Inclusion Complexation of Remdesivir with Cyclodextrins: A Comprehensive Review on Combating Coronavirus Resistance—Current State and Future Perspectives
Abstract
:1. Introduction
1.1. Treatment Strategies
1.2. Antiviral Drugs with Current Issues
1.3. Introduction to RMD
1.4. Research about RMD
1.5. Supramolecular Assembly with Hosts
2. Cyclodextrin Chemistry
2.1. Introduction to Cyclodextrins
2.2. Formation of ICs through Host–Guest Interactions
2.3. Modification of Cyclodextrin
2.4. Derivatives of Cyclodextrin
2.5. Toxicological Importance of CDs
3. Action on Supramolecular Complexes with Antiviral Drugs
4. Modified Cyclodextrin with Virucidal Activity
5. Interaction of RMD with Cyclodextrins
5.1. RMD Interactions with β-CD by the Experimental Method
5.2. RMD Interactions with SBE-β-CD by Molecular Dynamics Simulations
5.3. RMD Interactions with SBE-β-CD by the Experimental Method
5.4. RMD Interactions with CDs for Enhanced Solubility
5.5. CDs for Infection Containment
5.6. Future Perspectives
6. Conclusions and Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- DeClercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov. 2002, 1, 13–25. [Google Scholar] [CrossRef] [PubMed]
- McCormack, S.; Ramjee, G.; Kamali, A. PRO2000 vaginal gel for prevention of HIV-1 infection (microbicides development programme 301): Phase 3, randomised, double-blind, parallel-group trial. Lancet 2010, 376, 1329–1337. [Google Scholar] [CrossRef]
- Pirrone, V.; Wigdahl, B.; Krebs, F.C. The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1. Antivir. Res. 2011, 90, 168–182. [Google Scholar] [CrossRef]
- Van Damme, L.R.; Govinden, R.F.M.; Mirembe, F.M.F. Lack of effectiveness of cellulose sulfate gel for the prevention of vaginal HIV transmission. N. Engl. J. Med. 2008, 359, 463–472. [Google Scholar] [CrossRef]
- Wieslaw, M.K. Antiviral Drugs: From Basic Discovery through Clinical Trials; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Laila, R.; Sunny, O.A.; Amanuel, G.A.; Mickael, E.; Aliyu Tijani, J.; Andrzej, F.; Robert, F.; Rangarirai, M.; Leander, M.; Kawthar, M.; et al. Oral antiviral treat-ments for COVID-19: Opportunities and challenges. Pharm. Rep. 2022, 74, 1255–1278. [Google Scholar]
- Daisy, Y.; Bingfang, Y. Viral target and metabolism-based rationale for combined use of recently authorized small molecule COVID-19 medicines: Molnupiravir, nirmatrelvir, and remdesivir. Fund. Clin. Pharmacol. 2023, 37, 726–738. [Google Scholar]
- Faez, I.; Tongzhou, K.; Haider, A.; Dakun, L. Remdesivir Strongly Binds to RNA-Dependent RNA Polymerase, Membrane Protein, and Main Protease of SARS-CoV-2: Indi-cation From Molecular Modeling and Simulations. Front. Pharmacol. 2021, 12, 710778. [Google Scholar]
- Parums, D.V. Editorial: Current Status of Oral Antiviral Drug Treatments for SARS-CoV-2 Infection in Non-Hospitalized Patients. Med. Sci. Monit. 2022, 28, e935952-61. [Google Scholar] [CrossRef]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Mahase, E. COVID-19: UK becomes first country to authorise antiviral molnupiravir. BMJ 2021, 375, n2697. [Google Scholar] [CrossRef]
- Ledford, H. COVID antiviral pills: What scientists still want to know. Nature 2021, 599, 358–359. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Hannah, A. Blair, Remdesivir: A Review in COVID-19. Drugs 2023, 83, 1215–1237. [Google Scholar]
- Michael, K.L.; César, G.A.; Jason, K.P.; Silvia, C.; Egor, P.T.; Lisa, G.; Ayan, C.; Punya, S.-R.; Payel, C.; Laura, K.M.; et al. Remdesivir targets a structurally analogous region of the Ebola virus and SARS-CoV-2 polymerases. Proc. Natl. Acad. Sci. USA 2020, 117, 26946–26954. [Google Scholar]
- Chun, B.K.; Clarke, M.O.; Doerffler, E.; Hui, H.C.; Jordan, R.; Mackman, R.L.; Parrish, J.P.; Ray, A.S.; Siegel, D. Methods for Treating Filoviridae Virus Infections. U.S. Patent 9724360, 5 May 2016. [Google Scholar]
- Clarke, M.O.; Jordan, R.; Mackman, R.L.; Ray, A.S.; Siegel, D. Preparation of Amino Acid-Containing Nucleosides for Treating Flaviviridae Virus Infections. WO 2017184668, 26 October 2017. [Google Scholar]
- U.S. Food and Drug Administration Approves Gilead’s Antiviral Veklury (Remdesivir) for Treatment of COVID-19 (Press Release); Gilead Sciences, Inc.: Foster City, CA, USA, 2020.
- Reuters. India Approves Emergency Use of Remdesivir to Treat COVID-19 Patients; The Times of India, Times Internet; Reuters: New York, NY, USA, 2020. [Google Scholar]
- Reuters. Singapore Approves Remdesivir Drug for Emergency COVID-19 Treatment; Reuters: New York, NY, USA, 2020. [Google Scholar]
- Pharmaceutical-Technology. Japanese Regulator Approves Gilead’s Remdesivir to Treat COVID-19; Pharmaceutical-Technology: Oxfordshire, UK, 2020. [Google Scholar]
- European Medicines Agency (EMA). Veklury EPAR; European Medicines Agency (EMA): Amsterdam, The Netherlands, 2020. [Google Scholar]
- Gilead Sciences. Gilead Announces Approval of Veklury (remdesivir) in Japan for Patients with Severe COVID-19 (Press Release); Gilead Sciences: Foster City, CA, USA, 2020. [Google Scholar]
- U.S. Food and Drug Administration (FDA). Remdesivir EUA Letter of Authorization; U.S. Food and Drug Administration (FDA): Silver Spring, MD, USA, 2020. [Google Scholar]
- U.S. Food and Drug Administration (FDA). Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization for Potential COVID-19 Treatment (Press Release); U.S. Food and Drug Administration (FDA): Silver Spring, MD, USA, 2020. [Google Scholar]
- The Asahi Shimbun. Japan Approves Remdesivir for COVID-19 Despite Uncertainties; The Asahi Shimbun: Osaka, Japan, 2020. [Google Scholar]
- Therapeutic Goods Administration (TGA). Australia’s First COVID Treatment Approved; Press Release; Therapeutic Goods Administration (TGA): Canberra, Australia, 2020. [Google Scholar]
- U.S. Food and Drug Administration (FDA). Veklury: FDA-Approved Drugs; U.S. Food and Drug Administration (FDA): Silver Spring, MD, USA, 2020. [Google Scholar]
- U.S. Food and Drug Administration (FDA). Veklury: Summary Review; U.S. Food and Drug Administration (FDA): Silver Spring, MD, USA, 2019. [Google Scholar]
- European Medicines Agency (EMA). EMA Starts Evaluating Use of Veklury in COVID-19 Patients Not Requiring Supplemental Oxygen (Press Release); European Medicines Agency (EMA): Amsterdam, The Netherlands, 2021. [Google Scholar]
- Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016, 531, 381–385. [Google Scholar] [CrossRef]
- Gilead, R. Summary on Compassionate Use; European Medicines Agency: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Stephens, B. The Story of Remdesivir; The New York Times: New York, NY, USA, 2020; p. A23. [Google Scholar]
- Final Report Confirms Remdesivir Benefits for COVID-19; Press Release; National Institutes of Health (NIH): Bethesda, MD, USA, 2020.
- Czech News Agency. Did Czech Scientists Create the Cure for Coronavirus? Czech News Agency: Prague, Czech Republic, 2020. [Google Scholar]
- Lo, M.K.; Jordan, R.; Arvey, A.; Sudhamsu, J.; Shrivastava-Ranjan, P.; Hotard, A.L. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep. 2017, 7, 43395. [Google Scholar] [CrossRef]
- Silverman, E. U.S. Government Contributed Research to a Gilead Remdesivir Patent—But Didn’t Get Credit; STAT News: Los Angeles, CA, USA, 2020. [Google Scholar]
- Ardizzone, K. Role of the Federal Government in the Development of Remdesivir; Knowledge Ecology International: Chicago, IL, USA, 2020. [Google Scholar]
- Savannah, K. Investigational Compound Remdesivir, Developed by UAB and NIH Researchers, Being Used for Treatment of Novel Coronavirus; UAB News: Birmingham, AL, USA, 2020. [Google Scholar]
- Eastman, R.T.; Roth, J.S.; Brimacombe, K.R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M.D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent. Sci. 2020, 6, 672–683. [Google Scholar] [CrossRef]
- Sheikholeslami, S.M.; Jahanbani, A.; Shao, Z. On the molecular structure of Remdesivir for the treatment of COVID-19. Comp. Meth Biomech. Biomed. Eng. 2021, 24, 995–1002. [Google Scholar] [CrossRef]
- Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Trans. Med. 2017, 9, l3653. [Google Scholar] [CrossRef]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
- Szejtli, J.; Osa, T. Comprehensive Supramolecular Chemistry; J. M. Lehn Pergamon Press: Oxford, UK, 1996; Volume 3. [Google Scholar]
- Ali Aboel, D. Rapid analysis of drug binding to β-cyclodextrin: Part II substituents effect on physicochemical and co-conformational stability of drug/cyclodextrin complex. RSC Adv. 2014, 4, 6624–6637. [Google Scholar]
- Diez, M.A.; Pena, I.M.A.; Garera, M.C.M.; Gil, D.B.; Canada, F.C. Fluorimetric Determination of Sulphaguanidine and Sulphamethoxazole by Host-Guest Complexation in β-Cyclodextrin and Partial Least Squares Calibration. J. Flu. 2007, 17, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Radi, A.-E.M.; Eissa, S.H. Voltametric and spectrophotometric studies on the inclusion complex of glipizide with β-CD. Eur. J. Anal. Chem. 2011, 6, 13–21. [Google Scholar]
- Cusola, O.; Tabary, N.; Belgacem, M.N.; Bras, J. Cyclodextrin functionalization of several cellulosic substrates for prolonged release of antibacterial agents. J. Appl. Pol. Sci. 2013, 129, 604–613. [Google Scholar] [CrossRef]
- Linare, M.; Bertorello, M.M.; Longhi, M. Preparation and characterization of solid complexes of Naphtoquinone and Hydroxypropyl-b-cyclodextrin. Molecules 2000, 5, 342–344. [Google Scholar] [CrossRef]
- Kyeong, R.R.; Ji, W.H. Chemical Interface Damping of Silver-coated Gold Nanorods Using Supramolecular Host–Guest Chemistry. Bull. Korean Chem. Soc. 2021, 42, 1082–1084. [Google Scholar]
- Sota, T.; Tomoyuki, U.; Mayuko, K.; Motoki, K.; Daisuke, S.; Satoru, M.; Manabu, A.; Takeharu, H.; Takayuki, E.; Fuminori, M.; et al. Conformation of K+ (Crown Ether) Complexes Revealed by Ion Mobility–Mass Spectrometry and Ultraviolet Spectroscopy. J. Phys. Chem. A 2020, 124, 9980–9990. [Google Scholar]
- Paul, M.; Scott, J.D.; Martin, J.P. Transition Metal Complexes of Calix[4]arene: Theoretical Investigations into Small Guest Binding within the Host Cavity. J. Phys. Chem. A 2016, 120, 824–839. [Google Scholar]
- Ju, B.C.; Jae, S.H.; Cheal, K. Crown-Ether Type Chemosensor for the Determination of Fe3+/2+ by a Colorimetric Method. Bull. Korean Chem. Soc. 2021, 42, 1368–1374. [Google Scholar]
- Jumina, I.; Amalina, S.; Triono, Y.S.; Kurniawan, Y.P.; Keisuke, O.; Bohari, M.Y. Preliminary Investigation of Organocatalyst Activity Based on C-Arylcalix[4]-2-Methylresorcinarene Sulfonic Acid Materials for Biodiesel Production. Bull. Korean Chem. Soc. 2021, 42, 4093–4409. [Google Scholar] [CrossRef]
- Del Valle, E.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, R.; Banerjee, U. Biotechnological applications of cyclodextrins. Biotechnol. Adv. 2002, 20, 341–359. [Google Scholar] [CrossRef]
- Antía, G.P.; Maria, C.; Paula, G.O.; Juan, C.M.; Miguel, A.P.; Jesus, S.G. Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host–Guest Complexes. Int. J. Mol. Sci. 2021, 22, 1339. [Google Scholar] [CrossRef] [PubMed]
- Shery, J.; Anroop, B.N. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev. Res. 2018, 79, 201–217. [Google Scholar]
- Szente, L.; Szejtli, J. Highly soluble cyclodextrin derivatives: Chemistry, properties and trends in development. Adv. Drug Deli Rev. 1999, 36, 17–28. [Google Scholar] [CrossRef]
- Deluzio, T.G.B.; Penev, K.I.; Mequanint, K. Cyclodextrin inclusion complexes as potential oxygen delivery vehicles in tissue engineering. J. Bio. Tissue Eng. 2014, 4, 957–966. [Google Scholar] [CrossRef]
- Frank, D.W.; Gray, J.E.; Weaver, R.N. Cyclodextrin nephrosis in the rat. Am. J. Pathol. 1976, 83, 367–382. [Google Scholar]
- Frömming, K.-H.; Szejtli, J. Pharmacokinetics and toxicology of cyclodextrins. In Cyclodextrins in Pharmacy; Frömming, K.-H., Szejtli, J., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 33–44. [Google Scholar]
- Szente, L.; Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Basic science and product development. J. Pharm. Pharmacol. 2010, 62, 1607–1621. [Google Scholar] [CrossRef]
- Loftsson, T. Effects of cyclodextrins on the chemical stability of drugs in aqueous solutions. Drug Stab. 1995, 1, 22–33. [Google Scholar]
- Grégorio, C. A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar]
- Loftsson, T.; Hreinsdottir, D.; Masson, M. Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 2005, 302, 18–28. [Google Scholar] [CrossRef]
- Loftsson, T.; Jarho, P.; Másson, M.; Järvinen, T. Cyclodextrins in drug delivery. Expert. Opin. Drug Deliv. 2005, 2, 335–351. [Google Scholar] [CrossRef]
- Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in drug delivery: An updated review. Pharm. Sci. Tech. 2005, 6, 329–357. [Google Scholar] [CrossRef]
- Biplab, R.; Subhadeep, S.; Koyeli, D.; Biraj, K.B.; Swarnab, S.; Arindam, B.; Mahendra, N.R. Study to Probe Subsistence of Host-Guest Inclusion Complexes of α and β-Cyclodextrins with Biologically Potent Drugs for Safety Regulatory Dischargement. Sci. Rep. 2018, 8, 13031. [Google Scholar]
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 1996, 85, 1017–1025. [Google Scholar] [CrossRef]
- Loftsson, T.; Duchene, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Ogawa, N.; Kaga, M.; Endo, T.; Nagase, H.; Furuishi, T.; Yamamoto, H.; Kawashima, Y.; Ueda, H. Quetiapine free base complexed with cyclodextrins to improve solubility for parenteral use. Chem. Pharm. Bull. 2012, 61, 809–815. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef]
- Marcos, L.B. Strategies to Modify the Drug Release from Pharmaceutical Systems; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; pp. 87–194. [Google Scholar]
- Axel, F.; Stefan, B.; Sven, S.; Rolf, S. Degradation of raw or film-incorporated β-cyclodextrin by enzymes and colonic bacteria. Eur. J. Pharm. Biopharm. 2004, 58, 91–97. [Google Scholar]
- Szejtli, J. Past, present and future of cyclodextrin research. Pure Appl. Chem. 2004, 76, 1825–1845. [Google Scholar] [CrossRef]
- Trotta, F.; Loftsson, T.; Gaud, R.S.; Trivedi, R.; Shende, P. Integration of cyclodextrins and associated toxicities: A roadmap for high quality biomedical applications. Carbohydr. Polym. 2022, 295, 119880. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-F. Cyclodextrins in non-viral gene delivery. Biomaterials 2014, 35, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Onishi, M.; Ozasa, K.; Kobiyama, K.; Ohata, K.; Kitano, M.; Tanigu Chi, K.; Homma, T.; Kobayashi, M.; Sato, A.; Katakai, Y.; et al. Hydroxypropyl-β-cyclodextrin spikes local inflammation that induces Th2 cell and T follicular helper cell responses to the coadministered antigen. J. Immunol. 2015, 194, 2673–2682. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, G.; Tiwari, R.; Rai, A. Cyclodextrins in delivery systems: Applications. J. Pharm. Bioallied Sci. 2010, 2, 72. [Google Scholar] [CrossRef]
- Subrata, B.; Debi, P.N. Lipid raft disruption by cholesterol depletion enhances influenza A virus budding from MDCK cells. J. Virol. 2007, 81, 12169–12178. [Google Scholar]
- Annamaria, P.; Valeriana, C. Role of the lipid rafts in the life cycle of canine coronavirus. J. Gen. Virol. 2015, 96, 331–337. [Google Scholar]
- Yanning, L.; Ding, X.L.; James, P.T. Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem. Biophys. Res. Comm. 2008, 369, 344–349. [Google Scholar]
- Bianka, V.; Milo, M.; Tamás, S.; Szabolcs, B. Molecular interactions in remdesivir-cyclodextrin systems. J. Pharm. Biomed. Anal. 2022, 209, 114482. [Google Scholar]
- Lajos, S.; Istvan, P.; Tamas, S. Sulfobutylether-beta-cyclodextrin-enabled antiviral remdesivir: Characterization of electrospun and lyophilized formulations. Carb. Pol. 2021, 264, 118011. [Google Scholar]
- Gosselin-Grenet, A.S.; Mottet-Osman, G.; Roux, L. From assembly to virus particle budding: Pertinence of the detergent resistant membranes. Virology 2006, 344, 296–303. [Google Scholar] [CrossRef]
- Laliberte, J.P.; McGinnes, L.W.; Peeples, M.E.; Morrison, T.G. Integrity of membrane lipid rafts is necessary for the ordered assembly and release of infectious Newcastle disease virus particles. J. Virol. 2006, 80, 10652–10662. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Fang, X.; Yujie, D.; Jiawen, Z.; Yuan, S.; Danning, L.; Natthida, S.; Jiamiao, H. A Review of Cyclodextrin Encapsulation and Intelligent Response for the Release of Curcumin. Polymers 2022, 14, 5421. [Google Scholar] [CrossRef]
- Susana, S.B.; Jéssica, S.B.; Nádia, E.S.; Firas, E.-S.; Filipe, A.A. Cyclodextrins in Antiviral Therapeutics and Vaccines. Pharmaceutics 2021, 13, 409. [Google Scholar] [CrossRef]
- Jitendra, W.; Niranjan, G.K.; Sonia, G.; Swetha, R.; Abhay, P.; Yury, A.R. Recent Advances in Host–Guest Self-Assembled Cyclodextrin Carriers: Implications for Responsive Drug Delivery and Biomedical Engineering. Adv. Funct. Mater. 2020, 30, 1909049. [Google Scholar]
- European Medicines Agency. Cyclodextrins Used as Excipients (EMA/CHMP/495747/2013); European Medicines Agency: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Cyclodextrin News. Gilead Uses SBECD-Enabled Remdesivir (GS Liqui-Solid 5734) for Treating the First Case of the Novel Coronavirus in the United States; Cyclodextrin News: Dunkerque, France, 2020. [Google Scholar]
- Goyal, G.; Vavia, P. Complexation approach for fixed-dose tablet formulation of lopinavir and ritonavir: An anomalous relationship between stability constant, dissolution rate and saturation solubility. J. Incl. Phenom. Macrocycl. Chem. 2012, 73, 75–85. [Google Scholar] [CrossRef]
- Sevukarajan, M.; Bachala, T.; Nair, R. Novel inclusion complexes of Oseltamivir Phosphate with beta-cyclodextrin: Physicochemical characterization. J. Pharm. Sci. Res. 2010, 2, 583–589. [Google Scholar]
- Rajaram, R.; Sonaimuthu, M.; Sekar, A.; Eun, H.C.; Fatiha, M.; Neour, L.; Yong, R.L. Water-soluble inclusion complexes for a novel anti-viral agent with low toxicity; Oseltamivir with the β-cyclodextrins. J. Mol. Liq. 2022, 366, 120297. [Google Scholar]
- Rajaram, R.; Sonaimuthu, M.; Sekar, A.; Fatiha, M.; Neour, L.; Kuppusamy, M.; Yong, R.L. A novel and water-soluble material for coronavirus inactivation from oseltamivir in the cavity of methyl and sulfated-β-cyclodextrins through inclusion complexation. J. Pharm. Biomed. Anal. 2022, 221, 115057. [Google Scholar]
- Arumugam, P.; Samikannum, P.; Rajaram, R. Encapsulation of quercetin in β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin cavity: In-vitro cytotoxic evaluation. J. Macromol. Sci. A 2017, 54, 894–901. [Google Scholar]
- Ono, A.; Freed, E.O. Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc. Natl. Acad. Sci. USA 2001, 98, 13925–13930. [Google Scholar] [CrossRef]
- Pickl, W.F.; Pimentel-Muinos, F.X.; Seed, B. Lipid rafts and pseudotyping. J. Virol. 2001, 75, 7175–7183. [Google Scholar] [CrossRef]
- Piñeiro, A.; Pipkin, J.; Vince Antle, V.; Garcia-Fandino, R. Remdesivir interactions with sulphobutylether-b- cyclodextrins: A case study using selected substitution patterns. J. Mol. Liq. 2022, 346, 117157. [Google Scholar] [CrossRef]
- Rajaram, R.; Sundararajulu, K.; Krishnamoorthy, S.; Meenakshisundaram, M. Photophysical and photoprototropic characteristics of phenothiazine in aqueous and β-cyclodextrin media. J. Lumin. 2016, 168, 245–255. [Google Scholar]
- Ángel, P.; James, P.; Vince, A.; Rebeca, G. -F.; Aggregation versus inclusion complexes to solubilize drugs with cyclodextrins. A case study using sulphobutylether-β-cyclodextrins and remdesivir. J. Mol. Liq. 2021, 343, 117588. [Google Scholar]
- Yumeng, Z.; Zhouming, Z.; Kai, W.; Kangjie, L.; Cai, Y.; Lin, L.; Xia, S.; Tengfei, L.; Xiaodi, G.; Haiyan, L.; et al. Molecular docking assisted exploration on solubilization of poorly soluble drug remdesivir in sulfobutyl ether-tycyclodextrin. AAPS Open. 2022, 8, 9. [Google Scholar]
- Tamas, K.; Kitti, K.; Zoltan, V.; Peter, N.; Gyorgy, P.; Florina, Z. Veklury® (remdesivir) for-mulations inhibit initial membrane-coupled events of SARS-CoV-2 infection due to their sulfobutylether-β-cyclodextrin content. Br. J. Pharmacol. 2023, 180, 2064–2084. [Google Scholar]
- Zhengdong, Y.; Deqing, X.; Kah, H.J.L.; Thomas, T.; Rita, H.; Bryan, P.; Yu-Hui, A.F.; Eric, J.; Marsha, L.L.; Habibi, G.; et al. The determination of Sulfobutylether -Cyclodextrin Sodium (SBECD) by LC-MS/MS and its application in remdesivir pharmacokinetics study for pediatric patients. J. Pharm. Biomed. Anal. 2022, 212, 114646. [Google Scholar]
- Saraswati, R.P.; Sutriyo Ratika, R. Preparation, Cellular Uptake, and Cytotoxic Evaluation of Remdesivir-Hydroxypropyl-β-Cyclodextrin Inclusion Complex. Biomed. Pharmacol. J. 2022, 2, 15. [Google Scholar]
- Robert, L.P. Mouse models of human disease. Evol. Med. Public Health 2016, 2016, 170–176. [Google Scholar]
- Prabu, S.; Sivakumar, K.; Kothai Nayaki, S.; Rajamohan, R. Host-guest interaction of cytidine in β-cyclodextrin microcavity: Characterization and docking study. J. Mol. Liq. 2016, 219, 967–974. [Google Scholar] [CrossRef]
- Viswalingam, M.; Prabu, S.; Sivakumar, K.; Rajamohan, R. Spectral characteristics of desipramine in β-cyclodextrin cavity through inclusion complex. J. Macro Sci. Part. A 2016, 53, 781–790. [Google Scholar] [CrossRef]
- Rajamohan, R.; Kothai Nayaki, S.; Swaminathan, M. Investigation on association behavior between 1-Aminoisoquinoline and β-Cyclodextrin in solution and solid state. J. Mol. Liq. 2016, 220, 918–925. [Google Scholar] [CrossRef]
- Praveena, A.; Prabu, S.; Madi, F.; Rajamohan, R. Theoretical investigation of inclusion complexes of 3-hydroxyflavone andquercetin as guests with native and modified β-cyclodextrins as hosts. Polycycl. Aromat. Compd. 2023, 43, 141–153. [Google Scholar] [CrossRef]
- Samuel, T.; Jones, V. Modified cyclodextrins as broad-spectrum antivirals. Sci. Adv. 2020, 6, eaax9318. [Google Scholar]
- Okimoto, K.; Rajewski, R.A.; Uekama, K.; Jona, J.A.; Stella, V.J. The interaction of charged and uncharged drugs with neutral (HP-beta-CD) and anionically charged (SBE7-beta-CD) beta-cyclodextrins. Pharm. Res. 1996, 13, 256–264. [Google Scholar] [CrossRef]
S. No | Drugs | Mechanism of Action | Usage | Efficacy | References |
---|---|---|---|---|---|
1 | Remdesivir (RMD) | It is a nucleotide analog prodrug that inhibits the viral RNA-dependent RNA polymerase (RdRp), a crucial enzyme for SARS-CoV-2 replication. | Approved by the FDA for emergency use in hospitalized COVID-19 patients. | Clinical trials (e.g., ACTT-1) have shown that RMD reduces the recovery time in hospitalized patients. | [6,7,8] |
2 | Molnupiravir (MNP) | MNP is a prodrug of the nucleoside analog N4-hydroxycytidine, which introduces copying errors during viral RNA replication. | Administered orally and primarily used in outpatient settings for patients with mild to moderate COVID-19 who are at high risk of progression to severe disease. | MNP has been shown to reduce hospitalization and death rates in non-hospitalized patients when given early in the course of infection. | [7,9,10,11] |
3 | Paxlovid (Nirmatrelvir + Ritonavir)—PXLD | PXLD is a combination of nirmatrelvir, a 3CL protease inhibitor that prevents viral polyprotein cleavage, and ritonavir, a pharmacokinetic enhancer that increases nirmatrelvir’s half-life by inhibiting its metabolism. Blocking the 3CL protease (Mpro) disrupts viral replication at an early stage. | This oral PXLD is prescribed for high-risk, non-hospitalized patients with mild to moderate COVID-19. | Clinical trials have shown Paxlovid reduces the risk of hospitalization or death by nearly 89% in high-risk patients when administered early. | [7,9,12,13] |
4 | Favipiravir (Avigan)—FVP | FVP is a purine nucleoside analog that inhibits RdRp, similar to RMD, by incorporating itself into viral RNA, leading to chain termination. | FVP has been used in some countries (e.g., Japan, India, Russia) for treating mild to moderate COVID-19 | Clinical efficacy data for FVP in COVID-19 are mixed. | [6] |
5 | Baricitinib (Olumiant)—BRC | It inhibits the Janus kinase (JAK-STAT) pathway, reducing the inflammatory response associated with severe COVID-19, and also potentially interferes with the virus’ entry into cells by inhibiting AP2-associated protein kinase 1 (AAK1). | BRC is used in combination with RMD for treating hospitalized COVID-19 patients. | BRC combined with RMD reduced recovery time and improved clinical outcomes compared to RMD alone. | [6] |
S. No | Antiviral Drugs | CDs Used | Regulatory Status | Challenges Faced | Reference |
---|---|---|---|---|---|
1. | Remdesivir | SBE-β-CD | Compassionate use/clinical trials | Limited Solubility | [93] |
2. | Lopinavir + Ritonavir | HP-β-CD | Approved anti-HIV drug | Limited Solubility | [94] |
3. | Oseltamivir | β-CD | Approved anti-influenza drug | Bitter Taste | [95] |
4. | Oseltamivir | β-CD | Article published | Human coronavirus | [96] |
5 | Oseltamivir | HP-β-CD | Article published | Human coronavirus | [96] |
6. | Oseltamivir | M-β-CD | Article published | Human coronavirus | [97] |
7. | Oseltamivir | S-β-CD | Article published | Human coronavirus | [98] |
S. No | Antiviral Drug | CDs Used | Method of Analysis | Outputs | References |
---|---|---|---|---|---|
1. | RMD | β-CD | Experimental method | Enhanced solubility | [100] |
2. | RMD | SBE-β-CD | Molecular dynamics simulations | Confirmations of ICs in non-protonated and protonated form | [101] |
3. | RMD | SBE-β-CD | Experimental method | XRD, DSC, and ROESY confirm the ICs | [102] |
4 | RMD | SBE-β-CD | Molecular dynamics simulations | Enhanced solubility | [103] |
5. | RMD | SBE-β-CD | Experimental and docking method | Enhanced solubility | [104] |
6 | RMD | SBE-β-CD | Flow cytometry | Veklury® formulations in meta-analyses of clinical trials | [105] |
7 | RMD | SBE-β-CD Sodium | Experimental method | Pharmacokinetics study for pediatric patients | [106] |
8 | RMD | HP-β-CD | Experimental method | Cellular uptake and cytotoxicity | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anitha, A.; Rajamohan, R.; Murugan, M.; Seo, J.H. Inclusion Complexation of Remdesivir with Cyclodextrins: A Comprehensive Review on Combating Coronavirus Resistance—Current State and Future Perspectives. Molecules 2024, 29, 4782. https://doi.org/10.3390/molecules29194782
Anitha A, Rajamohan R, Murugan M, Seo JH. Inclusion Complexation of Remdesivir with Cyclodextrins: A Comprehensive Review on Combating Coronavirus Resistance—Current State and Future Perspectives. Molecules. 2024; 29(19):4782. https://doi.org/10.3390/molecules29194782
Chicago/Turabian StyleAnitha, Arumugam, Rajaram Rajamohan, Moorthiraman Murugan, and Jeong Hyun Seo. 2024. "Inclusion Complexation of Remdesivir with Cyclodextrins: A Comprehensive Review on Combating Coronavirus Resistance—Current State and Future Perspectives" Molecules 29, no. 19: 4782. https://doi.org/10.3390/molecules29194782
APA StyleAnitha, A., Rajamohan, R., Murugan, M., & Seo, J. H. (2024). Inclusion Complexation of Remdesivir with Cyclodextrins: A Comprehensive Review on Combating Coronavirus Resistance—Current State and Future Perspectives. Molecules, 29(19), 4782. https://doi.org/10.3390/molecules29194782