Review of the Structural Characteristics and Biological Activities of Tricholoma Secondary Metabolites (2018–2023)
Abstract
:1. Introduction
2. Secondary Metabolites of Tricholoma
2.1. Terpenoids
2.1.1. Triterpenes and Sterols
2.1.2. Diterpenoids
2.1.3. Sesterterpenoids and C17 Compounds
2.2. Alkaloids
2.2.1. Diketopiperazine
2.2.2. Indole Derivatives
2.3. Other Compounds
2.3.1. γ-Glutamine Derivative
2.3.2. Amide Derivatives
2.3.3. Acetylene Compounds
2.3.4. Polyketide Compounds
2.3.5. Volatile Compounds
3. Biological Activity
3.1. Antibacterial Activity
3.2. Anti-Cancer Activity
3.3. Anti-Inflammatory Activity
3.4. Antioxidant Activity
Numbers | Names | Species | Bioactivities | References |
---|---|---|---|---|
Lanostane triterpenoids | ||||
1 | pardinol A | T. pardinum | - | [11] |
2 | pardinol B | T. pardinum | Anti-inflammatory activity; Anti-cancer activity | [11] |
3 | pardinol C | T. pardinum | - | [11] |
4 | pardinol D | T. pardinum | - | [11] |
5 | pardinol E | T. pardinum | Anti-inflammatory activity; Anti-cancer activity | [11] |
6 | pardinol F | T. pardinum | Anti-inflammatory activity; Anti-cancer activity | [11] |
7 | pardinol G | T. pardinum | Anti-inflammatory activity; Anti-cancer activity | [11] |
8 | pardinol H | T. pardinum | Anti-inflammatory activity; Anti-cancer activity | [11] |
9 | saponaceol B | T. pardinum | - | [11] |
10 | saponaceol D | T. saponaceum | - | [11] |
11 | tricholidic acid B | T. ustaloides | - | [14] |
12 | tricholidic acid C | T. ustaloides | - | [14] |
13 | tricholidic acid | T. ustaloides | - | [14] |
14 | tricholimbrin A | T. imbricatum | - | [15] |
15 | Tricholimbrin B | T. imbricatum | - | [15] |
16 | (25S)-(+)-12α-hydroxy-3α-methylcarboxyacetate-24-methyllanosta-8,24(31)-diene-26-oic acid | T. imbricatum | Anti-cancer activity | [15] |
Ergostane triterpenoids | ||||
17 | 3β,5α-dihydroxy-6β-methoxyergosta-7,22-diene | T. imbricatum | - | [15] |
18 | (22E,24R)-5α,6α-epoxyergosta-8,22- | T. imbricatum | - | [15] |
19 | dien-3β,7α-diol | T. imbricatum | - | [15] |
20 | (22E,24R)-ergosta-7,22-diene-3β,5α,6β,9α-tetraol | T. imbricatum | - | [15] |
21 | (22E,24R)-ergosta-8,22-diene-3β,5α,6β,7α-tetrol | T. imbricatum | - | [15] |
(22E,24R)-ergosta-8,22-diene-3β,5α,6β,7α-tetrol | T. imbricatum | - | [15] | |
22 | (22E,24R)-ergosta-8(14),22-diene-3β,5α,6β,7α-tetrol | T. imbricatum | - | [15] |
23 | 3β,5α,6β-trihydroxy-(22E,24R)-ergost-22-en-7- one | T. imbricatum | - | [15] |
24 | 3β-hydroxy-(22E,24R)-ergosta-5,22- dien-7-one | T. imbricatum | - | [15] |
25 | 3β-hydroxy-(22E,24R)-ergosta-5,22- dien-7-one | T. imbricatum | - | [15] |
26 | isocyathisterol | T. imbricatum | Anti-cancer activity | [15] |
27 | (22E)-ergosta-4,6,8,22-tetraen-3-one | T. imbricatum | - | [15] |
28 | (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one | T. imbricatum | - | [15] |
29 | 3β-hydroxyl-(22E,24R)-ergosta-5,8,22-trien-7,15-dione | T. imbricatum | Anti-cancer activity | [15] |
30 | 3β-hydroxyl-(22E,24R)-ergosta-5,8,22-trien-7-one | T. imbricatum | Anti-cancer activity | [15] |
31 | 3β-hydroxyl-(22E,24R)- ergosta-5,8,14,22-tetraen-7-one | T. imbricatum | - | [15] |
32 | 3β,15α-dihydroxyl-(22E,24R)-ergosta-5,8(14),22-trien-7-one | T. imbricatum | Anti-cancer activity | [15] |
33 | 3β,15β-dihydroxyl-(22E,24R)-ergosta-5,8(14),22-trien-7-one | T. imbricatum | - | [15] |
34 | 3β-hydroxyl-(22E,24R)-ergosta-5,8(14),22-trien-7,15-dione | T. imbricatum | Anti-cancer activity | [15] |
35 | 5α,6α-epoxy-(22E,24R)-ergosta-8,22-diene-3β,7β-diol | T. imbricatum | Anti-cancer activity | [15] |
36 | 5α,6α-epoxy-(22E,24R)-ergosta-8(14),22-diene-3β,7α-diol | T. imbricatum | - | [15] |
37 | 5α,6α-epoxy-(22E,24R)-ergosta-8(14),22-diene-3β,7β-diol | T. imbricatum | - | [15] |
38 | 5α,6α-epoxy-(22E,24R)-ergosta-8(14),22-diene-3β,7β-diol | T. imbricatum | - | [15] |
39 | 5α,8α-epidioxy-(22E,24R)-ergosta-6,22- dien-3β-ol | T. imbricatum | - | [15] |
40 | chaxine C | T. imbricatum | Antibacterial activity; Anti-cancer activity | [15,58] |
41 | demethylincisterol A3 | T. imbricatum | Anti-cancer activity | [15] |
42 | volemolide | T. imbricatum | Anti-cancer activity | [15] |
43 | tricholimbrin C | T. imbricatum | - | [15] |
44 | tricholimbrin D | T. imbricatum | - | [15] |
45 | tricholimbrin E | T. imbricatum | - | [15] |
46 | tricholosterol A | T. terreum | Anti-inflammatory activity | [16] |
47 | tricholosterol B | T. terreum | - | [16] |
48 | tricholosterol C | T. terreum | - | [16] |
49 | tricholosterol D | T. terreum | Anti-inflammatory activity; Cytotoxic against human cancer cell lines | [16] |
50 | anatoluin A | T. anatolicum | Antioxidant activity; Cytotoxic against human cancer cell lines | [17] |
51 | anatoluin B | T. anatolicum | Antioxidant activity; Cytotoxic against human cancer cell lines | [17] |
52 | 5α,6α-epoxy-ergosta-7,22-dien,3β-ol | T. anatolicum | Antioxidant activity; Cytotoxic against human cancer cell lines | [17] |
53 | ergosterol-endoperoxide | T. anatolicum | Antioxidant activity; Cytotoxic against human cancer cell lines | [17] |
54 | ergosterol,3β-ol | T. anatolicum | - | [17] |
Triterpenoids | ||||
55 | saponaceolide T | T. saponaceum | Cytotoxic against human cancer cell lines | [13] |
56 | saponaceolide A | T. saponaceum | Cytotoxic against human cancer cell lines | [13] |
57 | saponaceolide B | T. saponaceum | Cytotoxic against human cancer cell lines | [13] |
58 | saponaceolide C | T. saponaceum | Cytotoxic against human cancer cell lines | [13] |
59 | saponaceolide D | T. saponaceum | - | [13] |
60 | saponaceolide F | T. saponaceum | Cytotoxic against human cancer cell lines | [13,14] |
61 | saponaceolide H | T. saponaceum | Cytotoxic against human cancer cell lines | [13] |
62 | saponaceolide J | T. ustaloides | Cytotoxic against human cancer cell lines | [14] |
63 | tricholopardin C | T. pardinum | Cytotoxic against human cancer cell lines | [18] |
64 | tricholopardin D | T. pardinum | Cytotoxic against human cancer cell lines | [18] |
Diterpenoids | ||||
65 | tricholomalide D | T. ustaloides | - | [23] |
66 | tricholomalide E | T. ustaloides | - | [23] |
67 | tricholomalide F | T. ustaloides | - | [23] |
68 | tricholomalide G | T. ustaloides | - | [23] |
Sesterterpenoid | ||||
69 | tricholopardin A | T. pardinum | Anti-inflammatory activity | [31] |
C17 compound | ||||
70 | tricholopardin B | T. pardinum | Anti-inflammatory activity | [31] |
Diketopiperazines | ||||
71 | matsudipeptide A | T. matsutake | - | [39] |
72 | matsudipeptide B | T. matsutake | - | [39] |
Indole derivatives | ||||
73 | 1H-indole-3-carbaldehyde | T. lascivum | - | [45] |
74 | 6-hydroxy-1H-indole-3-carbaldehyde | T. pardinum | - | [41] |
γ-glutamine derivative | ||||
75 | lascivol | T. pardinum | - | [41] |
Amide derivatives | ||||
76 | tricholomine A | T. bakamatsutake | - | [47] |
77 | tricholomine B | T. bakamatsutake | - | [47] |
78 | tricholomine C | T. bakamatsutake | - | [48] |
Acetylene compounds | ||||
79 | tricholomenyn C | T. ustaloides | - | [14] |
80 | (Z)-non-7-en-5-yn-1,2,4-triol | T. pardinum | - | [41] |
81 | (Z)-non-7-en-5-yn-1,4-diol | T. pardinum | - | [41] |
82 | (Z)-1,2-dihydroxynon-7-en-5-yn-4-one | T. pardinum | - | [41] |
83 | (Z)-1-hydroxynon-7-en-5-yn-4-one | T. pardinum | - | [41] |
Polyketide compounds | ||||
84 | pardinumone A | T. pardinum | Antibacterial activity | [52] |
85 | pardinumone B | T. pardinum | Antibacterial activity | [52] |
86 | pardinumone C | T. pardinum | Antibacterial activity | [52] |
87 | pardinumone D | T. pardinum | Antibacterial activity | [52] |
88 | 3,5-dihydroxyfuran-2(5H)-one | T. anatolicum | - | [17] |
89 | 4-chromone derivative | T. imbricatum | - | [15] |
Volatile compounds | ||||
90 | hexanal | T. magnivelare | - | [54] |
91 | 1-octen-3-one | T. magnivelare | - | [54] |
92 | (E)-oct-2-enal | T. magnivelare | - | [54] |
93 | 1-octen-3-ol | T. magnivelare | Antibacterial activity | [55,56] |
94 | linalool | T. magnivelare | - | [54] |
95 | (2E,4E)-nona- 2,4-dienal | T. magnivelare | - | [54] |
96 | ethyl 3-phenylpropanoate | T. magnivelare | - | [54] |
97 | 4-methoxybenzaldehyde | T. magnivelare | - | [54] |
98 | methyl (E)-3-phenylprop-2-enoate | T. magnivelare | - | [54] |
99 | 3,4-dimethoxybenzaldehyde | T. magnivelare | - | [54] |
100 | α-pinene | T. magnivelare | - | [54] |
101 | linalool | T. magnivelare | - | [54] |
4. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Clericuzio, M.; Mellerio, G.G.; Finzi, P.V.; Vidari, G. Secondary Metabolites Isolated from Tricholoma Species (Basidiomycota, Tricholomatacee): A Review. Nat. Prod. Commun. 2018, 13, 1934578X1801300926. [Google Scholar] [CrossRef]
- Hilber, O. Indol als Hauptkomponente des Geruches einiger Tricholoma-Arten und von Lepiota bucknallii. Z. Pilzkd. 1968, 34, 153–158. [Google Scholar]
- Cheng, H.; Liu, Y.; Liu, X.; Liu, G.; He, C.; Li, L. Separation and purification as well as whitening efficacy of polysaccharide from Tricholoma matsutake Sing. China Surfactant Deterg. Cosmet. 2013, 43, 134–138. [Google Scholar]
- Li, M.; Ge, Q.; Du, H.; Jiang, P.; Bao, Z.; Chen, D.; Lin, S. Potential mechanisms mediating the protective effects of Tricholoma matsutake-derived peptides in mitigating DSS-induced colitis. J. Agric. Food Chem. 2021, 69, 5536–5546. [Google Scholar] [CrossRef]
- Zhao, Z.-Z.; Chen, H.-P.; Wu, B.; Zhang, L.; Li, Z.-H.; Feng, T.; Liu, J.-K. Matsutakone and matsutoic acid, two (nor) steroids with unusual skeletons from the edible mushroom Tricholoma matsutake. J. Org. Chem. 2017, 82, 7974–7979. [Google Scholar] [CrossRef]
- Ma, Y.; Zu, Y.; Huang, S.; Stephanopoulos, G. Engineering a universal and efficient platform for terpenoid synthesis in yeast. Proc. Natl. Acad. Sci. USA 2023, 120, e2207680120. [Google Scholar] [CrossRef]
- Ma, Y.; Shang, Y.; Stephanopoulos, G. Engineering peroxisomal biosynthetic pathways for maximization of triterpene production in Yarrowia lipolytica. Proc. Natl. Acad. Sci. USA 2024, 121, e2314798121. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, G.; Huang, H.; Gao, H.; Yao, X.; Hu, D. Biosynthesis of Fungal Triterpenoids and Steroids. Chin. J. Org. Chem. 2018, 38, 2335–2347. [Google Scholar] [CrossRef]
- Jordá, T.; Puig, S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes 2020, 11, 795. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhu, L.; Wang, X.; Meng, F.; Xia, L.; Zhang, H. Advances in Stigmasterol on its anti-tumor effect and mechanism of action. Front. Oncol. 2022, 12, 1101289. [Google Scholar] [CrossRef]
- Zhang, S.-B.; Li, Z.-H.; Stadler, M.; Chen, H.-P.; Huang, Y.; Gan, X.-Q.; Feng, T.; Liu, J.-K. Lanostane triterpenoids from Tricholoma pardinum with NO production inhibitory and cytotoxic activities. Phytochemistry 2018, 152, 105–112. [Google Scholar] [CrossRef]
- Zhong, S.; Li, L.; Liang, N.; Zhang, L.; Xu, X.; Chen, S.; Yin, H. Acetaldehyde Dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver. Redox Biol. 2021, 41, 101919. [Google Scholar] [CrossRef]
- Gozzini, D.; Mellerio, G.G.; Gilardoni, G.; Clericuzio, M.; Vidari, G. New terpenoids from Tricholoma saponaceum. Nat. Prod. Commun. 2018, 13, 1934578X1801300901. [Google Scholar] [CrossRef]
- Gilardoni, G.; Negri, F.; Vita Finzi, P.; Hussain, F.H.; Vidari, G. New tricholidic acid triterpenoids from the mushroom Tricholoma ustaloides collected in an Italian beech wood. Molecules 2023, 28, 3864. [Google Scholar] [CrossRef]
- Zhang, F.-L.; Yang, H.-X.; Wu, X.; Li, J.-Y.; Wang, S.-Q.; He, J.; Li, Z.-H.; Feng, T.; Liu, J.-K. Chemical constituents and their cytotoxicities from mushroom Tricholoma imbricatum. Phytochemistry 2020, 177, 112431. [Google Scholar] [CrossRef]
- Jin, Y.-X.; Chi, M.-J.; Wei, W.-K.; Zhao, Y.-Q.; Wang, G.-K.; Feng, T. Tricholosterols A–D, four new ergosterol derivatives from the mushroom Tricholoma terreum. Steroids 2023, 191, 109157. [Google Scholar] [CrossRef]
- Kaplaner, E.; Aydoğmuş-Öztürk, F.; Öztürk, M.; Akata, I.; Duru, M.E. Anatoluin A and B isolated from medicinal Tricholoma anatolicum are new cytotoxic ergostanoids against the most common cancers. Nat. Prod. Res. 2023, 37, 3787–3797. [Google Scholar] [CrossRef]
- Shi, C.; Peng, Y.-L.; He, J.; Li, Z.-H.; Liu, J.-K.; Feng, T. Structures, chemical conversions, and cytotoxicity of tricholopardins C and D, two Tricholoma triterpenoids from the wild mushroom Tricholoma pardinum. Nat. Prod. Bioprospecting 2021, 11, 235–241. [Google Scholar] [CrossRef]
- De Bernardi, M.; Garlaschelli, L.; Gattl, G.; Vidari, G.; Finzi, P.V. Fungal metabolites xxii (): The unprecedented structure of saponaceolide a, a cytotoxic c-30 terpenoid from Tricholoma Saponaceum. Tetrahedron 1988, 44, 235–240. [Google Scholar] [CrossRef]
- Tang, H.-Y.; Yin, X.; Zhang, C.-C.; Jia, Q.; Gao, J.-M. Structure diversity, synthesis, and biological activity of cyathane diterpenoids in higher fungi. Curr. Med. Chem. 2015, 22, 2375–2391. [Google Scholar] [CrossRef]
- Qi, J.; Gao, Y.-Q.; Kang, S.-j.; Liu, C.; Gao, J.-M. Secondary metabolites of bird’s nest fungi: Chemical structures and biological activities. J. Agric. Food Chem. 2023, 71, 6513–6524. [Google Scholar] [CrossRef]
- Yiming, Z.; Jianzhao, Q.; Yingce, D.; Min, Z.; Chengwei, L. Research progress of the biosynthesis of diterpenoids in macro-basidiomycetes. Mycosystema 2023, 42, 101–117. [Google Scholar]
- Gilardoni, G.; Negri, F.; Vita Finzi, P.; Hussain, F.H.; Vidari, G. New Tricholomalides D–G from the Mushroom Tricholoma ustaloides Grown in an Italian Beech Wood. Molecules 2023, 28, 7446. [Google Scholar] [CrossRef]
- Schumacher, M.; Juncker, T.; Schnekenburger, M.; Gaascht, F.; Diederich, M. Natural compounds as inflammation inhibitors. Genes. Nutr. 2011, 6, 89–92. [Google Scholar] [CrossRef]
- Baquero, F.; Coque, T.M.; De La Cruz, F. Ecology and evolution as targets: The need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob. Agents Chemother. 2011, 55, 3649–3660. [Google Scholar] [CrossRef]
- Sithranga Boopathy, N.; Kathiresan, K. Anticancer drugs from marine flora: An overview. J. Oncol. 2010, 2010, 214186. [Google Scholar] [CrossRef]
- Yin, R.; Hong, K. Filamentous fungal sesterterpenoids and their synthases. Sheng Wu Gong. Cheng Xue Bao = Chin. J. Biotechnol. 2016, 32, 1631–1641. [Google Scholar]
- Zhang, P.; Qi, J.; Duan, Y.; Gao, J.-M.; Liu, C. Research progress on fungal sesterterpenoids biosynthesis. J. Fungi 2022, 8, 1080. [Google Scholar] [CrossRef]
- Xu, M.; Xu, H.; Lei, Z.; Xing, B.; Dickschat, J.S.; Yang, D.; Ma, M. Structural Insights Into the Terpene Cyclization Domains of Two Fungal Sesterterpene Synthases and Enzymatic Engineering for Sesterterpene Diversification. Angew. Chem. Int. Ed. 2024, 63, e202405140. [Google Scholar] [CrossRef]
- Wang, L.; Yang, B.; Lin, X.-P.; Zhou, X.-F.; Liu, Y. Sesterterpenoids. Nat. Prod. Rep. 2013, 30, 455–473. [Google Scholar] [CrossRef]
- Feng, T.; Gan, X.-Q.; Zhao, Y.-L.; Zhang, S.-B.; Chen, H.-P.; He, J.; Zheng, Y.-S.; Sun, H.; Huang, R.; Li, Z.-H. Tricholopardins A and B, anti-inflammatory terpenoids from the fruiting bodies of Tricholoma pardinum. J. Nat. Prod. 2019, 82, 45–50. [Google Scholar] [CrossRef]
- Zhang, D.-H.; Li, R.; Wang, Y.-M.; Zhu, X.-Y.; Wang, Y.-Y. Progress on the Method of Classification and Identifying of Alkaloids. J. West. Anhui Univ. 2010, 26, 69–73. [Google Scholar]
- Yan, Y.; Li, X.; Zhang, C.; Lv, L.; Gao, B.; Li, M. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics 2021, 10, 318. [Google Scholar] [CrossRef]
- Abdulaal, W.H.; Omar, U.M.; Zeyadi, M.; El-Agamy, D.S.; Alhakamy, N.A.; Ibrahim, S.R.; Almalki, N.A.; Asfour, H.Z.; Al-Rabia, M.W.; Mohamed, G.A. Modulation of the crosstalk between Keap1/Nrf2/HO-1 and NF-κB signaling pathways by Tomatidine protects against inflammation/oxidative stress-driven fulminant hepatic failure in mice. Int. Immunopharmacol. 2024, 130, 111732. [Google Scholar] [CrossRef]
- Zhang, T.; Tian, C.-Y.; Zhang, J.; An, Q.; Yi, P.; Yuan, C.-M.; Zhang, Z.-K.; Zhao, L.-H.; Hao, X.-J.; Hu, Z.-X. Quinolizidine Alkaloids and Isoflavones from the Herb of Thermopsis lupinoides and Their Antiviral, Antifungal, and Insecticidal Activities. J. Agric. Food Chem. 2024, 72, 5047–5061. [Google Scholar] [CrossRef]
- Yi, N.; Wang, L.; Jiang, Z.; Xu, G.; Li, L.; Zhang, Y.; Tan, Y. Peiminine triggers ferroptosis to inhibit breast cancer growth through triggering Nrf2 signaling. Tissue Cell 2024, 87, 102323. [Google Scholar] [CrossRef]
- Yang, D.F.; Huang, Y.B.; Pan, L.X. Research Progress of Alkaloids Natural Products from Marine Mangrove Fungi. J. Guangxi Acad. Sci. 2023, 39, 349–362. [Google Scholar]
- Chen, X.L.; Wu, M.; Ti, H.H.; Wei, X.Y.; Li, T.H. Three New 3, 6-Dioxygenated Diketopiperazines from the Basidiomycete Lepista sordida. Helv. Chim. Acta 2011, 94, 1426–1430. [Google Scholar] [CrossRef]
- Zhao, Z.-Z.; Liang, X.-B.; Feng, W.-S.; Xue, G.-M.; Si, Y.-Y.; Chen, H.-P.; Liu, J.-K. Cyclic dipeptides with peroxy groups from the fruiting bodies of the edible mushroom Tricholoma matsutake. Tetrahedron Lett. 2020, 61, 151892. [Google Scholar] [CrossRef]
- Zin, W.W.M.; Buttachon, S.; Dethoup, T.; Pereira, J.A.; Gales, L.; Inácio, Â.; Costa, P.M.; Lee, M.; Sekeroglu, N.; Silva, A.M. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry 2017, 141, 86–97. [Google Scholar] [CrossRef]
- Clericuzio, M.; Hussain, F.H.; Amin, H.I.M.; Salis, A.; Damonte, G.; Pavela, R.; Vidari, G. New acetylenic metabolites from the toxic mushroom Tricholoma pardinum. Nat. Prod. Res. 2021, 35, 5081–5088. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, M.; Liu, C. A comprehensive review of secondary metabolites from the genus Agrocybe: Biological activities and pharmacological implications. Mycology 2024, 15, 162–179. [Google Scholar] [CrossRef]
- Sterner, O. The isolation and structure determination of sciodole, a new indole derivative from the fruit bodies of Tricholoma sciodes. Nat. Prod. Lett. 1994, 4, 9–14. [Google Scholar] [CrossRef]
- Eizenhöfer, T.; Fugmann, B.; Sheldrick, W.S.; Steffan, B.; Steglich, W. Lascivol, der Bitterstoff des Unverschämten Ritterlings, Tricholoma lascivum (Agaricales). Liebigs Ann. Chem. 1990, 1990, 1115–1118. [Google Scholar] [CrossRef]
- Oba, Y.; Urai, M.; Wu, J.; Tomizawa, M.; Kawagishi, H.; Hashimoto, K. Bitter compounds in two Tricholoma species, T. aestuans and T. virgatum. J. Antibiot. 2020, 73, 697–701. [Google Scholar] [CrossRef]
- Lima, L.M.; da Silva, B.N.M.; Barbosa, G.; Barreiro, E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef]
- Zhang, F.M.; Wang, Y.H.; Yu, F.Q.; Hua, Y. Tricholomines A and B, two new amides from the fruiting bodies of Tricholoma bakamatsutake. Magn. Reson. Chem. 2021, 59, 587–593. [Google Scholar] [CrossRef]
- Zhang, F.M.; Lu, B.; Wang, Y.H.; Yu, F.Q. A new amide from the fruiting bodies of Tricholoma bakamatsutake. Magn. Reson. Chem. 2023, 61, 443–447. [Google Scholar] [CrossRef]
- Qi, J.; Duan, Y.; Li, Z.; Gao, J.; Qi, J.; Liu, C. The alkynyl-containing compounds from mushrooms and their biological activities. Nat. Prod. Bioprospecting 2023, 13, 50. [Google Scholar] [CrossRef]
- Kilimnik, A.; Kuklev, D.; Dembitsky, V. Antitumor Acetylenic Lipids. MJ Phar. 1 (1): 005. MJ Phar. 2016, 1, 005. [Google Scholar]
- Garlaschelli, L.; Vidari, G.; Vita-Finzi, P. Tricholomenyns C, D, and E, novel dimeric dienyne geranyl cyclohexenones from the fruiting bodies of Tricholoma acerbum. Tetrahedron Lett. 1996, 37, 6223–6226. [Google Scholar] [CrossRef]
- Yang, H.-X.; Ma, J.-T.; He, J.; Li, Z.-H.; Huang, R.; Feng, T.; Liu, J.-K. Pardinumones A–D: Antibacterial Polyketide–Amino Acid Derivatives from the Mushroom Tricholoma pardinum. ACS Omega 2021, 6, 25089–25095. [Google Scholar] [CrossRef]
- Diana, E.J.; Kanchana, U.; Mathew, T.V. Current developments in the synthesis of 4-chromanone-derived compounds. Org. Biomol. Chem. 2021, 19, 7995–8008. [Google Scholar] [CrossRef]
- Murray, A.F.; Moore, A.J.; Munafo, J.P., Jr. Key odorants from the american matsutake, Tricholoma magnivelare. J. Agric. Food Chem. 2020, 68, 9768–9775. [Google Scholar] [CrossRef]
- Xiong, C.; Li, Q.; Li, S.; Chen, C.; Chen, Z.; Huang, W. In vitro antimicrobial activities and mechanism of 1-octen-3-ol against food-related bacteria and pathogenic fungi. J. Oleo Sci. 2017, 66, 1041–1049. [Google Scholar] [CrossRef]
- Huang, Z.; Miao, H.; Pei, D.; Tang, X.; Wu, Q.; Huang, Z. Active components and their research progress of Tricholoma matsutake. Mycosystema 2023, 42, 2025–2040. [Google Scholar]
- Karakas, F.P.; Turker, A.U.; Bozat, B.G. Phenolic content, antibacterial and antioxidant potential of several edible Agaricomycetes mushrooms sold in public bazaar in Bolu, Turkey. Int. J. Med. Mushrooms 2023, 25, 45–56. [Google Scholar] [CrossRef]
- Li, G.; Kusari, S.; Kusari, P.; Kayser, O.; Spiteller, M. Endophytic Diaporthe sp. LG23 produces a potent antibacterial tetracyclic triterpenoid. J. Nat. Prod. 2015, 78, 2128–2132. [Google Scholar] [CrossRef]
- Dinçer, E.; Işık, H.; Hepokur, C.; Tutar, U.; Çelik, C. Cytotoxic, Antioxidant, Antibiofilm, and Antimicrobial Activities of Mushroom Species from Turkey. Int. J. Med. Mushrooms 2023, 25, 75–86. [Google Scholar] [CrossRef]
- Du, Y.; Tian, L.; Wang, Y.; Li, Z.; Xu, Z. Chemodiversity, pharmacological activity, and biosynthesis of specialized metabolites from medicinal model fungi Ganoderma lucidum. Chin. Med. 2024, 19, 51. [Google Scholar] [CrossRef]
- Jianzhao, Q.; Jing, W.; Shijie, K.; Jingming, G.; Hirokazu, K.; Hongwei, L.; Chengwei, L. The chemical structures, biosynthesis, and biological activities of secondary metabolites from the culinary-medicinal mushrooms of the genus Hericium: A review. Chin. J. Nat. Med. 2024, 22, 676–698. [Google Scholar]
- Qi, J. Hericium erinaceus: The enchanting medicinal-culinary mushroom of East Asian tradition. Integr. Med. Discov. 2024, 8, e24013. [Google Scholar] [CrossRef]
- Ahmad, I.; Arif, M.; Xu, M.; Zhang, J.; Ding, Y.; Lyu, F. Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): A review. Trends Food Sci. Technol. 2023, 134, 123–135. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Yuan, S.; Li, Z.; Liu, C.; Zhang, R. Review of the Structural Characteristics and Biological Activities of Tricholoma Secondary Metabolites (2018–2023). Molecules 2024, 29, 4719. https://doi.org/10.3390/molecules29194719
Zhao M, Yuan S, Li Z, Liu C, Zhang R. Review of the Structural Characteristics and Biological Activities of Tricholoma Secondary Metabolites (2018–2023). Molecules. 2024; 29(19):4719. https://doi.org/10.3390/molecules29194719
Chicago/Turabian StyleZhao, Meili, Shiqin Yuan, Zhiming Li, Chengwei Liu, and Ruiying Zhang. 2024. "Review of the Structural Characteristics and Biological Activities of Tricholoma Secondary Metabolites (2018–2023)" Molecules 29, no. 19: 4719. https://doi.org/10.3390/molecules29194719
APA StyleZhao, M., Yuan, S., Li, Z., Liu, C., & Zhang, R. (2024). Review of the Structural Characteristics and Biological Activities of Tricholoma Secondary Metabolites (2018–2023). Molecules, 29(19), 4719. https://doi.org/10.3390/molecules29194719