Hispidol Regulates Behavioral Responses to Ethanol through Modulation of BK Channels: A Novel Candidate for the Treatment of Alcohol Use Disorder
Abstract
:1. Introduction
2. Results
2.1. Hispidol Amplifies Acute Ethanol-Intoxicating Behaviors
2.2. Hispidol Ameliorates Ethanol-Withdrawal Behaviors
2.3. BK Channel Modulation Is Required for the Hispidol-Mediated Changes in Ethanol-Induced Behaviors
2.4. Hispidol Activates BK Channel via Clustering Regulation
2.5. Hispidol Improves Anxiety-Like Behaviors in Ethanol-Withdrawan Mice
3. Discussion
4. Materials and Methods
4.1. Preparation of Hispidol
4.2. C. elegans Methods
4.2.1. C. elegans Strains and Maintenance
4.2.2. RNA Interference
4.2.3. Behavioral Assays
4.2.4. Analysis of Internal Ethanol Concentration
4.2.5. Fluorescence Microscopy and Visualization
4.3. Mouse Methods
4.3.1. Subjects
4.3.2. Open Field Test
4.3.3. Elevated Plus Maze Test
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekonen, T.; Chan, G.C.; Connor, J.; Hall, W.; Hides, L.; Leung, J. Treatment Rates for Alcohol use Disorders: A Systematic Review and Meta-analysis. Addiction 2021, 116, 2617–2634. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.; Egli, M.; Cho, Y.; Song, B.; Noronha, A. Medications for Alcohol use Disorders: An Overview. Pharmacol. Ther. 2018, 185, 64–85. [Google Scholar] [CrossRef] [PubMed]
- Contreras, G.F.; Castillo, K.; Enrique, N.; Carrasquel-Ursulaez, W.; Castillo, J.P.; Milesi, V.; Neely, A.; Alvarez, O.; Ferreira, G.; Gonzalez, C.; et al. A BK (Slo1) Channel Journey from Molecule to Physiology. Channels 2013, 7, 442–458. [Google Scholar] [CrossRef] [PubMed]
- Bettinger, J.C.; Davies, A.G. The Role of the BK Channel in Ethanol Response Behaviors: Evidence from Model Organism and Human Studies. Front. Physiol. 2014, 5, 346. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.L.; Iyer, S.; Philpo, A.E.; Avalos, M.N.; Wu, N.S.; Shi, T.; Prakash, B.A.; Nguyen, T.; Mihic, S.J.; Aldrich, R.W. A Novel Peptide Restricts Ethanol Modulation of the BK Channel in Vitro and in Vivo. J. Pharmacol. Exp. Ther. 2018, 367, 282–290. [Google Scholar] [CrossRef]
- Martin, G.E.; Hendrickson, L.M.; Penta, K.L.; Friesen, R.M.; Pietrzykowski, A.Z.; Tapper, A.R.; Treistman, S.N. Identification of a BK Channel Auxiliary Protein Controlling Molecular and Behavioral Tolerance to Alcohol. Proc. Natl. Acad. Sci. USA 2008, 105, 17543–17548. [Google Scholar] [CrossRef]
- Kreifeldt, M.; Le, D.; Treistman, S.N.; Koob, G.F.; Contet, C. BK Channel Β1 and Β4 Auxiliary Subunits Exert Opposite Influences on Escalated Ethanol Drinking in Dependent Mice. Front. Integr. Neurosci. 2013, 7, 105. [Google Scholar] [CrossRef]
- Du, W.; Bautista, J.F.; Yang, H.; Diez-Sampedro, A.; You, S.; Wang, L.; Kotagal, P.; Lüders, H.O.; Shi, J.; Cui, J. Calcium-Sensitive Potassium Channelopathy in Human Epilepsy and Paroxysmal Movement Disorder. Nat. Genet. 2005, 37, 733–738. [Google Scholar] [CrossRef]
- Olleik, H.; Yahiaoui, S.; Roulier, B.; Courvoisier-Dezord, E.; Perrier, J.; Peres, B.; Hijazi, A.; Baydoun, E.; Raymond, J.; Boumendjel, A.; et al. Aurone Derivatives as Promising Antibacterial Agents Against Resistant Gram-Positive Pathogens. Eur. J. Med. Chem. 2019, 165, 133–141. [Google Scholar] [CrossRef]
- Kadayat, T.M.; Banskota, S.; Gurung, P.; Bist, G.; Thapa Magar, T.B.; Shrestha, A.; Kim, J.A.; Lee, E.S. Discovery and Structure-Activity Relationship Studies of 2-Benzylidene-2,3-Dihydro-1H-Inden-1-One and Benzofuran-3(2H)-One Derivatives as a Novel Class of Potential Therapeutics for Inflammatory Bowel Disease. Eur. J. Med. Chem. 2017, 137, 575–597. [Google Scholar] [CrossRef]
- Lim, H.J.; Han, Y.T.; Ahn, J.; Jeon, Y.; Jeon, H.; Cha, D.S. Longevity Effects of Hispidol in Caenorhabditis elegans. Biofactors 2020, 46, 1041–1048. [Google Scholar] [CrossRef]
- Oh, J.M.; Lee, H.S.; Baek, S.C.; Lee, J.P.; Jeong, G.S.; Paik, M.J.; Kim, H. Antidepressant-Like Activities of Hispidol and Decursin in Mice and Analysis of Neurotransmitter Monoamines. Neurochem. Res. 2020, 45, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Ding, W.; Song, X.; Wang, D.; Chen, M.; Wang, K.; Zhang, Y.; Yuan, P.; Ma, Y.; Wang, R.; et al. Synthesis of 6-Hydroxyaurone Analogues and Evaluation of their Alpha-Glucosidase Inhibitory and Glucose Consumption-Promoting Activity: Development of Highly Active 5,6-Disubstituted Derivatives. Bioorg. Med. Chem. Lett. 2017, 27, 3226–3230. [Google Scholar] [CrossRef] [PubMed]
- Haudecoeur, R.; Gouron, A.; Dubois, C.; Jamet, H.; Lightbody, M.; Hardre, R.; Milet, A.; Bergantino, E.; Bubacco, L.; Belle, C.; et al. Investigation of Binding-Site Homology between Mushroom and Bacterial Tyrosinases by using Aurones as Effectors. ChemBioChem 2014, 15, 1325–1333. [Google Scholar] [CrossRef]
- Baek, S.C.; Lee, H.W.; Ryu, H.W.; Kang, M.G.; Park, D.; Kim, S.H.; Cho, M.L.; Oh, S.R.; Kim, H. Selective Inhibition of Monoamine Oxidase A by Hispidol. Bioorg. Med. Chem. Lett. 2018, 28, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Engleman, E.A.; Katner, S.N.; Neal-Beliveau, B.S. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction. Prog. Mol. Biol. Transl. Sci. 2016, 137, 229–252. [Google Scholar]
- Davies, A.G.; Pierce-Shimomura, J.T.; Kim, H.; VanHoven, M.K.; Thiele, T.R.; Bonci, A.; Bargmann, C.I.; McIntire, S.L. A Central Role of the BK Potassium Channel in Behavioral Responses to Ethanol in C. elegans. Cell 2003, 115, 655–666. [Google Scholar] [CrossRef]
- Scott, L.L.; Davis, S.J.; Yen, R.C.; Ordemann, G.J.; Nordquist, S.K.; Bannai, D.; Pierce, J.T. Behavioral Deficits Following Withdrawal from Chronic Ethanol are Influenced by SLO Channel Function in Caenorhabditis elegans. Genetics 2017, 206, 1445–1458. [Google Scholar] [CrossRef]
- Davis, S.J.; Scott, L.L.; Hu, K.; Pierce-Shimomura, J.T. Conserved Single Residue in the BK Potassium Channel Required for Activation by Alcohol and Intoxication in C. elegans. J. Neurosci. 2014, 34, 9562–9573. [Google Scholar] [CrossRef]
- Oh, K.H.; Kim, H. BK Channel Clustering is Required for Normal Behavioral Alcohol Sensitivity in C. elegans. Sci. Rep. 2019, 9, 10224–10229. [Google Scholar] [CrossRef]
- Oh, K.H.; Abraham, L.S.; Gegg, C.; Silvestri, C.; Huang, Y.; Alkema, M.J.; Furst, J.; Raicu, D.; Kim, H. Presynaptic BK Channel Localization is Dependent on the Hierarchical Organization of Alpha-Catulin and Dystrobrevin and Fine-Tuned by CaV2 Calcium Channels. BMC Neurosci. 2015, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, H.; Liu, D.; Li, X.; He, L.; Pan, J.; Shen, Q.; Peng, Y. CB2R Activation Ameliorates Late Adolescent Chronic Alcohol Exposure-Induced Anxiety-Like Behaviors during Withdrawal by Preventing Morphological Changes and Suppressing NLRP3 Inflammasome Activation in Prefrontal Cortex Microglia in Mice. Brain Behav. Immun. 2023, 110, 60–79. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xue, Q.; Li, C.; Wang, Q.; Han, S.; Zhou, Y.; Yang, T.; Xie, Y.; Fu, H.; Lu, C.; et al. Upregulation of Beta4 Subunit of BK(Ca) Channels in the Anterior Cingulate Cortex Contributes to Mechanical Allodynia Associated Anxiety-Like Behaviors. Mol. Brain 2020, 13, 22–z. [Google Scholar] [CrossRef] [PubMed]
- Martire, M.; Barrese, V.; D’Amico, M.; Iannotti, F.A.; Pizzarelli, R.; Samengo, I.; Viggiano, D.; Ruth, P.; Cherubini, E.; Taglialatela, M. Pre-Synaptic BK Channels Selectively Control Glutamate Versus GABA Release from Cortical and Hippocampal Nerve Terminals. J. Neurochem. 2010, 115, 411–422. [Google Scholar] [CrossRef]
- Wang, Z.; Saifee, O.; Nonet, M.L.; Salkoff, L. SLO-1 Potassium Channels Control Quantal Content of Neurotransmitter Release at the C. elegans Neuromuscular Junction. Neuron 2001, 32, 867–881. [Google Scholar] [CrossRef]
- Ghezzi, A.; Krishnan, H.R.; Atkinson, N.S. Susceptibility to Ethanol Withdrawal Seizures is Produced by BK Channel Gene Expression. Addict. Biol. 2014, 19, 332–337. [Google Scholar] [CrossRef]
- N’Gouemo, P.; Morad, M. Alcohol Withdrawal is Associated with a Downregulation of Large-Conductance Ca2+-Activated K+ Channels in Rat Inferior Colliculus Neurons. Psychopharmacology 2014, 231, 2009–2018. [Google Scholar] [CrossRef]
- Koob, G.F. Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction as a Reward Deficit Disorder. In Behavioral Neurobiology of Alcohol Addiction. Current Topics in Behavioral Neurosciences; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–30. [Google Scholar]
- Dopico, A.M.; Bukiya, A.N.; Kuntamallappanavar, G.; Liu, J. Modulation of BK Channels by Ethanol. Int. Rev. Neurobiol. 2016, 128, 239–279. [Google Scholar]
- Crowder, C.M. Ethanol Targets: A BK Channel Cocktail in C. elegans. Trends Neurosci. 2004, 27, 579–582. [Google Scholar] [CrossRef]
- Dopico, A.M.; Widmer, H.; Wang, G.; Lemos, J.R.; Treistman, S.N. Rat Supraoptic Magnocellular Neurones show Distinct Large Conductance, Ca2+-Activated K+ Channel Subtypes in Cell Bodies Versus Nerve Endings. J. Physiol. 1999, 519, 101–114. [Google Scholar] [CrossRef]
- Haudecoeur, R.; Ahmed-Belkacem, A.; Yi, W.; Fortuné, A.; Brillet, R.; Belle, C.; Nicolle, E.; Pallier, C.; Pawlotsky, J.M.; Boumendjel, A. Discovery of naturally occurring Aurones that are potent allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. J. Med. Chem. 2011, 54, 5395–5402. [Google Scholar] [CrossRef] [PubMed]
- Kamath, R.S.; Ahringer, J. Genome-Wide RNAi Screening in Caenorhabditis elegans. Methods 2003, 30, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.H.; Kim, H. Aldicarb-Induced Paralysis Assay to Determine Defects in Synaptic Transmission in Caenorhabditis elegans. Bio-Protocol 2017, 7, e2400. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Goh, H.J.; Han, Y.T.; Lee, M.-H.; Cha, D.S. Hispidol Regulates Behavioral Responses to Ethanol through Modulation of BK Channels: A Novel Candidate for the Treatment of Alcohol Use Disorder. Molecules 2024, 29, 4531. https://doi.org/10.3390/molecules29194531
Yang W, Goh HJ, Han YT, Lee M-H, Cha DS. Hispidol Regulates Behavioral Responses to Ethanol through Modulation of BK Channels: A Novel Candidate for the Treatment of Alcohol Use Disorder. Molecules. 2024; 29(19):4531. https://doi.org/10.3390/molecules29194531
Chicago/Turabian StyleYang, Wooin, Hee Jae Goh, Young Taek Han, Myon-Hee Lee, and Dong Seok Cha. 2024. "Hispidol Regulates Behavioral Responses to Ethanol through Modulation of BK Channels: A Novel Candidate for the Treatment of Alcohol Use Disorder" Molecules 29, no. 19: 4531. https://doi.org/10.3390/molecules29194531
APA StyleYang, W., Goh, H. J., Han, Y. T., Lee, M. -H., & Cha, D. S. (2024). Hispidol Regulates Behavioral Responses to Ethanol through Modulation of BK Channels: A Novel Candidate for the Treatment of Alcohol Use Disorder. Molecules, 29(19), 4531. https://doi.org/10.3390/molecules29194531