Comparison between Traditional and Novel NMR Methods for the Analysis of Sicilian Monovarietal Extra Virgin Olive Oils: Metabolic Profile Is Influenced by Micro-Pedoclimatic Zones
Abstract
:1. Introduction
2. Results
2.1. NMR Metabolic Profile
2.2. GC vs. NMR Comparison
2.3. Total Phenolic Compounds: NMR vs. Folin-Ciocolteau
2.4. Statistical Analysis of the Metabolic Profile
3. Discussion
4. Materials and Methods
4.1. Samples
4.2. Chemicals
4.3. NMR Sample Preparation
4.4. NMR Experimental Protocol
- Experiment A: a standard protonic spectrum with 16 scans and a suitable cycling delay for quantitative analysis.
- Experiment B: 1H- DPFGSE (double-pulsed gradient spin echo) spectrum [27] with 32 scans for the detection and quantification of aldehydic phenolic species.
- Experiment C: full-time 1H decoupled 13C spectrum with 32 scans with a suitable recycling delay for quantitative evaluations [24].
4.5. NMR Acquisition and Processing
4.6. NMR Processing Strategies and Quantification
4.7. Traditional Analytical Essays
4.8. Gas-Chromatographic (GC) Analysis of Fatty Acid Methyl Esters (FAMEs)
4.9. Quantification of Total Phenol Content (TPC)
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
A.1. NMR Spectra and Assignments
A.2. NMR Tables
Group 1 | SQ ** | Ln | L | O | PO | V | P | S |
---|---|---|---|---|---|---|---|---|
SD% * | 4.24 | 4.86 | 0.97 | 0.36 | 9.65 | 5.43 | 0.84 | 5.55 |
N_1 | 2.74 | 0.70 | 10.41 | 62.78 | 0.47 | 4.66 | 19.31 | 1.67 |
N_2 | 2.49 | 0.64 | 11.32 | 62.63 | 0.51 | 4.38 | 18.57 | 1.95 |
N_3 | 2.29 | 0.59 | 11.29 | 62.51 | 0.35 | 4.45 | 18.72 | 2.09 |
N_4 | 2.31 | 0.62 | 10.68 | 62.94 | 0.70 | 4.26 | 18.96 | 1.84 |
N_5 | 2.26 | 0.57 | 9.45 | 65.35 | 0.37 | 4.07 | 18.29 | 1.90 |
N_6 | 2.16 | 0.57 | 9.34 | 65.64 | 0.66 | 4.25 | 17.78 | 1.76 |
N_7 | 1.81 | 0.56 | 9.10 | 66.44 | 0.56 | 3.46 | 17.79 | 2.09 |
N_8 | 2.01 | 0.54 | 8.35 | 67.13 | 0.71 | 3.65 | 17.82 | 1.80 |
N_9 | 2.17 | 0.49 | 8.55 | 66.56 | 0.54 | 4.00 | 17.89 | 1.98 |
N_10 | 1.98 | 0.59 | 11.27 | 62.57 | 0.55 | 4.61 | 18.56 | 1.86 |
N_11 | 1.98 | 0.57 | 9.12 | 66.02 | 0.63 | 3.88 | 17.84 | 1.94 |
N_12 | 2.08 | 0.56 | 9.26 | 66.74 | 0.60 | 3.72 | 17.25 | 1.87 |
N_13 | 2.22 | 0.53 | 7.51 | 69.04 | 0.44 | 3.36 | 17.57 | 1.55 |
N_14 | 2.50 | 0.64 | 8.27 | 65.73 | 0.81 | 3.91 | 18.63 | 2.01 |
N_15 | 2.41 | 0.63 | 10.43 | 63.70 | 0.45 | 4.16 | 18.71 | 1.93 |
N_16 | 2.26 | 0.59 | 7.86 | 67.05 | 0.44 | 3.66 | 18.37 | 2.04 |
N_17 | 2.19 | 0.52 | 8.03 | 65.55 | 0.56 | 3.80 | 19.62 | 1.93 |
N_18 | 2.18 | 0.59 | 8.51 | 65.46 | 1.12 | 4.31 | 18.21 | 1.80 |
N_19 | 2.29 | 0.55 | 9.89 | 65.73 | 0.06 | 3.57 | 18.18 | 2.02 |
Group 2 | Ln2 | L2 | O2 | V2 | TY-EDA | HTY-EDA | HTY-EA | ELNL |
SD% * | 11.34 | 3.22 | 1.3 | 7.34 | 10.46 | 8.62 | 12.43 | 9.32 |
N_1 | 0.41 | 4.91 | 26.77 | 0.35 | 45.20 | 71.99 | 23.12 | 120.58 |
N_2 | 0.37 | 5.20 | 27.24 | 0.52 | 23.39 | 70.01 | 23.77 | 92.42 |
N_3 | 0.33 | 5.24 | 27.10 | 0.66 | n.d. | 25.48 | n.d. | 59.28 |
N_4 | 0.32 | 4.97 | 27.12 | 0.92 | 29.07 | 95.99 | 46.86 | 211.41 |
N_5 | 0.32 | 4.33 | 27.90 | 0.78 | 5.10 | 44.30 | 9.85 | 53.21 |
N_6 | 0.23 | 4.28 | 27.88 | 0.94 | n.d. | 24.39 | n.d. | 9.01 |
N_7 | 0.32 | 4.31 | 28.20 | 0.51 | 82.33 | 153.88 | 40.14 | 329.83 |
N_8 | 0.38 | 3.87 | 28.50 | 0.59 | 115.12 | 213.57 | 24.19 | 278.06 |
N_9 | 0.37 | 3.89 | 28.33 | 0.74 | 39.70 | 119.85 | 7.39 | 159.78 |
N_10 | 0.34 | 5.01 | 27.08 | 0.91 | 8.71 | 27.13 | 40.31 | 73.01 |
N_11 | 0.32 | 4.23 | 28.21 | 0.58 | 43.17 | 61.82 | 12.62 | 89.72 |
N_12 | 0.41 | 4.19 | 28.24 | 0.49 | 83.02 | 157.32 | 18.29 | 292.24 |
N_13 | 0.34 | 3.83 | 28.80 | 0.37 | 22.70 | 13.85 | 34.45 | 18.08 |
N_14 | 0.44 | 3.87 | 28.28 | 0.74 | 10.81 | 45.08 | 4.00 | 97.75 |
N_15 | 0.35 | 4.95 | 27.51 | 0.53 | 31.52 | 111.53 | 10.08 | 211.25 |
N_16 | 0.41 | 3.60 | 28.73 | 0.59 | 44.12 | 81.18 | 38.82 | 223.21 |
N_17 | 0.38 | 3.66 | 28.66 | 0.64 | 52.14 | 141.61 | 22.74 | 270.57 |
N_18 | 0.37 | 4.18 | 28.07 | 0.72 | 40.34 | 81.39 | 21.34 | 189.95 |
N_19 | 0.39 | 4.42 | 28.22 | 0.30 | 23.78 | 62.30 | 8.74 | 117.39 |
Samples | Free Acidity (FFA) (%) | Peroxides (meqO2/Kg) | K232 | K270 | ∆K |
---|---|---|---|---|---|
N_1 | 0.1 | 3 | 1.85 | 0.13 | −0.001 |
N_2 | 0.1 | 4 | 1.37 | 0.15 | 0.000 |
N_3 | 0.3 | 6 | 1.62 | 0.12 | 0.000 |
N_4 | 0.1 | 5 | 1.49 | 0.10 | 0.000 |
N_5 | 0.2 | 5 | 1.38 | 0.12 | 0.000 |
N_6 | 0.1 | 5 | 1.41 | 0.08 | −0.001 |
N_7 | 0.2 | 3 | 1.18 | 0.08 | 0.000 |
N_8 | 0.1 | 3 | 1.29 | 0.08 | −0.001 |
N_9 | 0.2 | 4 | 1.31 | 0.10 | −0.003 |
N_10 | 0.3 | 6 | 1.46 | 0.10 | −0.003 |
N_11 | 0.2 | 7 | 1.51 | 0.13 | −0.001 |
N_12 | 0.2 | 6 | 1.38 | 0.12 | 0.000 |
N_13 | 0.2 | 5 | 1.44 | 0.10 | −0.001 |
N_14 | 0.2 | 5 | 1.36 | 0.09 | −0.001 |
N_15 | 0.3 | 7 | 1.53 | 0.14 | 0.001 |
N_16 | 0.1 | 5 | 1.55 | 0.10 | −0.006 |
N_17 | 0.2 | 8 | 1.51 | 0.10 | −0.001 |
N_18 | 0.2 | 3 | 1.42 | 0.09 | −0.002 |
N_19 | 0.2 | 4 | 1.49 | 0.10 | −0.004 |
References
- Esposto, S.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Veneziani, G.; Di Maio, I.; Sordini, B.; Servili, M. Effect of Light Exposure on the Quality of Extra Virgin Olive Oils According to Their Chemical Composition. Food Chem. 2017, 229, 726–733. [Google Scholar] [CrossRef]
- Boskou, D.; Tsimidou, M.; Blekas, G. Olive Oil: Chemistry and Technology, 2nd ed.; AOCS Publishing: Champaign, IL, USA, 2015. [Google Scholar]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Gammazza, A.M.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef] [PubMed]
- Martín-Peláez, S.; Covas, M.I.; Fitó, M.; Kušar, A.; Pravst, I. Health Effects of Olive Oil Polyphenols: Recent Advances and Possibilities for the Use of Health Claims. Mol. Nutr. Food Res. 2013, 57, 760–771. [Google Scholar] [CrossRef]
- Xiang, C.; Xu, Z.; Liu, J.; Li, T.; Yang, Z.; Ding, C. Quality, Composition, and Antioxidant Activity of Virgin Olive Oil from Introduced Varieties at Liangshan. LWT 2017, 78, 226–234. [Google Scholar] [CrossRef]
- Kouka, P.; Priftis, A.; Stagos, D.; Angelis, A.; Stathopoulos, P.; Xinos, N.; Skaltsounis, A.L.; Mamoulakis, C.; Tsatsakis, A.M.; Spandidos, D.A.; et al. Assessment of the Antioxidant Activity of an Olive Oil Total Polyphenolic Fraction and Hydroxytyrosol from a Greek Olea Europea Variety in Endothelial Cells and Myoblasts. Int. J. Mol. Med. 2017, 40, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Andrewes, P.; Busch, J.L.H.C.; De Joode, T.; Groenewegen, A.; Alexandre, H. Sensory Properties of Virgin Olive Oil Polyphenols: Identification of Deacetoxy-Ligstroside Aglycon as a Key Contributor to Pungency. J. Agric. Food Chem. 2003, 51, 1415–1420. [Google Scholar] [CrossRef]
- The European Commission. II of the European Parliament and of the Council as Regards Marketing Standards for Olive Oil, and Repealing Commission Regulation (EEC) No 2568/91 and Commission Implementing Regulation (EU) No 29/2012. Off. J. Eur. Union 2022, L 284, 1–22. [Google Scholar]
- Bella, G.; Rotondo, A. Theoretical Prediction of 13C NMR Spectrum of Mixed Triglycerides by Mean of GIAO Calculations to Improve Vegetable Oils Analysis. Chem. Phys. Lipids 2020, 232, 104973. [Google Scholar] [CrossRef]
- Carvalho, M.S.; Mendonça, M.A.; Pinho, D.M.M.; Resck, I.S.; Suarez, P.A.Z. Chromatographic Analyses of Fatty Acid Methyl Esters by HPLC-UV and GC-FID. J. Braz. Chem. Soc. 2012, 23, 763–769. [Google Scholar] [CrossRef]
- Ammar, S.; Kelebek, H.; Zribi, A.; Abichou, M.; Selli, S.; Bouaziz, M. LC-DAD/ESI-MS/MS Characterization of Phenolic Constituents in Tunisian Extra-Virgin Olive Oils: Effect of Olive Leaves Addition on Chemical Composition. Food Res. Int. 2017, 100, 477–485. [Google Scholar] [CrossRef]
- Ruiz-Aracama, A.; Goicoechea, E.; Guillén, M.D. Direct Study of Minor Extra-Virgin Olive Oil Components without Any Sample Modification. 1H NMR Multisupression Experiment: A Powerful Tool. Food Chem. 2017, 228, 301–314. [Google Scholar] [CrossRef]
- Calò, F.; Girelli, C.R.; Angilè, F.; Del Coco, L.; Mazzi, L.; Barbini, D.; Fanizzi, F.P. 1h-Nmr Profiling Shows as Specific Constituents Strongly Affect the International Evoo Blends Characteristics: The Case of the Italian Oil. Molecules 2021, 26, 2233. [Google Scholar] [CrossRef] [PubMed]
- Simmler, C.; Napolitano, J.G.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F. Universal Quantitative NMR Analysis of Complex Natural Samples. Curr. Opin. Biotechnol. 2014, 25, 51–59. [Google Scholar] [CrossRef]
- Cevallos-Cevallos, J.M.; Reyes-De-Corcuera, J.I.; Etxeberria, E.; Danyluk, M.D.; Rodrick, G.E. Metabolomic Analysis in Food Science: A Review. Trends Food Sci. Technol. 2009, 20, 557–566. [Google Scholar] [CrossRef]
- Beteinakis, S.; Papachristodoulou, A.; Kolb, P.; Rösch, P.; Schwarzinger, S.; Mikros, E.; Halabalaki, M. NMR-Based Metabolite Profiling and the Application of STOCSY toward the Quality and Authentication Assessment of European EVOOs. Molecules 2023, 28, 1738. [Google Scholar] [CrossRef] [PubMed]
- Maestrello, V.; Solovyev, P.; Bontempo, L.; Mannina, L.; Camin, F. Nuclear Magnetic Resonance Spectroscopy in Extra Virgin Olive Oil Authentication. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4056–4075. [Google Scholar] [CrossRef] [PubMed]
- Salvo, A.; Rotondo, A.; La Torre, G.L.; Cicero, N.; Dugo, G. Determination of 1,2/1,3-Diglycerides in Sicilian Extra-Virgin Olive Oils By1H-NMR over a One-Year Storage Period. Nat. Prod. Res. 2017, 31, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Laghi, L.; Picone, G.; Capozzi, F. Nuclear Magnetic Resonance for Foodomics beyond Food Analysis. TrAC—Trends Anal. Chem. 2014, 59, 93–102. [Google Scholar] [CrossRef]
- Marcone, M.F.; Wang, S.; Albabish, W.; Nie, S.; Somnarain, D.; Hill, A. Diverse Food-Based Applications of Nuclear Magnetic Resonance (NMR) Technology. Food Res. Int. 2013, 51, 729–747. [Google Scholar] [CrossRef]
- Liland, K.H. Multivariate Methods in Metabolomics—From Pre-Processing to Dimension Reduction and Statistical Analysis. TrAC—Trends Anal. Chem. 2011, 30, 827–841. [Google Scholar] [CrossRef]
- Mannina, L.; Marini, F.; Gobbino, M.; Sobolev, A.P.; Capitani, D. NMR and Chemometrics in Tracing European Olive Oils: The Case Study of Ligurian Samples. Talanta 2010, 80, 2141–2148. [Google Scholar] [CrossRef] [PubMed]
- Mannina, L.; Dugo, G.; Salvo, F.; Cicero, L.; Ansanelli, G.; Calcagni, C.; Segre, A. Study of the Cultivar-Composition Relationship in Sicilian Olive Oils by GC, NMR, and Statistical Methods. J. Agric. Food Chem. 2003, 51, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Rotondo, A.; Mannina, L.; Salvo, A. Multiple Assignment Recovered Analysis (MARA) NMR for a Direct Food Labeling: The Case Study of Olive Oils. Food Anal. Methods 2019, 12, 1238–1245. [Google Scholar] [CrossRef]
- Trygg, J.; Wold, S. Orthogonal Projections to Latent Structures (O-PLS). J. Chemom. 2002, 16, 119–128. [Google Scholar] [CrossRef]
- Rotondo, A.; La Torre, G.L.; Dugo, G.; Cicero, N.; Santini, A.; Salvo, A. Oleic Acid Is Not the Only Relevant Mono-Unsaturated Fatty Ester in Olive Oil. Foods 2020, 9, 384. [Google Scholar] [CrossRef] [PubMed]
- Klikarová, J.; Rotondo, A.; Cacciola, F.; Česlová, L.; Dugo, P.; Mondello, L.; Rigano, F. The Phenolic Fraction of Italian Extra Virgin Olive Oils: Elucidation Through Combined Liquid Chromatography and NMR Approaches. Food Anal. Methods 2019, 12, 1759–1770. [Google Scholar] [CrossRef]
- Nerantzaki, A.A.; Tsiafoulis, C.G.; Charisiadis, P.; Kontogianni, V.G.; Gerothanassis, I.P. Novel De-termination of the Total Phenolic Content in Crude Plant Extracts by the Use of 1H NMR of the -OH Spectral Region. Anal. Chim. Acta 2011, 688, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The Chemistry Behind the Folin-Ciocalteu Method for the Estimation of (Poly)Phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef] [PubMed]
- Rigakou, A.; Diamantakos, P.; Melliou, E.; Magiatis, P. S-(E)-Elenolide: A New Constituent of Extra Virgin Olive Oil. J. Sci. Food Agric. 2019, 99, 5319–5326. [Google Scholar] [CrossRef]
- Rotondo, A.; Salvo, A.; Giuffrida, D.; Dugo, G.; Rotondo, E. NMR Analysis of Aldehydes in Sicilian Extra-Virgin Olive Oils by DPFGSE Techniques. Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Nat. 2011, 89, C1A8901002. [Google Scholar] [CrossRef]
- Deiana, P.; Santona, M.; Dettori, S.; Culeddu, N.; Dore, A.; Molinu, M.G. Multivariate Approach to Assess the Chemical Composition of Italian Virgin Olive Oils as a Function of Variety and Harvest Period. Food Chem. 2019, 300, 125243. [Google Scholar] [CrossRef] [PubMed]
- Worley, B.; Powers, R. PCA as a Practical Indicator of OPLS-DA Model Reliability. Curr. Metabolomics 2016, 4, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Piravi-Vanak, Z.; Ghasemi, J.B.; Ghavami, M.; Ezzatpanah, H.; Zolfonoun, E. The Influence of Growing Region on Fatty Acids and Sterol Composition of Iranian Olive Oils by Unsupervised Clustering Methods. J. Am. Oil Chem. Soc. 2012, 89, 371–378. [Google Scholar] [CrossRef]
- Lechhab, T.; Lechhab, W.; Cacciola, F.; Salmoun, F. Sets of Internal and External Factors Influencing Olive Oil (Olea europaea L.) Composition: A Review. Eur. Food Res. Technol. 2022, 248, 1069–1088. [Google Scholar] [CrossRef]
- Dag, A.; Harlev, G.; Lavee, S.; Zipori, I.; Kerem, Z. Optimizing Olive Harvest Time under Hot Climatic Conditions of Jordan Valley, Israel. Eur. J. Lipid Sci. Technol. 2014, 116, 169–176. [Google Scholar] [CrossRef]
- Charisiadis, P.; Kontogianni, V.G.; Tsiafoulis, C.G.; Tzakos, A.G.; Siskos, M.; Gerothanassis, I.P. 1H-NMR as a Structural and Analytical Tool of Intra- and Intermolecular Hydrogen Bonds of Phe-nol-Containing Natural Products and Model Compounds. Molecules 2014, 19, 13643–13682. [Google Scholar] [CrossRef]
- Skiera, C.; Steliopoulos, P.; Kuballa, T.; Diehl, B.; Holzgrabe, U. Determination of Free Fatty Acids in Pharmaceutical Lipids by 1H NMR and Comparison with the Classical Acid Value. J. Pharm. Biomed. Anal. 2014, 93, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, M.E.; Mannu, A.; Mele, A. NMR Determination of Free Fatty Acids in Vegetable Oils. Processes 2020, 8, 410. [Google Scholar] [CrossRef]
- Culeddu, N.; Chessa, M.; Bandino, G.; Sedda, P.; Zurru, R.; Anedda, R.; Motroni, A.; Molinu, M.G.; Dettori, S.; Santona, M. Classification of Monovarietal Sardinian Extra Virgin Olive Oils by 1H NMR Metabolomic. Eur. J. Lipid Sci. Technol. 2017, 119, 1700035. [Google Scholar] [CrossRef]
- Castejón, D.; Mateos-Aparicio, I.; Molero, M.D.; Cambero, M.I.; Herrera, A. Evaluation and Optimization of the Analysis of Fatty Acid Types in Edible Oils by 1H-NMR. Food Anal. Methods 2014, 7, 1285–1297. [Google Scholar] [CrossRef]
- Dugo, G.; Rotondo, A.; Mallamace, D.; Cicero, N.; Salvo, A.; Rotondo, E.; Corsaro, C. Enhanced Detection of Aldehydes in Extra-Virgin Olive Oil by Means of Band Selective NMR Spectroscopy. Phys. A Stat. Mech. Its Appl. 2015, 420, 258–264. [Google Scholar] [CrossRef]
- McCoy, M.A.; Mueller, L. Selective decoupling. J. Magn. Reson. A 1993, 101, 122–130. [Google Scholar] [CrossRef]
- Barison, A.; Da Silva, C.W.P.; Campos, F.R.; Simonelli, F.; Lenz, C.A.; Ferreira, A.G. A Simplemethodology for the Determination of Fatty Acid Composition in Edible Oils through 1H NMR Spectroscopy. Magn. Reson. Chem. 2010, 48, 642–650. [Google Scholar] [CrossRef]
- Rotondo, A.; Salvo, A.; Gallo, V.; Rastrelli, L.; Dugo, G. Quick Unreferenced NMR Quantification of Squalene in Vegetable Oils. Eur. J. Lipid Sci. Technol. 2017, 119, 1700151. [Google Scholar] [CrossRef]
- International Olive Council. Coi/t.20/Doc. No 33/Rev.1. Determination of Fatty Acid Methyl Esters by Gas Chromatography. Available online: http://www.internationaloliveoil.org/ (accessed on 1 May 2018).
- Dordevic, D.; Dordevic, S.; Ćavar-Zeljković, S.; Kulawik, P.; Kushkevych, I.; Tremlová, B.; Kalová, V. Monitoring the Quality of Fortified Cold-Pressed Rapeseed Oil in Different Storage Conditions. Eur. Food Res. Technol. 2022, 248, 2695–2705. [Google Scholar] [CrossRef]
- Eriksson, L.; Trygg, J.; Wold, S. CV-ANOVA for Significance Testing of PLS and OPLS® Models. J. Chemom. 2008, 22, 594–600. [Google Scholar] [CrossRef]
Metabolites | Code |
---|---|
Squalene molecular % | SQ |
Linolenate esters % | Ln |
Linoleates esters % | L |
Oleic esters % | O |
Palmitoleic esters % | PO |
cis-vaccenic esters % | V |
palmitate esters % | P |
sterarate esters | S |
Internal * Linolenate esters % | Ln2 |
Internal * Linoleates esters % | L2 |
Internal * Oleic esters % | O2 |
Internal * cis-vaccenic esters % | V2 |
Oleocanthal | TY-EDA |
Olaceine | HTY-EDA |
Ligstroside aglycone (all the derivates) | TY-EA |
Oleuropein aglycone (all the derivates) | HTY-EA |
Elenolide | ELNL |
total Phenolic species | TPH |
Members | Correct | 1 | 2 | No Class (YPred ≤ 0) | |
---|---|---|---|---|---|
1 | 6 | 100% | 6 | 0 | 0 |
2 | 13 | 100% | 0 | 13 | 0 |
No class | 0 | 0 | 0 | 0 | |
Total | 19 | 100% | 6 | 13 | 0 |
Fisher’s prob. | 3.7 × 10−5 |
Zone | Partanna (L1) | Campobello di Mazzara (L2) |
---|---|---|
Altitude | 350–400 | 70–120 |
T (average) | 15/16 °C | 18/19 °C |
Soil | Brown Soils, Lithosols, Vertosols | Red Regosoils, Regosoils on Clay Rocks |
Solar exposition | 1651 kW/year | 1655 kW/year |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotondo, A.; Bartolomeo, G.; Spanò, I.M.; La Torre, G.L.; Pellicane, G.; Molinu, M.G.; Culeddu, N. Comparison between Traditional and Novel NMR Methods for the Analysis of Sicilian Monovarietal Extra Virgin Olive Oils: Metabolic Profile Is Influenced by Micro-Pedoclimatic Zones. Molecules 2024, 29, 4532. https://doi.org/10.3390/molecules29194532
Rotondo A, Bartolomeo G, Spanò IM, La Torre GL, Pellicane G, Molinu MG, Culeddu N. Comparison between Traditional and Novel NMR Methods for the Analysis of Sicilian Monovarietal Extra Virgin Olive Oils: Metabolic Profile Is Influenced by Micro-Pedoclimatic Zones. Molecules. 2024; 29(19):4532. https://doi.org/10.3390/molecules29194532
Chicago/Turabian StyleRotondo, Archimede, Giovanni Bartolomeo, Irene Maria Spanò, Giovanna Loredana La Torre, Giuseppe Pellicane, Maria Giovanna Molinu, and Nicola Culeddu. 2024. "Comparison between Traditional and Novel NMR Methods for the Analysis of Sicilian Monovarietal Extra Virgin Olive Oils: Metabolic Profile Is Influenced by Micro-Pedoclimatic Zones" Molecules 29, no. 19: 4532. https://doi.org/10.3390/molecules29194532
APA StyleRotondo, A., Bartolomeo, G., Spanò, I. M., La Torre, G. L., Pellicane, G., Molinu, M. G., & Culeddu, N. (2024). Comparison between Traditional and Novel NMR Methods for the Analysis of Sicilian Monovarietal Extra Virgin Olive Oils: Metabolic Profile Is Influenced by Micro-Pedoclimatic Zones. Molecules, 29(19), 4532. https://doi.org/10.3390/molecules29194532