liquid chromatography coupling reversed-phase liquid chromatography and hydrophilic interaction chromatography. J. Chromatogr. A 2019, 1583, 98–107. [Google Scholar] [CrossRef]
- Dang, J.; Zhang, L.; Wang, Q.L.; Mei, L.J.; Yue, H.L.; Liu, Z.G.; Shao, Y.; Gao, Q.B.; Tao, Y.D. Target separation of flavonoids from Saxifraga tangutica using two-dimensional hydrophilic interaction chromatography/reversed-phase liquid chromatography. J. Sep. Sci. 2019, 41, 4419–4429. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, W.J.; Wang, Q.L.; Tao, Y.D.; Yu, R.T.; Pan, G.Q.; Dang, J. Preparative separation of isoquinoline alkaloids from Corydalis impatiens using middle chromatogram isolated gel column coupled with positively charged reversed-phase liquid chromatography. J. Sep. Sci. 2020, 43, 2521–2528. [Google Scholar] [CrossRef]
- Wang, W.D.; Tao, Y.D.; Jiao, L.J.; Fan, M.X.; Shao, Y.; Wang, Q.L.; Mei, L.J.; Dang, J. Efficient separation of high-purity compounds from Oxytropis falcata using two-dimensional preparative chromatography. J. Sep. Sci. 2017, 40, 3593–3601. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.Y.; Jin, H.L.; Shen, A.J.; Deng, L.; Shi, J.L.; Xue, X.Y.; Guo, Y.D.; Liu, Y.F.; Liang, X.M. Purification of high-purity glycyrrhizin from licorice using hydrophilic interaction solid phase extraction coupled with preparative reversed-phase liquid chromatography. J. Chromatogr. B 2017, 1040, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, T.; Sakama, A.; Kanamori, K.; Nakanishi, K.; Imai, H.; Citterio, D.; Hiruta, Y. Fabrication process development and basic evaluation of eggshell-based column packing material for reversed-phase preparative separation. J. Chromatogr. A 2023, 1688, 463722. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.J.; Tao, Y.D.; Wang, W.D.; Shao, Y.; Mei, L.J.; Wang, Q.L.; Dang, J. Preparative isolation of flavonoid glycosides from Sphaerophysa salsula using hydrophilic interaction solid-phase extraction coupled with two-dimensional preparative liquid chromatography. J. Sep. Sci. 2017, 40, 3808–3816. [Google Scholar] [CrossRef]
- Camargo, L.M.D.; Ferezou, J.P.; Tinoco, L.W.; Kaiser, C.R.; Costa, S.S. Flavonoids from Mimosa xanthocentra (Leguminosae: Mimosoideae) and molecular modeling studies for isovitexin-2″-O-alpha-L-rhamnopyranoside rotamers. Phytochem. Lett. 2012, 5, 427–431. [Google Scholar] [CrossRef]
- Obmann, A.; Werner, I.; Presser, A.; Zehl, M.; Swoboda, Z.; Purevsuren, S.; Narantuya, S.; Kletter, C.; Glasl, S. Flavonoid C- and O-glycosides from the Mongolian medicinal plant Dianthus versicolor Fisch. Carbohyd. Res. 2012, 346, 1868–1875. [Google Scholar] [CrossRef]
- Chen, W.W.; Kang, K.; Lv, J.; Yue, L.; Zhang, W.Q. Galactose-NlGr11 inhibits AMPK phosphorylation by activating the PI3K-AKT-PKF-ATP signaling cascade via insulin receptor and G beta gamma. Insect Sci. 2020, 28, 735–745. [Google Scholar] [CrossRef]
- Cui, X.B.; Wang, C.; Li, L.; Fan, D.; Zhou, Y.; Wu, D.; Cui, Q.H.; Fu, F.Y.; Wu, L.L. Insulin decreases myocardial adiponectin receptor 1 expression via PI3K/Akt and FoxO1 pathway. Cardiovasc. Res. 2012, 93, 69–78. [Google Scholar] [CrossRef]
- Brandt, N.; De Bock, K.; Richter, E.A.; Hespel, P. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E215–E224. [Google Scholar] [CrossRef]
- Mao, Z.J.; Lin, M.; Zhang, X.; Qin, L.P. Combined Use of Astragalus Polysaccharide and Berberine Attenuates Insulin Resistance in IR-HepG2 Cells via Regulation of the Gluconeogenesis Signaling Pathway. Front. Pharmacol. 2020, 10, 1508. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Luo, J.Y.; Chai, Y.Y.; Guo, Y.; Yang, T.Z.; Bao, Y.H. Hypoglycemic effect of Taraxacum officinale root extract and its synergism with Radix Astragali extract. Food Sci. Nutr. 2021, 9, 2075–2085. [Google Scholar] [CrossRef] [PubMed]
- Issac, P.K.; Guru, A.; Chandrakumar, S.S.; Lite, C.; Saraswathi, N.T.; Arasu, M.V.; Al-Dhabi, N.A.; Arshad, A.; Arockiaraj, J. Molecular process of glucose uptake and glycogen storage due to hamamelitannin via insulin signaling cascade in glucose metabolism. Mol. Biol. Rep. 2020, 47, 6727–6740. [Google Scholar] [CrossRef] [PubMed]
- Erukainure, O.L.; Oyebode, O.A.; Ibeji, C.U.; Koorbanally, N.A.; Islam, M.S. Vernonia Amygdalina Del. stimulated glucose uptake in brain tissues enhances antioxidative activities; and modulates functional chemistry and dysregulated metabolic pathways. Metab. Brain Dis. 2019, 34, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, E.; Picatoste, B.; Gonzalez-Bris, A.; Oteo, M.; Cruz, F.; Caro-Vadillo, A.; Egido, J.; Tunon, J.; Morcillo, M.A.; Lorenzo, O. Sitagliptin improved glucose assimilation in detriment of fatty-acid utilization in experimental type-II diabetes: Role of GLP-1 isoforms in Glut4 receptor trafficking. Cardiovasc. Diabetol. 2018, 17, 12. [Google Scholar] [CrossRef]
- Dai, H.B.; Wang, H.Y.; Wang, F.Z.; Qian, P.; Gao, Q.; Zhou, H.; Zhou, Y.B. Adrenomedullin ameliorates palmitic acid-induced insulin resistance through PI3K/Akt pathway in adipocytes. Acta Diabetol. 2022, 59, 661–673. [Google Scholar] [CrossRef]
- Yang, Q.; Wen, Y.M.; Shen, J.; Chen, M.M.; Wen, J.H.; Li, Z.M.; Liang, Y.Z.; Xia, N. Guava Leaf Extract Attenuates Insulin Resistance via the PI3K/Akt Signaling Pathway in a Type 2 Diabetic Mouse Model. Diabetes Metab. Syndr. Obes. 2020, 13, 713–718. [Google Scholar] [CrossRef]
- Shu, L.Y.; Zhao, H.; Huang, W.L.; Hou, G.S.; Song, G.Y.; Ma, H.J. Resveratrol Upregulates mmu-miR-363-3p via the PI3K-Akt Pathway to Improve Insulin Resistance Induced by a High-Fat Diet in Mice. Diabetes Metab. Syndr. Obes. 2020, 13, 391–403. [Google Scholar] [CrossRef]
- Mazibuko-Mbeje, S.E.; Dludla, P.V.; Roux, C.; Johnson, R.; Ghoor, S.; Joubert, E.; Louw, J.; Opoku, A.R.; Muller, C.J.F. Aspalathin-Enriched Green Rooibos Extract Reduces Hepatic Insulin Resistance by Modulating PI3K/AKT and AMPK Pathways. Int. J. Mol. Sci. 2019, 20, 633. [Google Scholar] [CrossRef]
- Lei, Y.Y.; Gong, L.L.; Tan, F.G.; Liu, Y.X.; Li, S.S.; Shen, H.W.; Zhu, M.; Cai, W.W.; Xu, F.; Hou, B.; et al. Vaccarin ameliorates insulin resistance and steatosis by activating the AMPK signaling pathway. Eur. J. Pharmacol. 2019, 851, 13–24. [Google Scholar] [CrossRef]
- Rogacka, D.; Audzeyenka, I.; Rychlowski, M.; Rachubik, P.; Szrejder, M.; Angielski, S.; Piwkowska, A. Metformin overcomes high glucose-induced insulin resistance of podocytes by pleiotropic effects on SIRT1 and AMPK. BBA Mol. Basis Dis. 2018, 1864, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Haroon, M.; Khalid, M.; Shahzadi, K.; Akhtar, T.; Saba, S.; Rafique, J.; Ali, S.; Irfan, M.; Alam, M.M.; Imran, M. Alkyl 2-(2-(arylidene)alkylhydrazinyl)thiazole-4-carboxylates: Synthesis, acetyl cholinesterase inhibition and docking studies. J. Mol. Struct. 2021, 1245, 131063. [Google Scholar] [CrossRef]
- Khan, M.S.; Khalid, M.; Ahmad, M.S.; Ahmad, M.; Ashafaq, M.; Rahisuddin; Arif, R.; Shahid, M. Synthesis, spectral and crystallographic study, DNA binding and molecular docking studies of homo dinuclear Co(II) and Ni(II) complexes. J. Mol. Struct. 2019, 1175, 889–899. [Google Scholar] [CrossRef]
Compound | Name | Structure | ESI− | 1H-NMR (600 MHz, DMSO-d6) | 13C-NMR (151 MHz, DMSO-d6) |
---|---|---|---|---|---|
Fr4111 | 2″-O-rhamnosyllutonarin | 755.44 | 13.59 (1H, s, 5-OH), 7.44 (1H, dd, J = 8.2, 2.0 Hz, H-6′), 7.42 (1H, brs, H-2′), 6.90 (1H, d, J = 8.2 Hz, H-5′), 6.87 (1H, s, H-8), 6.75 (1H, s, H-3), 4.97 (1H, d, J = 7.9 Hz, H-1⁗), 4.95 (1H, brs, H-1‴), 4.71 (1H, d, J = 9.9 Hz, H-1″), 4.13 (1H, dd, J = 9.9, 8.5 Hz, H-2″), 3.61 (1H, brs, H-2‴), 3.58, 3.64 (each 1H, m, H-6″), 3.56, 3.78 (each 1H, m, H-6⁗), 3.50 (1H, m, H-5⁗), 3.37 (1H, m, H-2⁗), 3.36 (1H, m, H-3″), 3.32 (1H, m, H-3⁗), 3.28 (1H, m, H-4″), 3.24 (1H, m, H-4⁗), 3.18 (1H, m, H-5″), 3.15 (1H, dd, J = 9.3, 3.0, H-3‴), 2.88 (1H, dd, J = 9.3, 9.3, H-4‴), 2.32 (1H, dq, J = 9.3, 6.2, H-5‴), 0.59 (3H, d, J = 6.2, H-6‴) [26]. | 181.9 (C-3), 164.3 (C-1), 162.7 (C-6), 159.3 (C-4), 156.6 (C-8), 150.2 (C-4′), 145.9 (C-3′), 121.1 (C-1′), 119.2 (C-6′), 116.0 (C-5′), 113.4 (C-2′), 110.5 (C-5), 105.0 (C-9), 103.1 (C-2), 102.0 (C-1⁗), 100.5 (C-1‴), 94.3 (C-7), 81.1 (C-5″), 78.9 (C-3″), 77.3 (C-5⁗), 76.7 (C-2″), 75.7 (C-3⁗), 73.8 (C-2⁗), 71.6 (C-4″), 71.2 (C-1″), 70.5 (C-2‴), 70.2 (C-3‴), 69.7 (C-4″,4⁗), 68.3 (C-5‴), 60.9 (C-6⁗), 60.3 (C-6″), 17.6 (C-6‴) [26]. | |
Fr4121 | 6‴-O-rhamnosyllutonarin | 755.42 | 13.61 (1H, s, 5-OH), 7.45 (1H, dd, J = 8.4, 2.0 Hz, H-6′), 7.41 (1H, d, H-2′), 6.95 (1H, d, J = 8.4 Hz, H-5′), 6.77 (1H, s, H-3), 6.75 (1H, s, H-8), 4.99 (1H, d, J = 7.1 Hz, H-1‴), 4.65 (1H, d, J = 9.8 Hz, H-1″), 4.63 (1H, brs, H-1⁗), 3.94 (1H, dd, J = 9.8, 8.7 Hz, H-2″), 3.93 (1H, brd, J = 12.0, H-6‴), 3.73 (1H, dd, J = 3.3, 1.4 Hz, H-2⁗), 3.68 (1H, m, H-5‴), 3.55 (1H, dd, J = 9.4, 3.3 Hz, H-3⁗), 3.54–3.65 (2H, m), 3.51 (1H, m, H-6‴), 3.46 (1H, dq, J = 9.3, 6.2 Hz, H-5⁗), 3.34 (1H, m, H-2‴), 3.33 (1H, m, H-3‴), 3.28 (1H, m, H-4″), 3.22 (1H, m, H-3″), 3.20 (1H, m, H-4⁗), 3.19 (1H, m, H-4‴), 3.17 (1H, m, H-5″), 1.13 (3H, d, J = 6.2, H-6⁗) [27]. | 182.0 (C-4), 164.7 (C-2), 162.5 (C-7), 159.5 (C-5), 156.6 (C-9), 150.0 (C-4′), 145.7 (C-3′), 121.2 (C-1′), 119.4 (C-6′), 116.3 (C-5′), 113.5 (C-2′), 110.5 (C-6), 105.0 (C-10), 103.3 (C-3), 101.3 (C-1‴), 100.6 (C-1⁗), 93.5 (C-8), 81.2 (C-5″), 78.9 (C-3″), 75.7 (C-5‴), 75.5 (C-3‴), 73.8 (C-2‴), 72.8 (C-1″), 72.0 (C-4⁗), 70.9 (C-3⁗), 70.8 (C-2″), 70.4 (C-2⁗), 69.6 (C-4″,4‴), 68.4 (C-5⁗), 66.2 (C-6‴), 60.3 (C-6″), 17.9 (C-6⁗) [27]. |
Type | Compounds | RMSD | Binding Energy (Kcal/mol) |
---|---|---|---|
AKT | Metformin | 33.50 | −7.11 |
2″-O-rhamnosyllutonarin | 34.15 | −5.41 | |
6‴-O-rhamnosyllutonarin | 32.63 | −5.65 | |
AMPK | Metformin | 99.38 | −5.90 |
2″-O-rhamnosyllutonarin | 89.32 | −5.77 | |
6‴-O-rhamnosyllutonarin | 85.10 | −5.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Zhou, X.; Yuan, C.; Fang, Y.; Zhou, H.; Wang, Z.; Dang, J.; Li, G. Impact of Preparative Isolation of C-Glycosylflavones Derived from Dianthus superbus on In Vitro Glucose Metabolism. Molecules 2024, 29, 339. https://doi.org/10.3390/molecules29020339
Lin Z, Zhou X, Yuan C, Fang Y, Zhou H, Wang Z, Dang J, Li G. Impact of Preparative Isolation of C-Glycosylflavones Derived from Dianthus superbus on In Vitro Glucose Metabolism. Molecules. 2024; 29(2):339. https://doi.org/10.3390/molecules29020339
Chicago/Turabian StyleLin, Zikai, Xiaowei Zhou, Chen Yuan, Yan Fang, Haozheng Zhou, Zhenhua Wang, Jun Dang, and Gang Li. 2024. "Impact of Preparative Isolation of C-Glycosylflavones Derived from Dianthus superbus on In Vitro Glucose Metabolism" Molecules 29, no. 2: 339. https://doi.org/10.3390/molecules29020339
APA StyleLin, Z., Zhou, X., Yuan, C., Fang, Y., Zhou, H., Wang, Z., Dang, J., & Li, G. (2024). Impact of Preparative Isolation of C-Glycosylflavones Derived from Dianthus superbus on In Vitro Glucose Metabolism. Molecules, 29(2), 339. https://doi.org/10.3390/molecules29020339