Electrochemical Nickel-Catalyzed Synthesis of Unsymmetrical Diorganyl Selanes from Diaryl Diselanes and Aryl and Alkyl Iodides
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. The General Procedure
3.3. Characterization Data of Novel Compounds
5-Methoxy-2-(phenylselanyl)pyridine (7k)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: Toxicology and pharmacology. Chem. Rev. 2004, 104, 6255–6285. [Google Scholar] [CrossRef] [PubMed]
- Sonego, J.M.; de Diego, S.I.; Szajnman, S.H.; Gallo-Rodriguez, C.; Rodriguez, J.B. Organoselenium compounds: Chemistry and applications in organic synthesis. Chem. Eur. J. 2023, 52, e202300030. [Google Scholar] [CrossRef] [PubMed]
- Kawamata, Y.; Hashimotot, T.; Maruoka, K. A chiral electrophilic selenium catalyst for highly enantioselective oxidative cyclization. J. Am. Chem. Soc. 2016, 138, 5206–5209. [Google Scholar] [CrossRef] [PubMed]
- Stadel, J.T.; Back, T.G. Asymmetric synthesis with organoselenium compounds—The past twelve years. Chem. Eur. J. 2024, 31, e202304074. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, N. Convenient synthesis of unsymmetrical organochalcogenides using organoboronic acids with dichalcogenides via cleavage of the S-S, Se-Se, or Te-Te bond by a copper catalyst. J. Org. Chem. 2007, 72, 1241–1245. [Google Scholar] [CrossRef]
- Kumar, S.; Engman, L. Microwave-assisted copper-catalyzed preparation of diaryl chalcogenides. J. Org. Chem. 2006, 71, 5400–5403. [Google Scholar] [CrossRef]
- Taniguchi, N.; Onami, T. Copper-catalyzed synthesis of diaryl selenide from aryl iodide and diphenyl diselenide using magnesium metal. Synlett 2003, 2003, 829–832. [Google Scholar] [CrossRef]
- Zhumagazy, S.; Zhu, C.; Yue, H.F.; Rueping, M. Nickel-catalyzed carbon–selenium bond formations under mild conditions. Synlett 2023, 34, 1381–1384. [Google Scholar] [CrossRef]
- Bonciolini, S.; Pulcinella, A.; Leone, M.; Schiroli, D.; Ruiz, A.L.; Sorato, A.; Dubois, M.A.J.; Gopalakrishnan, R.; Masson, G.; Ca’, N.D.; et al. Metal-free photocatalytic cross-electrophile coupling enables C1 homologation and alkylation of carboxylic acids with aldehydes. Nat. Commun. 2024, 15, 1509. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Mao, S.; Zhao, Y.; Yuan, B.; Yang, X.-Y.; Li, J. Metal-free photochemical C-Se cross-coupling of aryl halides with diselenides. Adv. Synth. Catal. 2022, 364, 1607–1612. [Google Scholar] [CrossRef]
- Reddy, V.P.; Kumar, A.V.; Swapna, K.; Rao, K.R. Copper oxide nanoparticle-catalyzed coupling of diaryl diselenide with aryl halides under ligand-free conditions. Org. Lett. 2009, 11, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, P.; Wang, Y.; Qui, Y. Electroreductive cross-electrophile coupling (eXEC) reactions. Angew. Chem. Int. Ed. 2023, 62, e202306679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lu, L.; Zhang, W.; Wang, Y.; Ware, S.D.; Mondragon, J.; Rein, J.; Strotman, N.; Lehnherr, D.; See, K.A.; et al. Electrochemically driven cross-electrophile coupling of alkyl halides. Nature 2022, 604, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhao, Y.; Lu, H.; Shi, Z.; Wang, M. Nickel-catalyzed asymmetric propargyl-aryl cross-electrophile coupling. Angew. Chem. Int. Ed. 2023, 63, e202313655. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Su, P.-F.; Shu, X.-Z. Reductive cross-coupling of unreactive electrophiles. Acc. Chem. Res. 2022, 55, 2491–2509. [Google Scholar] [CrossRef]
- Cai, Y.-M.; Lui, X.-T.; Xu, L.-L.; Shang, M. Electrochemical Ni-catalyzed decarboxylative C(sp3)-N cross-electrophile coupling. Angew. Chem. Int. Ed. 2024, 63, e202315222. [Google Scholar] [CrossRef]
- Queder, J.; Hilt, G. The electrochemical trans-chloroformyloxylation of unactivated alkenes. Synlett 2024, 34. in press. [Google Scholar] [CrossRef]
- Lucas, L.E.; Jarvo, E.R. Stereospecific and stereoconvergent cross-couplings between alkyl electrophiles. Nat. Chem. Rev. 2017, 1, 65. [Google Scholar] [CrossRef]
- Biswas, S.; Weix, D.J. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides. J. Am. Chem. Soc. 2013, 135, 16192–16197. [Google Scholar] [CrossRef]
- Day, C.S.; Rentaria-Gomez, A.; Ton, S.J.; Gogoi, A.R.; Gutierrez, O.; Martin, R. Elucidating electron-transfer events in polypyridine nickel complexes for reductive coupling reactions. Nat. Catal. 2023, 6, 244–253. [Google Scholar]
- Beromi, M.M.; Banerjee, G.; Brudvig, G.W.; Hazari, N.; Mercado, B.Q. Nickel (I) Aryl species: Synthesis, properties, and catalytic activity. ACS Catal. 2018, 8, 2526–2533. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Hu, J.; Qui, C.; Gong, H. Insights into recent nickel-catalyzed reductive and redox C-C coupling of electrophiles, C(sp3)-H bonds and alkenes. Acc. Chem. Res. 2024, 57, 1149–1162. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Wang, Q.; Tang, H.-T.; Mo, Z.-Y.; Pan, Y.-M. Recent advances in electrochemically mediated reactions of diselenides. SynOpen 2023, 7, 521–534. [Google Scholar]
Entry | Change to the Conditions | Yield |
---|---|---|
1 | Bu4NPF6 as supporting electrolyte | 58% |
2 | LiClO4 (0.5 M) as supporting electrolyte, glassy carbon cathode | 66% |
3 | LiClO4 (0.24 M) as supporting electrolyte, glassy carbon cathode | 48% |
4 | NiCl2·6H2O as nickel catalyst precursor | 62% |
5 | NiBr2 as nickel catalyst precursor | 52% |
6 | NiI2 as nickel catalyst precursor | 57% |
7 | Ni(acac)2 (20 mol%) | 43% |
8 | Ni(acac)2 (30 mol%) | 44% |
9 | 1,10-phananthroline as ligand | 46% |
10 | 1,2-(diphenylphosphino)ethane (dppe) as ligand | 2% |
11 | Dimethylaminoacetamide (DMA) as solvent | 50% |
12 | Acetonitrile (MeCN) as solvent | 36% |
13 | 2,2,2-trifluoroethanol as solvent | 0% |
14 | Divided cell (P4 frit) (2 F) | 12% |
15 | Pseudo-divided cell (Pt wire anode) | 0% |
16 | Glassy carbon cathode | 57% |
17 | Magnesium cathode | 56% |
18 | Platinum cathode | 0% |
19 | Zinc anode | 20% |
20 | Platinum anode | 0% |
21 | 1.5 F of electricity | 42% |
22 | 2.5 F of electricity | 27% |
23 | None | 91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Queder, J.; Hilt, G. Electrochemical Nickel-Catalyzed Synthesis of Unsymmetrical Diorganyl Selanes from Diaryl Diselanes and Aryl and Alkyl Iodides. Molecules 2024, 29, 4669. https://doi.org/10.3390/molecules29194669
Queder J, Hilt G. Electrochemical Nickel-Catalyzed Synthesis of Unsymmetrical Diorganyl Selanes from Diaryl Diselanes and Aryl and Alkyl Iodides. Molecules. 2024; 29(19):4669. https://doi.org/10.3390/molecules29194669
Chicago/Turabian StyleQueder, Jona, and Gerhard Hilt. 2024. "Electrochemical Nickel-Catalyzed Synthesis of Unsymmetrical Diorganyl Selanes from Diaryl Diselanes and Aryl and Alkyl Iodides" Molecules 29, no. 19: 4669. https://doi.org/10.3390/molecules29194669
APA StyleQueder, J., & Hilt, G. (2024). Electrochemical Nickel-Catalyzed Synthesis of Unsymmetrical Diorganyl Selanes from Diaryl Diselanes and Aryl and Alkyl Iodides. Molecules, 29(19), 4669. https://doi.org/10.3390/molecules29194669