Systematic Comparison of Extract Clean-Up with Currently Used Sorbents for Dispersive Solid-Phase Extraction
Abstract
:1. Introduction
Matrix | Nutrients | Rich in |
---|---|---|
spinach [63] (mature) |
|
|
avocado [64] (raw) |
|
|
orange [65] (raw) |
|
|
salmon [66] (Atlantic farm-raised, raw) |
|
|
liver [67] (pork) |
|
|
2. Results and Discussion
2.1. Determination of the Sample Clean-Up Capacity
2.1.1. By Visual Inspection
2.1.2. By UV Measurements
2.1.3. By MS Measurements
2.2. Determination of the Analyte Recovery
3. Materials and Methods
3.1. Materials
3.1.1. Chemicals
3.1.2. Matrices
3.2. Reagents
3.2.1. Stock Solutions
3.2.2. Analyte Protectant Solution
3.2.3. Buffer Salt Mixture
3.2.4. dSPE Mixture
3.3. Instrumentation
3.3.1. Sample Preparation Equipment
3.3.2. UV–Vis Spectrophotometer
3.3.3. Gas Chromatography-Tandem Mass Spectrometry (GC-MS/MS)
3.4. Methods
3.4.1. QuEChERS Sample Preparation
3.4.2. Determination of the Sample Clean-Up Capacity
By Visual Inspection
By UV Measurements
By MS Measurements
3.4.3. Determination of the Analyte Recovery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed]
- EN 15662:2018-07; Foods of Plant Origin—Multimethod for the Determination of Pesticide Residues Using GC- and LC-Based Analysis following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE—Modular QuEChERS-Method. European Comittee for Standardization: Brussels, Belgium, 2018.
- Lehotay, S.; Neil, M.; Tully, J.; Valverde, A.; Contreras, M.; Mol, H.; Heinke, V.; Anspach, T.; Lach, G.; Fussell, R.; et al. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Yu, J.E.; Lee, D.M.; Lee, G.H. A multiresidue method for the determination of 107 pesticides in cabbage and radish using QuEChERS sample preparation method and gas chromatography mass spectrometry. Food Chem. 2008, 110, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Cavaillé, L.; Kim, C.; Bounouba, M.; Zind, H.; Claparols, C.; Riboul, D.; Pinelli, E.; Albasi, C.; Bessiere, Y. Development and validation of QuEChERS-based extraction for quantification of nine micropollutants in wastewater treatment plant. Anal. Bioanal. Chem. 2021, 413, 5201–5213. [Google Scholar] [CrossRef] [PubMed]
- Schanzer, S.; Kröner, E.; Wibbelt, G.; Koch, M.; Kiefer, A.; Bracher, F.; Müller, C. Miniaturized multiresidue method for the analysis of pesticides and persistent organic pollutants in non-target wildlife animal liver tissues using GC-MS/MS. Chemosphere 2021, 279, 130434. [Google Scholar] [CrossRef]
- Kuzukiran, O.; Simsek, I.; Yorulmaz, T.; Yurdakok-Dikmen, B.; Ozkan, O.; Filazi, A. Multiresidues of environmental contaminants in bats from turkey. Chemosphere 2021, 282, 131022. [Google Scholar] [CrossRef]
- Molina-Ruiz, J.M.; Cieslik, E.; Cieslik, I.; Walkowska, I. Determination of pesticide residues in fish tissues by modified QuEChERS method and dual-d-SPE clean-up coupled to gas chromatography–mass spectrometry. Environ. Sci. Pollut. Res. 2015, 22, 369–378. [Google Scholar] [CrossRef]
- Stöckelhuber, M.; Müller, C.; Vetter, F.; Mingo, V.; Lötters, S.; Wagner, N.; Bracher, F. Determination of pesticides adsorbed on arthropods and gastropods by a micro-QuEChERS approach and GC–MS/MS. Chromatographia 2017, 80, 825–829. [Google Scholar] [CrossRef]
- Löbbert, A.; Schanzer, S.; Krehenwinkel, H.; Bracher, F.; Müller, C. Determination of multi pesticide residues in leaf and needle samples using a modified QuEChERS approach and gas chromatography-tandem mass spectrometry. Anal. Methods 2021, 13, 1138–1146. [Google Scholar] [CrossRef]
- Keklik, M.; Golge, O.; González-Curbelo, M.Á.; Kabak, B. Determination of pesticide residues in vine leaves using the QuEChERS method and liquid chromatography-tandem mass spectrometry. Foods 2024, 13, 909. [Google Scholar] [CrossRef]
- Wu, X.; Li, T.; Feng, H.; Xie, Y.; Liu, F.; Tong, K.; Fan, C.; Liu, Y.; Chen, H. Multi-residue analysis of 206 pesticides in grass forage by the one-step quick, easy, cheap, effective, rugged, and safe method combined with ultrahigh-performance liquid chromatography quadrupole orbitrap mass spectrometry. J. Sep. Sci. 2022, 45, 2520–2528. [Google Scholar] [CrossRef] [PubMed]
- González-Curbelo, M.Á.; Varela-Martínez, D.A.; Riaño-Herrera, D.A. Pesticide-residue analysis in soils by the QuEChERS method: A review. Molecules 2022, 27, 4323. [Google Scholar] [CrossRef] [PubMed]
- Ryska, M. How to deal with the “matrix effect” as an unavoidable phenomenon. Eur. J. Mass Spectrom. 2015, 21, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Mona, S.; Sayyed Hossein, H.; Massoud, K. Modern sample preparation techniques: A brief introduction. In Sample Preparation Techniques for Chemical Analysis; Massoud, K., Ed.; IntechOpen: Rijeka, Croatia, 2021; Ch. 2. [Google Scholar]
- Schenck, F.J.; Lehotay, S.J.; Vega, V. Comparison of solid-phase extraction sorbents for cleanup in pesticide residue analysis of fresh fruits and vegetables. J. Sep. Sci. 2002, 25, 883–890. [Google Scholar] [CrossRef]
- Oshita, D.; Jardim, I.C.S.F. Comparison of different sorbents in the QuEChERS method for the determination of pesticide residues in strawberries by LC–MS/MS. Chromatographia 2014, 77, 1291–1298. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Lee, H.-S.; Ro, J.-H.; Kim, D.; Kwon, H. Application of high-surface-area graphitized carbon black with primary secondary amine as an alternative quick, easy, cheap, effective, rugged, and safe cleanup material for pesticide multi-residue analysis in spinach. J. Sep. Sci. 2019, 42, 2379–2389. [Google Scholar] [CrossRef]
- Walorczyk, S. Validation and use of a QuEChERS-based gas chromatographic–tandem mass spectrometric method for multiresidue pesticide analysis in blackcurrants including studies of matrix effects and estimation of measurement uncertainty. Talanta 2014, 120, 106–113. [Google Scholar] [CrossRef]
- Cunha, S.C.; Lehotay, S.J.; Mastovska, K.; Fernandes, J.O.; Beatriz, M.; Oliveira, P.P. Evaluation of the QuEChERS sample preparation approach for the analysis of pesticide residues in olives. J. Sep. Sci. 2007, 30, 620–632. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Son, K.A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A 2010, 1217, 2548–2560. [Google Scholar] [CrossRef]
- Zhao, L.; Stevens, J. Optimizing Recoveries of Planar Pesticides in Spinach Using Toluene and Agilent Bond Elut QuEChERS AOAC Kit with Graphitized Carbon. Available online: https://www.agilent.com/Library/applications/5990-4247EN.pdf (accessed on 22 August 2024).
- Wilkowska, A.; Biziuk, M. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem. 2011, 125, 803–812. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Liang, X.; Liu, S.; Wang, S.; Guo, Y.; Jiang, S. Carbon-based sorbents: Carbon nanotubes. J. Chromatogr. A 2014, 1357, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Wang, M.; Zhang, J.; Cai, J.; Tu, H.; Zhang, A. Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochem. Commun. 2008, 10, 85–89. [Google Scholar] [CrossRef]
- Ravelo-Pérez, L.M.; Hernández-Borges, J.; Rodríguez-Delgado, M.A. Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices. J. Chromatogr. A 2008, 1211, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Wang, L.; Zhou, L.; Zhang, F.; Kang, S.; Pan, C. Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. J. Chromatogr. A 2012, 1225, 17–25. [Google Scholar] [CrossRef]
- Tuzimski, T.; Szubartowski, S. Method development for selected bisphenols analysis in sweetened condensed milk from a can and breast milk samples by HPLC–DAD and HPLC-QqQ-MS: Comparison of sorbents (Z-Sep, Z-Sep plus, PSA, C18, chitin and EMR-Lipid) for clean-up of QuEChERS extract. Molecules 2019, 24, 2093. [Google Scholar] [CrossRef]
- Sigma-Aldrich. Analysis of Compounds in Fatty Matrices. Available online: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/119/950/12023_T414114_Compounds_in_Fatty_Matrices.pdf (accessed on 1 March 2024).
- Sapozhnikova, Y.; Lehotay, S.J. Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography–tandem mass spectrometry. Anal. Chim. Acta 2013, 758, 80–92. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Kittur, F.S. Chitin—The undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr. 2003, 43, 61–87. [Google Scholar] [CrossRef]
- No, H.K.; Meyers, S.P.; Lee, K.S. Isolation and characterization of chitin from crawfish shell waste. J. Agric. Food Chem. 1989, 37, 575–579. [Google Scholar] [CrossRef]
- Shahidi, F.; Arachchi, J.K.V.; Jeon, Y.-J. Food applications of chitin and chitosans. Trends Food Sci. 1999, 10, 37–51. [Google Scholar] [CrossRef]
- Cerqueira, M.B.R.; Caldas, S.S.; Primel, E.G. New sorbent in the dispersive solid phase extraction step of quick, easy, cheap, effective, rugged, and safe for the extraction of organic contaminants in drinking water treatment sludge. J. Chromatogr. A 2014, 1336, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Sillanpää, M. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—A short review. Adv. Colloid Interface Sci. 2009, 152, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.-W.; Lim, C.-R.; Cho, B.-G.; Mun, S.-B.; Choi, J.-W.; Zhao, Y.; Kim, S.; Yun, Y.-S. Development of prediction models for adsorption properties of chitin and chitosan for micropollutants. Chem. Eng. J. 2021, 426, 131341. [Google Scholar] [CrossRef]
- Ravi Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Si, R.; Han, Y.; Wu, D.; Qiao, F.; Bai, L.; Wang, Z.; Yan, H. Ionic liquid-organic-functionalized ordered mesoporous silica-integrated dispersive solid-phase extraction for determination of plant growth regulators in fresh panax ginseng. Talanta 2020, 207, 120247. [Google Scholar] [CrossRef]
- Ścigalski, P.; Kosobucki, P. Recent materials developed for dispersive solid phase extraction. Molecules 2020, 25, 4869. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Hong, S.-M.; Lee, H.-S.; Moon, B.-C.; Kim, D.; Kwon, H. Identification and characterization of matrix components in spinach during QuEChERS sample preparation for pesticide residue analysis by LC–ESI–MS/MS, GC–MS and UPLC-DAD. J. Food Sci. Technol. 2018, 55, 3930–3938. [Google Scholar] [CrossRef] [PubMed]
- Holmes, B.; Dunkin, A.; Schoen, R.; Wiseman, C. Single-laboratory ruggedness testing and validation of a modified QuEChERS-approach to quantify 185 pesticide residues in salmon by liquid chromatography- and gas chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2015, 63, 5100–5106. [Google Scholar] [CrossRef]
- Duedahl-Olesen, L.; Iversen, N.M.; Kelmo, C.; Jensen, L.K. Validation of QuEChERS for screening of 4 marker polycyclic aromatic hydrocarbons in fish and malt. Food Control 2020, 108, 106434. [Google Scholar] [CrossRef]
- Pano-Farias, N.S.; Ceballos-Magaña, S.G.; Jurado, J.M.; Aguayo-Villarreal, I.A.; Muñiz-Valencia, R. Analytical method for pesticides in avocado and papaya by means of ultra-high performance liquid chromatography coupled to a triple quadrupole mass detector: Validation and uncertainty assessment. J. Food Sci. 2018, 83, 2265–2272. [Google Scholar] [CrossRef]
- Vijaykumar, L.K.; Krishnegowda, D.N.; Judith, S.; Shankarappa, L.T.; Mayanna, A.; Sanganal, J.S.; Hegde, R. Method validation and quantification of 188 pesticides in animal liver using QuEChERS and GC-MS/MS. Toxicol. Anal. Clin. 2024, in press. [Google Scholar] [CrossRef]
- Gilbert-López, B.; García-Reyes, J.F.; Molina-Díaz, A. Sample treatment and determination of pesticide residues in fatty vegetable matrices: A review. Talanta 2009, 79, 109–128. [Google Scholar] [CrossRef] [PubMed]
- Theurillat, X.; Dubois, M.; Huertas-Pérez, J.F. A multi-residue pesticide determination in fatty food commodities by modified QuEChERS approach and gas chromatography-tandem mass spectrometry. Food Chem. 2021, 353, 129039. [Google Scholar] [CrossRef]
- Besil, N.; Cesio, V.; Heinzen, H.; Fernandez-Alba, A.R. Matrix effects and interferences of different citrus fruit coextractives in pesticide residue analysis using ultrahigh-performance liquid chromatography–high-resolution mass spectrometry. J. Agric. Food Chem. 2017, 65, 4819–4829. [Google Scholar] [CrossRef]
- Rizzetti, T.M.; Kemmerich, M.; Martins, M.L.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Optimization of a QuEChERS based method by means of central composite design for pesticide multiresidue determination in orange juice by UHPLC–MS/MS. Food Chem. 2016, 196, 25–33. [Google Scholar] [CrossRef]
- Alcântara, D.B.; Fernandes, T.S.M.; Nascimento, H.O.; Lopes, A.F.; Menezes, M.G.G.; Lima, A.C.A.; Carvalho, T.V.; Grinberg, P.; Milhome, M.A.L.; Oliveira, A.H.B.; et al. Diagnostic detection systems and QuEChERS methods for multiclass pesticide analyses in different types of fruits: An overview from the last decade. Food Chem. 2019, 298, 124958. [Google Scholar] [CrossRef]
- Kaczyński, P.; Łozowicka, B.; Perkowski, M.; Szabuńko, J. Multiclass pesticide residue analysis in fish muscle and liver on one-step extraction-cleanup strategy coupled with liquid chromatography tandem mass spectrometry. Ecotox. Environ. Safe. 2017, 138, 179–189. [Google Scholar] [CrossRef]
- Cvetkovic, J.S.; Mitic, V.D.; Stankov Jovanovic, V.P.; Dimitrijevic, M.V.; Petrovic, G.M.; Nikolic-Mandic, S.D.; Stojanovic, G.S. Optimization of the QuEChERS extraction procedure for the determination of polycyclic aromatic hydrocarbons in soil by gas chromatography-mass spectrometry. Anal. Methods 2016, 8, 1711–1720. [Google Scholar] [CrossRef]
- Sunyer-Caldú, A.; Diaz-Cruz, M.S. Development of a QuEChERS-based method for the analysis of pharmaceuticals and personal care products in lettuces grown in field-scale agricultural plots irrigated with reclaimed water. Talanta 2021, 230, 122302. [Google Scholar] [CrossRef]
- Núñez, M.; Borrull, F.; Fontanals, N.; Pocurull, E. Determination of pharmaceuticals in bivalves using QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 3841–3849. [Google Scholar] [CrossRef]
- Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 2018, 263, 442–453. [Google Scholar] [CrossRef]
- Turusov, V.; Rakitsky, V.; Tomatis, L. Dichlorodiphenyltrichloroethane (ddt): Ubiquity, persistence, and risks. Environ. Health Perspect. 2002, 110, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef] [PubMed]
- MSAC—Germany. 1-[4-(1,1-dimethylethyl)phenyl]-3-(4-methoxyphenyl)propane-1,3-dione: Justification for the Selection of a Substance for CoRAP Inclusion. Available online: https://echa.europa.eu/documents/10162/ee03f3cf-f7b8-88ed-8d49-b613a921cf65 (accessed on 23 September 2024).
- Campos-Mañas, M.C.; Ferrer, I.; Thurman, E.M.; Agüera, A. Opioid occurrence in environmental water samples—A review. Trends Environ. Anal. Chem. 2018, 20, e00059. [Google Scholar] [CrossRef]
- Prosser, R.S.; Sibley, P.K. Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation. Environ. Int. 2015, 75, 223–233. [Google Scholar] [CrossRef]
- Bergmann, A.; Fohrmann, R.; Weber, F.-A. Zusammenstellung von Monitoringdaten zu Umweltkonzentrationen von Arzneimitteln; Umweltbundesamt: Dessau-Roßlau, Germany, 2011. [Google Scholar]
- Downs, C.A.; Kramarsky-Winter, E.; Segal, R.; Fauth, J.; Knutson, S.; Bronstein, O.; Ciner, F.R.; Jeger, R.; Lichtenfeld, Y.; Woodley, C.M.; et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in hawaii and the u.S. Virgin islands. Arch. Environ. Contam. Toxicol. 2016, 70, 265–288. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture Agricultural Research Service. Spinach, Mature. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/1999633/nutrients (accessed on 1 August 2024).
- U.S. Department of Agriculture Agricultural Research Service. Avocado, Raw. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/1102652/nutrients (accessed on 1 August 2024).
- U.S. Department of Agriculture Agricultural Research Service. Oranges, Raw, Navels. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/746771/nutrients (accessed on 1 August 2024).
- U.S. Department of Agriculture Agricultural Research Service. Fish, Salmon, Atlantic, Farm Raised, Raw. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2684441/nutrients (accessed on 1 August 2024).
- U.S. Department of Agriculture Agricultural Research Service. Pork, Fresh, Variety Meats and By-Products, Liver, Raw. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/167862/nutrients (accessed on 1 August 2024).
- European Commission. Analytical Quality Control and Method Validation Procedure for Pesticide Residues Analysis in Food and Feed SANTE/11312/2021. Available online: https://food.ec.europa.eu/system/files/2023-11/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf (accessed on 20 August 2024).
- Codex Alimentarius, International Food Standards. Guidelines on Perfomance Criteria for Methods of Analysis for the Determination of Pesticide Residues in Food and Feed CXG 90-2017. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B90-2017%252FCXG_090e.pdf (accessed on 9 August 2024).
- EU Reference Laboratory for Pesticides Requiring Single Residue Methods. Analysis of Ethylene Oxide and Its Metabolite 2-Chloroethanol by the Quoil or the QuEChERS Method and GC-MS/MS. Available online: https://www.eurl-pesticides.eu/library/docs/srm/EurlSrm_Observation_EO_V1.pdf (accessed on 12 August 2024).
- Wang, J.; Zhang, J.; Han, L.; Wang, J.; Zhu, L.; Zeng, H. Graphene-based materials for adsorptive removal of pollutants from water and underlying interaction mechanism. Adv. Colloid Interface Sci. 2021, 289, 102360. [Google Scholar] [CrossRef]
- Peter, M.; Bakanov, N.; Mathgen, X.; Brühl, C.A.; Veith, M.; Müller, C. Multiresidue analysis of bat guano using GC-MS/MS. Anal. Bioanal. Chem. 2024, 416, 3149–3160. [Google Scholar] [CrossRef]
- EU Reference Laboratories for Residues of Pesticides—Single Residue Methods. Use of Analyte Protectants in GC-Analysis: A Way to Improve Peak Shape and Reduce Decomposition of Susceptible Compounds. Available online: https://www.eurl-pesticides.eu/library/docs/srm/EURL_Observation-APs.pdf (accessed on 13 August 2024).
Sorbent | Amount of Sorbent [mg] | Amount of MgSO4 [mg] |
---|---|---|
PSA | 50 | 150 |
C18 | 50 | 150 |
Z-Sep® | 50 | 150 |
chitin | 50 | 150 |
chitosan | 50 | 150 |
GCB | 7.5 | 150 |
MWCNTs | 7.5 | 150 |
Matrix | Homogenized Matrix [g] | Added Volume H2O [mL] |
---|---|---|
spinach | 10.00 | 0 |
orange | 10.00 | 0 |
avocado | 5.00 | 6 |
liver | 5.00 | 5 |
salmon | 5.00 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peter, M.; Müller, C. Systematic Comparison of Extract Clean-Up with Currently Used Sorbents for Dispersive Solid-Phase Extraction. Molecules 2024, 29, 4656. https://doi.org/10.3390/molecules29194656
Peter M, Müller C. Systematic Comparison of Extract Clean-Up with Currently Used Sorbents for Dispersive Solid-Phase Extraction. Molecules. 2024; 29(19):4656. https://doi.org/10.3390/molecules29194656
Chicago/Turabian StylePeter, Michelle, and Christoph Müller. 2024. "Systematic Comparison of Extract Clean-Up with Currently Used Sorbents for Dispersive Solid-Phase Extraction" Molecules 29, no. 19: 4656. https://doi.org/10.3390/molecules29194656
APA StylePeter, M., & Müller, C. (2024). Systematic Comparison of Extract Clean-Up with Currently Used Sorbents for Dispersive Solid-Phase Extraction. Molecules, 29(19), 4656. https://doi.org/10.3390/molecules29194656