Effect of Oat Fiber Preparations with Different Contents of β-Glucan on the Formation of Acrylamide in Dietary Bread (Rusks)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of the Addition of the Different Concentrations of Oat Fiber Preparations on the Acrylamide Content
2.2. Effect of the Type and Concentration of the Oat Fiber Preparations on the Contents of Acrylamide Precursors
2.2.1. Effect of the Type and Concentration of the Oat Fiber Preparations on the Contents of Free Sugars
2.2.2. Effect of the Type and Concentration of the Oat Fiber Preparations on the Content of Free Asparagine
2.3. Influence of the Type and Concentration of the Oat Fiber Preparations on the Color of the Yeast Cakes and Rusks
2.4. Water Activity
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Rusks
3.2.1. Analyses Made for the Dough
Water Activity
Carbohydrate Content
Free Asparagine Content Using an Amino Acid Analyzer
3.2.2. Analyses Made for Baked Cakes and Rusks
Water Activity
Carbohydrate Content
Free Asparagine Content Using an Amino Acid Analyzer
Color Measurement in the CIE L*a*b* System
Acrylamide Content
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pedreschi, F.; Mariotti, M.S.; Granby, K. Current issues in dietary acrylamide: Formation, mitigation and risk assessment. J. Sci. Food Agric. 2014, 94, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Miśniakiewicz, M. Czynniki warunkujące jakość i bezpieczeństwo zdrowotne pieczywa. Zesz. Nauk. 2011, 851, 35–52. [Google Scholar]
- Tai-Yuan, C.; Husan-Min, L.; Pang-Hung, H. Effects of calcium supplements on the quality and acrylamide content of puffed shrimp chips. J. Food Drug Anal. 2016, 24, 164–172. [Google Scholar] [CrossRef]
- [EFSA] European Food Safety Authority. Scientific opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar] [CrossRef]
- Elias, A.; Roasto, M.; Reinik, M.; Nelis, K.; Nurk, E.; Elias, T. Acrylamide in commercial foods and intake by infants in Estonia. Food Addit. Contam. Part A 2017, 34, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Cheng, K.W.; Du, Y.; Kong, R.; Lo, C.; Chu, I.K.; Chen, F.; Wang, M. Activities of hydrocolloids as inhibitors of acrylamide formation in model systems and fried potato strips. Food Chem. 2010, 121, 424–428. [Google Scholar] [CrossRef]
- Acar, Ö.C.; Pollio, M.; Di Monaco, R.; Fogliano, V.; Gökmen, V. Effect of Calcium on Acrylamide Level and sensory Properties of Cookies. Food Bioprocess Technol. 2012, 5, 519–526. [Google Scholar] [CrossRef]
- Gökmen, V.; Acar, O.C.; Koksel, H.; Acar, J. Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formulation in cookies. Food Chem. 2007, 104, 1136–1142. [Google Scholar] [CrossRef]
- Kumar, N.S.M.; Shimary, C.A.; Indrani, D.; Manonmani, H.K. Reduction of acrylamide formation in sweet bread with L-asparaginase treatment. Food Bioprocess Technol. 2014, 7, 741–748. [Google Scholar] [CrossRef]
- Anese, M.; Quarta, B.; Frias, J. Modelling the effect of asparaginase in reducing acrylamide formation in biscuits. Food Chem. 2011, 126, 435–440. [Google Scholar] [CrossRef]
- Masatcioglu, M.T.; Gokmen, F.; Ng, P.K.W.; Koksel, H. Effects of formulation, extrusion cooking conditions, and CO₂ injection on the formation of acrylamide in corn extrudates. J Sci Food Agric. 2014, 94, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, M.; Grob, K. Model studies on acrylamide formation in potato, wheat flour and corn starch: Ways to reduce acrylamide contents in bakery ware. Mitteilungen Leb. Hyg. 2003, 94, 406–422. [Google Scholar]
- Açar, O.C.; Gőkmen, V. A new approach to evaluate the risk arising from acrylamide formation in cookies during baking: Total risk calculation. J. Agric. Food Chem. 2010, 100, 642–648. [Google Scholar] [CrossRef]
- Sansano, M.; Castello, M.L.; Heredia, A.; Andres, A. Protective effect of chitosan on acrylamide formation in model and batter systems. Food Hydrocoll. 2016, 60, 1–6. [Google Scholar] [CrossRef]
- Suyatma, N.E.; Ulfah, K.; Prangdimurti, E.; Ishikawa, Y. Effect of blanching and pectin coating as pre-frying treatments to reduce acrylamide formation in banana chips. Int. Food. Res. J. 2015, 22, 936–942. [Google Scholar]
- Kohajdova, Z.; Karovicova, J. Application of hydrocolloids as baking improvers. Chem. Pap. 2009, 63, 26–38. [Google Scholar] [CrossRef]
- Champrasert, O.; Chu, J.; Meng, Q.; Viney, S.; Holmes, M.; Suwannaporn, P.; Orfila, C. Inhibitory effect of polysaccharides on acrylamide formation in chemical and food model systems. Food Chem. 2021, 363, 130213–130219. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ruiz, R.; Marin-Saez, J.; Cunha, S.C.; Fernandes, A.; de Freitas, V.; Viegas, O.; Ferreira, I.M. Fibre enrichment of cookies to mitigate acrylamide formation andgastrointestinal bioaccessibility. LWT 2023, 182, 114835–114842. [Google Scholar] [CrossRef]
- Rossi Marquez, G.; Di Pierro, P.; Esposito, M.; Mariniello, L.; Porta, R. Application of transglutaminase-crosslinked whey protein/pectin films as water barrier coatings in fried and baked foods. Food Bioprocess Technol. 2013, 7, 447–455. [Google Scholar] [CrossRef]
- Pastuszka, D.; Gambuś, H.; Ziobro, R.; Buksa, K.; Sabat, R.; Augustyn, G. Impact of oats β-glucans on properties of gluten-free bread. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 972–979. [Google Scholar]
- Saluk-Juszczak, J.; Królewska, K. β-glucan from saccharomyces cerevisiae- the natural stymulator of immune system. Kosmos 2010, 2, 151–160. [Google Scholar]
- Gibiński, M. β-glukany owsa jako składnik żywności funkcjonalnej. Food. Sci. Technol. Qual. 2008, 2, 15–29. [Google Scholar]
- Jurczyńska, E.; Saczko, J.; Kulbacka, J.; Kawa-Rygielska, J.; Błażewicz, J. β-glucan as a natural anticancer agent. Pol. Merk. Lek. 2012, XXXIII, 196–217. [Google Scholar]
- Al-Asmar, A.; Naviglio, D.; Giosafatto, C.V.L.; Mariniello, L. Hydrocolloid-based coatings are effective at reducing acrylamide and oil content of french fries. Coatings 2018, 8, 147. [Google Scholar] [CrossRef]
- Torres, J.D.; Dueik, V.; Carré, D.; Bouchon, P. Effect of the Addition of Soluble Dietary Fiber and Green Tea Polyphenols on Acrylamide Formation and In Vitro Starch Digestibility in Baked Starchy Matrices. Molecules 2019, 24, 3674–3692. [Google Scholar] [CrossRef]
- Fredriksson, H.; Tallving, J.; Rosén, J.; Åman, P. Fermentation reduces free asparagine in dough and acrylamide content in bread. Cereal Chem. 2004, 81, 650–653. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Krungleviciute, V.; Pugajeva, I.; Zadeike, D.; Juodeikiene, G.; Cizeikiene, D. The influence of scalded four, fermentation, and plants belonging to lamiaceae family on the wheat bread quallity and acrylamide content. J. Food Sci. 2018, 83, 1560–1568. [Google Scholar] [CrossRef]
- Verma, V.; Yadav, N. Acrylamide content in starch based commercial foods by using high performance liquid chromatography and its association with browning index. Curr. Res. Food Sci. 2022, 5, 464–470. [Google Scholar] [CrossRef]
- Pedreschi, F.; Kaack, K.; Granby, K. Acrylamide content and colour development in fried potato strips. Food Res. Int. 2006, 39, 40–46. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Man, Y.; Liu, Y. Reduction of acrylamide content in bread crust by starch coating. J. Sci. Food Agric. 2018, 98, 336–345. [Google Scholar] [CrossRef]
- Havrlentová, M.; Petruláková, Z.; Burgárová, A.; Gavurníková, S.; Červená, V.; Šturdík, E.; Kraic, J.; Žofajová, A. Properties of Cereal β-D-Glucan Hydrocolloids and their Effect on Bread and Ketchup Parameters. Pol. J. Food Nutr. Sci. 2013, 63, 79–86. [Google Scholar] [CrossRef]
- Vasanthan, T.; Temelli, F. Grain fractionation technologies for cereal beta-glucan concentration. Food Res. Int. 2008, 41, 876–881. [Google Scholar] [CrossRef]
- Fernandes, S.S.; de las Mercedes Salas-Mellado, M. Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chem. 2017, 227, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Nourmohammadi, E.; Peighambardoust, S.H. New concept in reduced-calorie sponge cake production by xylitol and oligofructose. J. Food Qual. 2016, 39, 627–633. [Google Scholar] [CrossRef]
- Bartkiene, E.; Kungiene, G.; Starkute, V.; Klupsaite, D.; Zokaityte, E.; Cernauskas, D.; Kamarauskiene, E.; Özogul, F.; Miguel Rocha, J. Psyllium husk gel used as an alternative and more sustainable scalding technology for wheat bread quality improvement and acrylamide reduction. Front. Nutr. 2023, 10, 1277980. [Google Scholar] [CrossRef] [PubMed]
- Zokaei, M.; Kamankesh, M.; Abedi, A.-S.; Moosavi, M.H.; Mohammadi, A.; Rezvani, M.; Shojaee-Aliabadi, S.; Khaneghah, A.M. Reduction in Acrylamide Formation in Potato Crisps: Application of Extract and Hydrocolloid-Based Coatings. J. Food Prot. 2020, 83, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.; Andersson, R.O.; Ohan, R.J.; Osea, N.; Kamal-Eldin, A.F.; Aman, P. Factors Influencing Acrylamide Content and Color in Rye Crisp Bread. J. Agric. Food Chem. 2005, 53, 5985–5989. [Google Scholar] [CrossRef] [PubMed]
- Bassama, J.; Brat, P.; Bohuon, P.; Hocine, B.; Boulanger, R.; Günata, Z. Acrylamide kinetic in plantain during heating process: Precursors and effect of water activity. Food Res. Int. 2011, 44, 1452–1458. [Google Scholar] [CrossRef]
- Shodex NH2P-50 Series Columns. Analysis of Saccharides in Food Industry. Technical Notebook, 2, Shodex Showa Denko Europe GmbH. Available online: https://www.shodexhplc.com/wp-content/uploads/2022/01/T.N.-2-Analysis-of-Sacharides-with-NH2P-50-Series-Columns.pdf (accessed on 10 July 2023).
- Commission Directive 98/64/EC of 3 September 1998 Establishing Comminity Methods of Analysis for Determination of Amino Acids, Crude Oils and Fats, and Olaquindox in Feedingstuffs and Amending Directive 71/393/EEC. Official Journal of the European Communities, L257/16–L257/23. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0064:EN:HTML (accessed on 10 July 2023).
- Bodart, M.; de Peñarada, R.; Deneyer, A.; Flamant, G. Photometry and colorimetry characterization of materials in daylighting evaluation tools. Build. Environ. 2008, 43, 2046–2058. [Google Scholar] [CrossRef]
- Wen, C.S.; Chih, Y.C. Influence of Cookies Formulation on the Formation of Acrylamide. J. Food Nutr. Res. 2017, 5, 370–378. [Google Scholar]
- Mojska, H.T. Study on the acrylamide content in processed cereal products. Food. Sci. Technol. Qual. 2008, 4, 168–172. [Google Scholar]
- Soares, M.C.; Fernandes, J.O. MSPD method to determine acrylamide in food. Food Anal. Methods 2009, 2, 197–203. [Google Scholar] [CrossRef]
- Miśkiewicz, K.; Rosicka- Kaczmarek, J.; Nebesny, E. Effects of Chickpea Protein on Carbohydrate Reactivity in Acrylamide Formation in Low Humidity Model Systems. Foods 2020, 9, 167. [Google Scholar] [CrossRef] [PubMed]
Blank Sample | 10% Addition of OFP20% β-glucans | 10% Addition of OFP30% β-glucans | 15% Addition of OFP20% β-glucans | 15% Addition of OFP30% β-glucans | 20% Addition of OFP20% β-glucans | 20% Addition of OFP30% β-glucans | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg g −1d.m.) | ||||||||||||||
Fermentation | Fermentation | Fermentation | Fermentation | Fermentation | Fermentation | Fermentation | ||||||||
Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | |
Fructose | 23.43 Aa ±0.12 | 22.21 Ba ±0.13 | 23.70 Ab ±0.10 | 22.51 Ba ±0.18 | 21.13 Ac ±0.10 | 20.98 Ab ±0.11 | 23.93 Ad ±0.12 | 23.45 Bc ±0.14 | 21.09 Ac ±0.13 | 20.18 Bd ±0.16 | 21.76 Ad ±0.13 | 21.01 Bb ±0.11 | 24.51 Ae ±0.13 | 23.04 Bf ±0.11 |
Glucose | 15.14 Aa ±0.03 | 11.24 Ba ±0.14 | 14.92 Ab ±0.11 | 14.21 Bb ±0.11 | 13.74 Ac ±0.12 | 12.89 Bc ±0.10 | 14,51 Ad ±0.09 | 13.45 Bd ±0.16 | 13.31 Ae ±0.15 | 12.28 Be ±0.17 | 14.43 Ad ±0.09 | 13.68 Bd ±0.14 | 17.93 Af ±0.14 | 16.15 Bf ±0.11 |
Sucrose | 0.61 Aa ±0.11 | 0.42 Aa ±0.11 | 0.47 Aa ±0.11 | 0.28 Aa ±0.11 | 0.70 Aa ±0.13 | 0.54 Aab ±0.13 | 0.76 Aa ±0.14 | 0.61 Ab ±0.11 | 0.13 Ab ±0.11 | 0.10 Ac ±0.15 | 0.14 Ab ±0.11 | 0.09 Ac ±0.07 | 0.10 Ab ±0.09 | 0.08 Ac ±0.06 |
Maltose | 23.23 Aa ±0.04 | 16.67 Ba ±0.12 | 28.52 Ab ±0.14 | 21.25 Bb ±0.14 | 27.64 Ac ±0.11 | 21.05 Bb ±0.11 | 27.31 Ac ±0.15 | 20.27 Bc ±0.14 | 27.64 Ac ±0.12 | 21.06 Bb ±0.11 | 28.58 Ab ±0.16 | 22.45 Bd ±0.11 | 26.19 Ad ±0.14 | 21.89 Be ±0.17 |
Sum | 61.41 Aa ±0.15 | 50.44 Ba ±0.17 | 67.61 Ab ±0.11 | 58.25 Bb ±0.10 | 63.21 Ac ±0.12 | 55.46 Bc ±0.09 | 66.51 Ad ±0.11 | 57.78 Bd ±0.13 | 62.17 Ae ±0.13 | 53.62 Be ±0.14 | 64.85 Af ±0.15 | 57.23 Bf ±0.14 | 68.73 Ag ±0.16 | 61.16 Bg ±0.14 |
Blank Sample | 10% Addition of OFP20% β-glucans | 10% Addition of OFP30% β-glucans | 15% Addition of OFP20% β-glucans | 15% Addition of OFP30% β-glucans | 20% Addition of OFP20% β-glucans | 20% Addition of OFP30% β-glucans | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg g−1 d.m.) | ||||||||||||||
Baked Cake | Rusk | Baked Cake | Rusk | Baked Cake | Rusk | Baked Cake | Rusk | Baked Cake | Rusk | Baked Cake | Rusk | Baked Cake | Rusk | |
Fructose | 11.95 Aa ±0.12 | 5.45 Ba ±0.02 | 19.65 Ab ±0.11 | 14.68 Bb ±0.10 | 17.27 Ac ±0.15 | 15.05 Bc ±0.11 | 22.28 Ad ±0.11 | 17.19 Bd ±0.18 | 20.09 Ae ±0.10 | 16.89 Bd ±0.14 | 17.10 Ac ±0.10 | 16.48 Bde ±0.11 | 17.70 Af ±0.13 | 16.00 Bf ±0.11 |
Glucose | 7.00 Aa ±0.03 | 2.54 Ba ±0.14 | 13.90 Ab ±0.12 | 10.21 Bb ±0.15 | 10.86 Ac ±0.14 | 9.89 Bc ±0.12 | 12.35 Ad ±0.16 | 11.45 Bd ±0.15 | 10.20 Ae ±0.11 | 9.28 Be ±0.13 | 10.89 Ac ±0.10 | 7.68 Bf ±0.12 | 8.78 Af ±0.15 | 6.15 Bg ±0.14 |
Sucrose | nd | nd | 0.19 Aa ±0.10 | 0.08 Aa ±0.04 | 0.46 Ab ±0.04 | 0.24 Bb ±0.03 | 0.56 Ac ±0.04 | 0.31 Bd ±0.07 | 0.09 Ad ±0.02 | 0.04 Bc ±0.01 | 0.06 Ae ±0.01 | 0.02 Bd ±0.00 | nd | nd |
Maltose | 1.15 Aa ±0.04 | 0.55 Ba ±0.02 | 8.52 Ab ±0.11 | 4.25 Bb ±0.13 | 7.44 Ac ±0.13 | 3.15 Bc ±0.10 | 6.89 Ad ±0.11 | 2.27 Bd ±0.11 | 7.04 Ac ±0.10 | 4.06 Bb ±0.16 | 8.86 Ae ±0.14 | 2.41 Bd ±0.09 | 6.18 Af ±0.11 | 1.89 Bf ±0.13 |
Sum | 20.10 Aa ±0.15 | 8.54 Ba ±0.03 | 42.26 Ab ±0.11 | 29.22 Bb ±0.13 | 36.03 Ac ±0.11 | 28.33 Bc ±0.08 | 42.08 Ab ±0.14 | 31.22 Bd ±0.16 | 37.42 Ad ±0.11 | 30.27 Be ±0.15 | 36.91 Ad ±0.11 | 26.59 Bf ±0.10 | 32.66 Ae ±0.13 | 24.04 Bg ±0.13 |
Blank Sample | 10% Addition of OFP20% β-glucans | 10% Addition of OFP30% β-glucans | 15% Addition of OFP20% β-glucans | 15% Addition of OFP30% β-glucans | 20% Addition of OFP20% β-glucans | 20% Addition of OFP30% β-glucans | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baked Cake | Rusk | Baked Cake | Rusk | Baked Cake | Rusk | Baked Cake | Rusk | Baked Cake | Rusk | Baked Cake | Rusk | Baked Cake | Rusk | |
L* | 71.92 Aa ±0.98 | 72.48 Aa ±0.46 | 72.11 Aa ±0.31 | 71.73 Bb ±0.23 | 73.46 Ab ±0.45 | 72.21 Bab ±0.54 | 75.90 Ac ±0.29 | 72.72 Bab ±0.34 | 77.60 Ad ±0.49 | 74.23 Bb ±1.02 | 73.37 Aba ±0.87 | 73.34 Ab ±0.19 | 71.93 Aa ±0.61 | 72.08 Aab ±0.58 |
a* | 2.73 Aa ±0.63 | 2.81 Aa ±0.34 | 2.92 Aa ±0.11 | 3.48 Bb ±0.15 | 2.59 Aa ±0.19 | 2.48 Aa ±0.72 | 1.19 Ab ±0.26 | 3.14 Bba ±0.22 | 1.74 Ab ±0.34 | 1.96 Ac ±0.28 | 1.89 Ab ±0.27 | 2.69 Ba ±0.18 | 2.79 Aa ±0.31 | 2.88 Aa ±0.32 |
b* | 22.48 Aa ±0.44 | 26.31 Ba ±0.56 | 21.31 Aa ±0.66 | 22.11 Ab ±0.57 | 19.19 Aa ±0.43 | 21.41 Bc ±0.12 | 17.17 Ab ±0.32 | 16.54 Bd ±0.23 | 16.98 Ab ±0.24 | 18.41 Be ±0.33 | 20.63 Ac ±0.21 | 18.91 Be ±0.98 | 20.93 Ac ±0.31 | 22.21 Bb ±0.34 |
ΔE | standard | standard | 1.20 Aa ±0.42 | 4.29 Ba ±0.31 | 3.63 Ab ±0.28 | 4.92 Ba ±0.43 | 6.81 Ac ±0.98 | 9.78 Bb ±0.71 | 7.97 Ac ±0.41 | 8.14 Ac ±0.28 | 2.50 Aab ±0.94 | 7.45 Bc ±0.76 | 1.55 Aab ±0.41 | 4.12 Ba ±0.28 |
Brightness (D65) | standard | standard | 0.19 brighter | 0.75 darker | 1.54 brighter | 0.27 darker | 3.98 brighter | 0.24 brighter | 5.68 brighter | 1.75 brighter | 1.45 brighter | 0.86 brighter | 0.01 brighter | 0.40 darker |
BI | 39.47 Aa ±0.14 | 46.88 Ba ±0.98 | 37.29 Ab ±0.13 | 39.65 Bb ±0.28 | 32.23 Ac ±0.67 | 36.94 Bc ±0.78 | 26.23 Ad ±0.11 | 28.47 Bd ±0.96 | 25.82 Ae ±0.10 | 29.82 Bd ±0.16 | 31.06 Af ±0.11 | 31.94 Ad ±0.98 | 31.76 Af ±1.02 | 39.00 Be ±0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miśkiewicz, K.; Rosicka-Kaczmarek, J.; Kowalska, G.; Maher, A.; Oracz, J. Effect of Oat Fiber Preparations with Different Contents of β-Glucan on the Formation of Acrylamide in Dietary Bread (Rusks). Molecules 2024, 29, 306. https://doi.org/10.3390/molecules29020306
Miśkiewicz K, Rosicka-Kaczmarek J, Kowalska G, Maher A, Oracz J. Effect of Oat Fiber Preparations with Different Contents of β-Glucan on the Formation of Acrylamide in Dietary Bread (Rusks). Molecules. 2024; 29(2):306. https://doi.org/10.3390/molecules29020306
Chicago/Turabian StyleMiśkiewicz, Karolina, Justyna Rosicka-Kaczmarek, Gabriela Kowalska, Agnieszka Maher, and Joanna Oracz. 2024. "Effect of Oat Fiber Preparations with Different Contents of β-Glucan on the Formation of Acrylamide in Dietary Bread (Rusks)" Molecules 29, no. 2: 306. https://doi.org/10.3390/molecules29020306
APA StyleMiśkiewicz, K., Rosicka-Kaczmarek, J., Kowalska, G., Maher, A., & Oracz, J. (2024). Effect of Oat Fiber Preparations with Different Contents of β-Glucan on the Formation of Acrylamide in Dietary Bread (Rusks). Molecules, 29(2), 306. https://doi.org/10.3390/molecules29020306