S/N Co-Doped Ultrathin TiO2 Nanoplates as an Anode Material for Advanced Sodium-Ion Hybrid Capacitors
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of TiO2 Nanoplates
3.2. Synthesis of TiO2/PDA Nanoplates
3.3. Synthesis of SN-TiO2/C Nanoplates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; He, Y.; Wang, Q.; Gu, S.; Wang, L.; Yu, J.; Zhou, G.; Xu, L. SnSe2/NiSe2@N-doped carbon yolk-shell heterostructure construction and selenium vacancies engineering for ultrastable sodium-ion storage. Adv. Energy Mater. 2023, 13, 2302901. [Google Scholar] [CrossRef]
- Li, J.; He, Y.; Dai, Y.; Zhang, H.; Zhang, Y.; Gu, S.; Wang, X.; Gao, T.; Zhou, G.; Xu, L. Heterostructure interface construction of cobalt/molybdenum selenides toward ultra-stable sodium-ion half/full batteries. Adv. Funct. Mater. 2024, 2406915. [Google Scholar] [CrossRef]
- Yuan, J.; Qiu, M.; Hu, X.; Liu, Y.; Zhong, G.; Zhan, H.; Wen, Z. Pseudocapacitive vanadium nitride quantum dots modified one-dimensional carbon cages enable highly kinetics-compatible sodium ion capacitors. ACS Nano 2022, 16, 14807–14818. [Google Scholar] [CrossRef]
- Cai, J.; Wang, L.; Tao, S.; Liu, Y.; Cao, Z.; Song, Z.; Xiao, X.; Zhu, Y.; Deng, W.; Hou, H.; et al. Electrochemistry enabled heterostructure with high tap density for ultrahigh power Na-ion capacitors. Adv. Energy Mater. 2023, 13, 2302426. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, H.; Zhang, K.; Kong, Y.; Zhang, S.; Wang, H.; Yuan, G.; Su, D.; Zhou, J.; Wang, X.; et al. Strain engineering of Bi2S3 microspheres via organic intercalation enabled high performance sodium storage. Chem. Eng. J. 2024, 492, 152274. [Google Scholar] [CrossRef]
- He, Y.; Liu, D.; Jiao, J.; Liu, Y.; He, S.; Zhang, Y.; Cheng, Q.; Fang, Y.; Mo, X.; Pan, H.; et al. Pyridinic N-dominated hard carbon with accessible carbonyl groups enabling 98% initial coulombic efficiency for sodium-ion batteries. Adv. Funct. Mater. 2024, 2403144. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Ma, X.; Cao, T.; Xu, J.; Feng, H.; Diao, R.; Qi, F.; Huang, H.; Ma, P. Efficient preparation of biomass-based ultra-thin 2D porous carbon materials by in situ template-activation and its application in sodium ion capacitors. Adv. Funct. Mater. 2024, 34, 2310717. [Google Scholar] [CrossRef]
- Li, C.; Song, Z.; Liu, M.; Lepre, E.; Antonietti, M.; Zhu, J.; Liu, J.; Fu, Y.; López-Salas, N. Template-induced graphitic nanodomains in nitrogen-doped carbons enable high-performance sodium-ion capacitors. Energy Storage Mater. 2024, 7, e12695. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, R.; Dong, J.; Yu, R.; Tan, S.; Xiong, F.; Wei, Q.; Wang, J.; Cui, L.; Tian, H.; et al. Uncovering the origin of surface-redox pseudocapacitance of molybdenum phosphides enables high-performance flexible sodium-ion capacitors. Chem. Eng. J. 2023, 475, 145962. [Google Scholar] [CrossRef]
- Cai, J.; Zhou, Y.; Tao, S.; Liu, Y.; Deng, W.; Hou, H.; Zou, G.; Ji, X. Nanocrystalline heterostructure with low voltage hysteresis for ultrahigh-power sodium-ion capacitors. Energy Storage Mater. 2024, 71, 103582. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Chen, J.; Gao, L.; Guo, P.; Wei, C.; Fu, J.; Xu, Q. Sulfur-bridged bonds enabled structure modulation and space confinement of MnS for superior sodium-ion capacitors. J. Colloid Interf. Sci. 2024, 664, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhao, D.; Du, B.; Yin, Q.; Li, Y.; Xue, X.; Wei, F.; Qi, J.; Sui, Y. Defect-induced electron rich nanodomains in CoSe0.5S1.5/GA realize fast ion migration kinetics as sodium-ion capacitor anode. J. Energy Chem. 2023, 87, 583–593. [Google Scholar] [CrossRef]
- Li, Z.; Wu, R.; Zhu, Z.; Zhu, Y.; Wang, Y.; Xu, S.; Kong, Q.; Chen, J.S. Improving the electronegativity of N-doped carbon by encapsulating CoFe alloy clusters with a chainmail-like structure for high-energy sodium-ion capacitors. J. Mater. Chem. A 2024, 12, 20999–21007. [Google Scholar] [CrossRef]
- Han, M.; Zou, Z.; Liu, J.; Deng, C.; Chu, Y.; Mu, Y.; Zheng, K.; Yu, F.; Wei, L.; Zeng, L.; et al. Pressure-induced defects and reduced size endow TiO2 with high capacity over 20 000 cycles and excellent fast-charging performance in sodium ion batteries. Small 2024, 20, 2312119. [Google Scholar] [CrossRef]
- Wei, Q.; Chang, X.; Butts, D.; DeBlock, R.; Lan, K.; Li, J.; Chao, D.; Peng, D.L.; Dunn, B. Surface-redox sodium-ion storage in anatase titanium oxide. Nat. Commun. 2023, 14, 7. [Google Scholar] [CrossRef]
- Li, T.; Kong, L.Y.; Bai, X.; Wang, Y.X.; Qi, Y.X. Promoting amorphization of commercial TiO2 upon sodiation to boost the sodium storage performance. J. Energy Chem. 2023, 81, 379–388. [Google Scholar] [CrossRef]
- Kang, M.; Ruan, Y.; Lu, Y.; Luo, L.; Huang, J.; Zhang, J.M.; Hong, Z. An interlayer defect promoting the doping of the phosphate group into TiO2(B) nanowires with unusual structure properties towards ultra-fast and ultra-stable sodium storage. J. Mater. Chem. A 2019, 7, 16937–16946. [Google Scholar] [CrossRef]
- Fu, L.; Wang, Q.; He, H.; Tang, Y.; Wang, H.; Xie, H. Dual carbon coating engineering endows hollow structured TiO2 with superior sodium storage performance. J. Power Sources 2021, 489, 229516. [Google Scholar] [CrossRef]
- Diao, Z.; Wang, Y.; Zhao, D.; Zhang, X.; Mao, S.S.; Shen, S. Ultra-small TiO2 nanoparticles embedded in carbon nanosheets for high-performance sodium storage. Chem. Eng. J. 2021, 417, 127928. [Google Scholar] [CrossRef]
- Li, B.; Anwer, S.; Huang, X.; Luo, S.; Fu, J.; Liao, K. Nitrogen-doped carbon encapsulated in mesoporous TiO2 nanotubes for fast capacitive sodium storage. J. Energy Chem. 2021, 55, 202–210. [Google Scholar] [CrossRef]
- Lin, D.; Wang, M.; Weng, Q.; Qin, X.; An, L.; Chen, G.; Liu, Q. Three dimensional titanium dioxide nanotube arrays induced nanoporous structures and stable solid electrolyte interphase layer for excellent sodium storage in ether-based electrolyte. J. Power Sources 2023, 587, 233696. [Google Scholar] [CrossRef]
- Chen, J.; Fu, Y.; Sun, F.; Hu, Z.; Wang, X.; Zhang, T.; Zhang, F.; Wu, X.; Chen, H.; Cheng, G.; et al. Oxygen vacancies and phase tuning of self-supported black TiO2-X nanotube arrays for enhanced sodium storage. Chem. Eng. J. 2020, 400, 125784. [Google Scholar] [CrossRef]
- Yang, J.; Huang, M.; Xu, L.; Xia, X.; Peng, C. Self-assembled titanium-deficient undoped anatase TiO2 nanoflowers for ultralong-life and high-rate Li+/Na+ storage. Chem. Eng. J. 2022, 445, 136638. [Google Scholar] [CrossRef]
- Luo, B.; Wang, W.; Wang, Q.; Ji, W.; Yu, G.; Liu, Z.; Zhao, Z.; Wang, X.; Wang, S.; Zhang, J. Facilitating ionic conductivity and interfacial stability via oxygen vacancies-enriched TiO2 microrods for composite polymer electrolytes. Chem. Eng. J. 2023, 460, 141329. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Wang, X.; Lin, C.; Zhao, X.S. Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2002629. [Google Scholar] [CrossRef]
- Wang, C.; Yao, Q.; Wang, M.; Zheng, C.; Wang, N.; Bai, Z.; Yang, J.; Dou, S.; Liu, H. Highly conductive hierarchical TiO2 micro-sheet enables thick electrodes in sodium storage. Adv. Funct. Mater. 2023, 34, 2301996. [Google Scholar] [CrossRef]
- Guan, S.; Fan, Q.; Shen, Z.; Zhao, Y.; Sun, Y.; Shi, Z. Heterojunction TiO2@TiOF2 nanosheets as superior anode materials for sodium-ion batteries. J. Mater. Chem. A 2021, 9, 5720–5729. [Google Scholar] [CrossRef]
- He, T.; An, Q.; Zhang, M.; Kang, N.; Kong, D.; Song, H.; Wu, S.; Wang, Y.; Hu, J.; Zhang, D.; et al. Multiscale interface engineering of sulfur-doped TiO2 anode for ultrafast and robust sodium storage. ACS Nano 2024, 18, 5672–5683. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, K.; Liang, P.; Rao, Y.; Li, X.; Zheng, H.; Yan, K.; Wang, J.; Liu, J. Metal-organic framework derived S-doped anatase TiO2@C to store Na+ with high-rate and long-cycle life. J. Alloy. Compd. 2023, 969, 172395. [Google Scholar] [CrossRef]
- Cai, Q.; Li, X.; Hu, E.; Wang, Z.; Lv, P.; Zheng, J.; Yu, K.; Wei, W.; Ostrikov, K. Overcoming ion transport barrier by plasma heterointerface engineering: Epitaxial titanium carbonitride on nitrogen-doped TiO2 for high-performance sodium-ion batteries. Small 2022, 18, 2200694. [Google Scholar] [CrossRef]
- Chen, D.; Wu, Y.; Huang, Z.; Chen, J. A novel hybrid point defect of oxygen vacancy and phosphorus doping in TiO2 anode for high-performance sodium ion capacitor. Nano-Micro Lett. 2022, 14, 156. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Wang, H.; Ji, X.; Wang, D.; Zhang, Q.; Meng, L.; Shi, J.W.; Han, X.; Cheng, Y. Introducing hybrid defects of silicon doping and oxygen vacancies into MOF-derived TiO2–X@carbon nanotablets toward high-performance sodium-ion storage. Small 2023, 19, 2302831. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Meng, C.; Guo, X.; Wu, B.; Sui, X.; Wang, Z. Defect-driven reconstruction of Na-ion diffusion channels enabling high-performance Co-doped TiO2 anodes for Na-ion hybrid capacitors. Adv. Energy Mater. 2024, 14, 2400558. [Google Scholar] [CrossRef]
- Fan, M.; Lin, Z.; Zhang, P.; Ma, X.; Wu, K.; Liu, M.; Xiong, X. Synergistic effect of nitrogen and sulfur dual-doping endows TiO2 with exceptional sodium storage performance. Adv. Energy Mater. 2020, 11, 2003037. [Google Scholar] [CrossRef]
- Wang, Q.; He, H.; Luan, J.; Tang, Y.; Huang, D.; Peng, Z.; Wang, H. Synergistic effect of N-doping and rich oxygen vacancies induced by nitrogen plasma endows TiO2 superior sodium storage performance. Electrochim. Acta 2019, 309, 242–252. [Google Scholar] [CrossRef]
- Qu, Y.; Zhu, S.; Dong, X.; Huang, H.; Qi, M. Nitrogen-doped TiO2 nanotube anode enabling improvement of electronic conductivity for fast and long-term sodium storage. J. Alloy. Compd. 2021, 889, 161612. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, X.; He, S.; Lu, Y.; Shen, X.; Tang, S. In situ construction of (NiCo)3Se4 nanobeads embedded in n-doped carbon 3D interconnected networks for enhanced sodium storage. Inorg. Chem. 2024, 63, 15081–15089. [Google Scholar] [CrossRef]
- He, H.; He, J.; Yu, H.; Zeng, L.; Luo, D.; Zhang, C. Dual-interfering chemistry for soft-hard carbon translation toward fast and durable sodium storage. Adv. Energy Mater. 2023, 13, 2300357. [Google Scholar] [CrossRef]
- Du, Y.; Fan, H.; Bai, L.; Song, J.; Jin, Y.; Liu, S.; Li, M.; Xie, X.; Liu, W. Molten salt-assisted construction of hollow carbon spheres with outer-order and inner-disorder heterostructure for ultra-stable potassium ion storage. ACS Appl. Mater. Interfaces 2023, 15, 4081–4091. [Google Scholar] [CrossRef]
- Zhao, H.; Zhong, J.; Qi, Y.; Liang, K.; Li, J.; Huang, X.; Chen, W.; Ren, Y. 90 C fast-charge Na-ion batteries for pseudocapacitive faceted TiO2 anodes based on robust interface chemistry. Chem. Eng. J. 2023, 465, 143032. [Google Scholar] [CrossRef]
- Li, J.; Hu, G.; Yu, R.; Liao, X.; Zhao, K.; Li, T.; Zhu, J.; Chen, Q.; Su, D.; Ren, Y.; et al. Revolutionizing lithium storage capabilities in TiO2 by expanding the redox range. ACS Nano 2023, 17, 21604–21613. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Gao, S.; Bai, T.; Li, H.; Zhang, X.; Mu, Y.; Guo, W.; Cui, Z.; Wang, N.; Zhao, Y. Heterogeneous MoS2 nanosheets on porous TiO2 nanofibers toward fast and reversible sodium-ion storage. Small 2024, 2402774. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Jiang, Y.; Zhang, M.; Min, H.; Yang, H.; Wang, J. A 3D crinkled MXene/TiO2 heterostructure with interfacial coupling for ultra-fast and reversible potassium storage. J. Mater. Chem. A 2024, 12, 7598–7604. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, Z.; Wang, L.; Huang, Y.; Huang, H.; Xia, Y.; Zeng, S.; Xu, R.; Yang, Y.; He, S.; et al. Oxygen defect engineering toward zero-strain V2O2.8@porous reticular carbon for ultrastable potassium storage. ACS Nano 2023, 17, 16478–16490. [Google Scholar] [CrossRef]
- Pan, Z.; Qian, Y.; Li, Y.; Xie, X.; Lin, N.; Qian, Y. Novel bilayer-shelled N, O-doped hollow porous carbon microspheres as high performance anode for potassium-ion hybrid capacitors. Nano-Micro Lett. 2023, 15, 151. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Xiong, Y.; Liu, Y.; Wei, X.; Wei, F.; Wang, M.; Cao, Y.; Tao, G.; Zhang, Q.; Wan, Q.; et al. Regulation of the surface activity of carbon anodes for rationalization of potassium storage. Chem. Commun. 2023, 59, 10173–10176. [Google Scholar] [CrossRef]
- Pei, Y.R.; Zhou, H.Y.; Zhao, M.; Li, J.C.; Ge, X.; Zhang, W.; Yang, C.C.; Jiang, Q. High-efficiency sodium storage of Co0.85Se/WSe2 encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering. Carbon Energy 2023, 6, 374. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, B.; Lu, Z.; Hu, J.; Xie, J.; Hao, A.; Cao, Y. Sulfur-bridged bonds heightened Na-storage properties in MnS nanocubes encapsulated by S-doped carbon matrix synthesized via solvent-free tactics for high-performance hybrid sodium ion capacitors. Small 2023, 19, e2207214. [Google Scholar] [CrossRef]
- Mao, Z.F.; Shi, X.J.; Zhang, T.Q.; Liang, P.J.; Wang, R.; Jin, J.; He, B.B.; Gong, Y.S.; Wang, Q.; Tong, X.L.; et al. Mechanically flexible V3S4@carbon composite fiber as a high-capacity and fast-charging anode for sodium-ion capacitors. Rare Met. 2023, 42, 2633–2642. [Google Scholar] [CrossRef]
- Chen, C.; Li, N.W.; Zhang, X.Y.; Zhang, C.H.; Qiu, J.; Yu, L. Interlayer-expanded titanate hierarchical hollow spheres embedded in carbon nanofibers for enhanced Na storage. Small 2022, 18, 2107890. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, B.; Wang, S.; Yuan, C.; Lu, Z.; Hu, J.; Xie, J.; Cao, Y. 2D heterostructural Mn2O3 quantum dots embedded N-doped carbon nanosheets with strongly stable interface enabling high-performance sodium-ion hybrid capacitors. J. Colloid Interf. Sci. 2024, 656, 545–555. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lan, Q.; Gao, Y.; Zhang, D.; Liu, G.; Cheng, J. S/N Co-Doped Ultrathin TiO2 Nanoplates as an Anode Material for Advanced Sodium-Ion Hybrid Capacitors. Molecules 2024, 29, 4507. https://doi.org/10.3390/molecules29184507
Li Y, Lan Q, Gao Y, Zhang D, Liu G, Cheng J. S/N Co-Doped Ultrathin TiO2 Nanoplates as an Anode Material for Advanced Sodium-Ion Hybrid Capacitors. Molecules. 2024; 29(18):4507. https://doi.org/10.3390/molecules29184507
Chicago/Turabian StyleLi, Yuzhu, Qing Lan, Yuanfei Gao, Dan Zhang, Guangyin Liu, and Jinbing Cheng. 2024. "S/N Co-Doped Ultrathin TiO2 Nanoplates as an Anode Material for Advanced Sodium-Ion Hybrid Capacitors" Molecules 29, no. 18: 4507. https://doi.org/10.3390/molecules29184507
APA StyleLi, Y., Lan, Q., Gao, Y., Zhang, D., Liu, G., & Cheng, J. (2024). S/N Co-Doped Ultrathin TiO2 Nanoplates as an Anode Material for Advanced Sodium-Ion Hybrid Capacitors. Molecules, 29(18), 4507. https://doi.org/10.3390/molecules29184507