Recent Progress on Low-Temperature Selective Catalytic Reduction of NOx with Ammonia
Abstract
:1. Introduction
2. Low-Temperature NH3-SCR Catalysts
2.1. Cu-Based Catalysts
2.2. Fe-Based Catalysts
2.3. Mn-Based Catalysts
2.4. Ce-Based Catalysts
2.5. Other Catalysts
3. Strategies to Improve the Low-Temperature NH3-SCR Activity
4. Strategies to Improve the H2O/SO2 Tolerance at Low Temperatures
- (1)
- Reducing the adsorption of SO2 and its subsequent oxidation. Inhibiting the adsorption and oxidation of SO2 can significantly reduce the deposition of sulfates. Increasing the acidity of the catalyst can reduce SO2 adsorption to some extent. However, on the other hand, more NH3 can also be adsorbed on the surface acidic sites, promoting the formation of ammonium sulfate. Therefore, it is important to fine-tune the surface acidity to reduce the adsorption of SO2 and NH3 simultaneously. The introduction of SiO2, Al2O3, and TiO2 to the low-temperature NH3-SCR catalysts might be effective for this purpose. Inactive metal sulfates and ammonium sulfates (i.e., AS and ABS) are derived from the reaction of SO3 with metal oxides and NH3, respectively, so it is necessary to inhibit the oxidation of SO2 to SO3 by decreasing the oxidation ability of active sites via adding electron-donating promoters [282,310]. Since NO2, which can form under ‘Fast NH3-SCR’ conditions at low temperatures, can promote the oxidation of SO2 to SO3, designing a catalyst that can follow the ‘Fast NH3-SCR’ while inhibiting the oxidation of SO2 to SO3 is challenging but necessary to achieve high low-temperature NH3-SCR activity as well as SO2 tolerance (Figure 8).
- (2)
- Improving the adsorption of NH3 and NO to form active intermediates in the presence of surface sulfate species. When the active sites begin to be sulfated by SOx, the redox capacity of the active sites is reduced, and this leads to a decrease in NH3-SCR activity, especially at low temperatures. Active NOx species are adsorbed competitively with SOx, but the adsorption of NH4+ species is generally enhanced by new Brønsted acid sites derived from the deposited sulfate. Therefore, improving the adsorption of active nitrite/nitrate and gaseous NO2 species in the presence of sulfate species is important to achieve SO2 durability in NH3-SCR reactions that follow the L–H mechanism. Compared with un-doped catalysts, more NH4+, nitrates, and NO2 were formed on Eu-modified Mn/TiO2 [278] and Zr-modified Fe–Mn/TiO2 [187] catalysts following the L–H mechanism, leading to improved SO2 tolerance. If the catalyst follows the E–R mechanism, where the active NH3 and NH4+ species react directly with gaseous NO, this can lead to high SO2 tolerance as NO does not need to be competitively adsorbed onto the catalyst surface as nitrate or nitrite. However, the E–R mechanism is not prevalent at low temperatures.
- (3)
- Building sacrificial sites to protect active sites. A rather simple strategy in which H-Y zeolite was physically mixed with V2O5/TiO2 to trap ABS was reported to be effective to protect vanadium active sites, maintaining stable performance in the presence of 10% H2O and 30 ppm SO2 at a low temperature of 220 °C [416]. Ceria is well known to interact with SO2 to form CeSO4 or Ce2(SO4)3, which can be used as a sacrificial site to protect the main active phase from sulfation, thereby improving the SO2 tolerance of the catalyst [417]. Cr [173] and Nb [188] were also reported to react with SO2 preferentially to prevent the sulfuration of active metal oxides (Figure 8). Designing a core–shell structure with outer sacrificial sites for SOx adsorption and ammonium sulfate deposition and inner active sites for NH3-SCR can effectively protect active sites from sulfate deposition [17,22,23,216,418,419].
- (4)
- Promoting the decomposition of sulfates. Ammonium sulfate and metal sulfate are two common sulfates observed during NH3-SCR in the presence of SO2. The former can be deposited on the catalyst and block surface active sites, but can be removed by water washing and heat treatment. However, the thermally stable metal sulfates formed through sulfation of active sites irreversibly deactivate the catalysts. Compared with metal sulfates, ammonium sulfates (AS and ABS) can decompose at lower temperatures. Therefore, reducing the decomposition temperature of ammonium sulfates can improve the SO2 tolerance at lower temperatures. It was found that ABS decomposed more easily on SBA-15 with larger pores [330]. Therefore, it can be said that the decomposition of ammonia sulfate can be facilitated via constructing some mesoporous structure. Since metal sulfates are very difficult to decompose at low temperatures, it is desirable to interfere with their formation by adding suitable electrophilic or nucleophilic additives that can interact strongly with SO42– and metal cations [12]. Chen et al. [420] proposed to place a single Mo atom on TiO2 to form a Mo-Ti acid-base double site on Mo and Ti that can adsorb NH4+ and HSO4− from ABS, respectively. When NH4+ is oxidized by surface lattice oxygen on the Mo site, the electrons left on the dual site will transfer to the adsorbed HSO4− on the Ti site, releasing SO2 at low temperatures. Fe doping [310] and Sb addition [195] were also reported to promote the decomposition of ammonium sulfate and inhibit the formation of MnSO4.
- (5)
- Searching for SO2-resistant compounds. Some metal sulfates, including CuSO4 and FeSO4, are known to have improved SO2 tolerance, but due to their poor redox properties, they can exhibit NH3-SCR activity only at moderate and/or high temperatures. Therefore, it is necessary to improve the redox properties of the catalyst to enhance its low-temperature activity. Nevertheless, the removal of deposited ammonia sulfate is not easy at low temperatures, and the resulting catalyst deactivation is inevitable. Therefore, future research should focus on preventing the deposition of ammonia sulfate at low temperatures or promoting its decomposition even if it is deposited while enhancing its redox ability.
- (1)
- The active site must be composed of a multi-component metal oxide with moderate oxidation capacity not to oxidize SO2 to SO3, but still retain the oxidation capacity to oxidize NO to NO2 and follow the ‘Fast NH3-SCR’ pathway. Different catalyst compositions can be screened by DFT calculations that allow for the comparison of competing oxidation reactions, including SO2 oxidation and NO oxidation, on the proposed catalyst surface [421,422,423]. The other type of active site is the promoted metal sulfate, which has both a high oxidation capacity to activate adsorbed NO species to follow the L–H reaction mechanism and the ability to decompose ammonium sulfate at low temperatures.
- (2)
- The active site mentioned above should be protected from the adsorption of SOx and/or the ammonium sulfate produced by introducing some kind of sacrificial and/or protective component on or near the surface of the active site. The surface acidity, pore structure, and surface composition of the protective layer must be fine-tuned to take into account the adsorption property of SOx and the decomposition of ammonium sulfate.
5. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asghar, U.; Rafiq, S.; Anwar, A.; Iqbal, T.; Ahmed, A.; Jamil, F.; Khurram, M.S.; Albar, M.M.; Farooq, A.; Shah, N.S.; et al. Review on the progress in emission control technologies for the abatement of CO2, SOx and NOx from fuel combustion. J. Environ. Chem. Eng. 2021, 9, 106064. [Google Scholar] [CrossRef]
- Zhu, X.; Du, J.; Yu, Z.; Cheng, Y.B.; Wang, Y. NOx Emission and control in ammonia combustion: State-of-the-art review and future perspectives. Energy Fuels 2023, 38, 43–60. [Google Scholar] [CrossRef]
- Yao, N.; Pan, W.; Zhang, J.; Wei, L. The advancement on carbon-free ammonia fuels for gas turbine: A review. Energy Convers Manag. 2024, 315, 118745. [Google Scholar] [CrossRef]
- Park, Y.K.; Kim, B.S. Catalytic removal of nitrogen oxides (NO, NO2, N2O) from ammonia-fueled combustion exhaust: A review of applicable technologies. Chem. Eng. J. 2023, 461, 141958. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Chen, W. Denitrification technology and the catalysts: A review and recent advances. ChemCatChem 2024, 16, e202301662. [Google Scholar] [CrossRef]
- Elkaee, S.; Phule, A.D.; Yang, J.H. Advancements in selective catalytic reduction (SCR) technologies for NOx reduction: A comprehensive review of reducing agents. Process Saf. Environ. Prot. 2024, 184, 854–880. [Google Scholar] [CrossRef]
- Lai, J.K.; Wachs, I.E. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts. ACS Catal. 2018, 8, 6537–6551. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Niu, X.; Zhu, Y. Vanadium-based catalysts for selective catalytic reduction of NOx with ammonia: Synthesis, poisoning mechanism, regeneration methods and research prospects. Fuel 2024, 365, 131184. [Google Scholar] [CrossRef]
- Ye, B.; Jeong, B.; Lee, M.J.; Kim, T.H.; Park, S.S.; Jung, J.; Lee, S.; Kim, H.D. Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: Stationary sources. Nano Converg. 2022, 9, 51. [Google Scholar] [CrossRef]
- Schreifels, J.J.; Wang, S.; Hao, J. Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers. Front. Energy 2012, 6, 98–105. [Google Scholar] [CrossRef]
- Lin, D.; Zhang, L.; Liu, Z.; Wang, B.; Han, Y. Progress of selective catalytic reduction denitrification catalysts at wide temperature in carbon neutralization. Front. Chem. 2022, 10, 946133. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Cai, S.; Gao, M.; Hasegawa, J.Y.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev. 2019, 119, 10916–10976. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zou, R.; Wang, X. Toward an atomic-level understanding of the catalytic mechanism of selective catalytic reduction of NOx with NH3. ACS Catal. 2022, 12, 14347–14375. [Google Scholar] [CrossRef]
- Chen, J.; Guan, B.; Liu, Z.; Wu, X.; Guo, J.; Zheng, C.; Zhou, J.; Su, T.; Han, P.; Yang, C.; et al. Review on advances in structure–activity relationship, reaction & deactivation mechanism and rational improving design of selective catalytic reduction deNOx catalysts: Challenges and opportunities. Fuel 2023, 343, 127924. [Google Scholar] [CrossRef]
- Shi, Z.; Peng, Q.; Jiaqiang, E.; Xie, B.; Wei, J.; Yin, R.; Fu, G. Mechanism, performance and modification methods for NH3-SCR catalysts: A review. Fuel 2023, 331, 125885. [Google Scholar] [CrossRef]
- Raja, S.A.M.S.; Alphin, M.S.; Sivachandiran, L. Promotional effects of modified TiO2-and carbon-supported V2O5-and MnOx-based catalysts for the selective catalytic reduction of NOx: A review. Catal. Sci. Technol. 2020, 10, 7795–7813. [Google Scholar] [CrossRef]
- Zhang, M.; Guan, Z.; Qiao, Y.; Zhou, S.; Chen, G.; Guo, R.; Pan, W.; Wu, J.; Li, F.; Ren, J. The impact of catalyst structure and morphology on the catalytic performance in NH3-SCR reaction: A review. Fuel 2024, 361, 130541. [Google Scholar] [CrossRef]
- Damma, D.; Ettireddy, P.R.; Reddy, B.M.; Smirniotis, P.G. A review of low temperature NH3-SCR for removal of NOx. Catalysts 2019, 9, 349. [Google Scholar] [CrossRef]
- Wang, H.; Huang, B.; Yu, C.; Lu, M.; Huang, H.; Zhou, Y. Research progress, challenges and perspectives on the sulfur and water resistance of catalysts for low temperature selective catalytic reduction of NOx by NH3. Appl. Catal. A Gen. 2019, 588, 117207. [Google Scholar] [CrossRef]
- Zhu, H.; Song, L.; Li, K.; Wu, R.; Qiu, W.; He, H. Low-temperature SCR catalyst development and industrial applications in China. Catalysts 2022, 12, 341. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Zhang, Z.; Liu, Q. The latest research progress of NH3-SCR in the SO2 resistance of the catalyst in low temperatures for selective catalytic reduction of NOx. Catalysts 2020, 10, 1034. [Google Scholar] [CrossRef]
- Wu, T.; Guo, R.T.; Li, C.F.; You, Y.H.; Pan, W.G. Recent advances in core-shell structured catalysts for low-temperature NH3-SCR of NOx. Chemosphere 2023, 333, 138942. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Schill, L.; Fehrmann, R.; Riisager, A. Recent developments of core–shell structured catalysts for the selective catalytic reduction of NOx with ammonia. Inorg. Chem. Front. 2023, 10, 727–755. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, H.; Li, Y.; Wang, P.; Zhan, S. Selective catalytic reduction of NOx with NH3 over copper-based catalysts: Recent advances and future prospects. EES Catal. 2024, 2, 231–252. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, N.; Huang, Z.; Zhao, G.; Chu, F.; Yang, R.; Tang, X.; Wang, G.; Gao, F.; Huang, X. Recent advances in low-temperature NH3-SCR of NOx over Ce-based catalysts: Performance optimizations, reaction mechanisms and anti-poisoning countermeasures. Chem. Eng. J. 2023, 476, 146889. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, R.T.; Zhang, X.F.; Liu, Y.Z.; Duan, C.P.; Wu, G.L.; Pan, W.G. Cerium oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review. Energy Fuels 2021, 35, 2981–2998. [Google Scholar] [CrossRef]
- Yao, X.J.; Gong, Y.T.; Li, H.L.; Yang, F.M. Research progress of ceria-based catalysts in the selective catalytic reduction of NOx by NH3. Acta Phys. -Chim. Sin. 2015, 31, 817–828. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zou, X.; Tang, T.; Zhang, Q.; Guo, F.; Liu, H. Recent advances and perspectives in the resistance of SO2 and H2O of cerium-based catalysts for NOx selective catalytic reduction with ammonia. New J. Chem. 2022, 46, 2053–2067. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Tian, J.; Zhong, Y.; Zou, Z.; Dong, R.; Gao, S.; Xu, W.; Tan, D. The effects of Mn-based catalysts on the selective catalytic reduction of NOx with NH3 at low temperature: A review. Fuel Process. Technol. 2022, 230, 107213. [Google Scholar] [CrossRef]
- Xu, G.; Guo, X.; Cheng, X.; Yu, J.; Fang, B. A review of Mn-based catalysts for low-temperature NH3-SCR: NO x removal and H2O/SO2 resistance. Nanoscale 2021, 13, 7052–7080. [Google Scholar] [CrossRef]
- Wei, L.G.; Guo, R.T.; Zhou, J.; Qin, B.; Chen, X.; Bi, Z.X.; Pan, W.G. Chemical deactivation and resistance of Mn-based SCR catalysts for NOx removal from stationary sources. Fuel 2022, 316, 123438. [Google Scholar] [CrossRef]
- Ogugua, P.C.; Wang, E.; Jinyang, Z.; Wang, Q.; Su, H. Advancements in low-temperature NH3-SCR of NOx using Ba-based catalysts: A critical review of preparation, mechanisms, and challenges. Environ. Sci. Pollut. Res. 2023, 30, 84972–84998. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, M.; Ren, S.; Li, X.; Chen, Z.; Wang, M.; Chen, T.; Yang, J. Recent advance for NOx removal with carbonaceous material for low-temperature NH3-SCR reaction. Catal. Today 2023, 418, 114053. [Google Scholar] [CrossRef]
- Huang, G.; Yang, J.; Lv, C.; Li, D.; Fang, D. Research progress of NH3-SCR over carbon-based catalysts for NOx removal. J. Environ. Chem. Eng. 2023, 11, 110966. [Google Scholar] [CrossRef]
- Guo, K.; Ji, J.; Song, W.; Sun, J.; Tang, C.; Dong, L. Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review. Appl. Catal. B 2021, 297, 120388. [Google Scholar] [CrossRef]
- Arnarson, L.; Falsig, H.; Rasmussen, S.B.; Lauritsen, J.V.; Moses, P.G. A complete reaction mechanism for standard and fast selective catalytic reduction of nitrogen oxides on low coverage VOx/TiO2 (0 0 1) catalysts. J. Catal. 2017, 346, 188–197. [Google Scholar] [CrossRef]
- Topsoe, N.Y.; Dumesic, J.A.; Topsoe, H. Vanadia-titania catalysts for selective catalytic reduction of nitric-oxide by ammonia: II Studies of active sites and formulation of catalytic cycles. J. Catal. 1995, 151, 241–252. [Google Scholar] [CrossRef]
- He, G.; Lian, Z.; Yu, Y.; Yang, Y.; Liu, K.; Shi, X.; Yan, Z.; Shan, W.; He, H. Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NOx with NH3. Sci. Adv. 2018, 4, eaau4637. [Google Scholar] [CrossRef]
- Chen, X.; Yu, S.; Liu, W.; Zhang, S.; Liu, S.; Feng, Y.; Zhang, X. Recent advance on cobalt-based oxide catalyst for the catalytic removal of volatile organic compounds: A review. Resour. Chem. Mater. 2022, 1, 27–46. [Google Scholar] [CrossRef]
- Jo, D.; Ryu, T.; Park, G.T.; Kim, P.S.; Kim, C.H.; Nam, I.S.; Hong, S.B. Synthesis of high-silica LTA and UFI zeolites and NH3–SCR performance of their copper-exchanged form. ACS Catal. 2016, 6, 2443–2447. [Google Scholar] [CrossRef]
- Ryu, T.; Kim, H.; Hong, S.B. Nature of active sites in Cu-LTA NH3-SCR catalysts: A comparative study with Cu-SSZ-13. Appl. Catal. B 2019, 245, 513–521. [Google Scholar] [CrossRef]
- Tarach, K.A.; Jabłońska, M.; Pyra, K.; Liebau, M.; Reiprich, B.; Gläser, R.; Góra-Marek, K. Effect of zeolite topology on NH3-SCR activity and stability of Cu-exchanged zeolites. Appl. Catal. B 2021, 284, 119752. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, J.; Liu, J.; Wang, D.; Zhao, Z.; Cheng, K.; Li, J. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH3. Appl. Surf. Sci. 2016, 375, 186–195. [Google Scholar] [CrossRef]
- Park, J.H.; Park, H.J.; Baik, J.H.; Nam, I.S.; Shin, C.H.; Lee, J.H.; CHO, B.K.; Oh, S.H. Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process. J. Catal. 2006, 240, 47–57. [Google Scholar] [CrossRef]
- Wang, H.; Xu, R.; Jin, Y.; Zhang, R. Zeolite structure effects on Cu active center, SCR performance and stability of Cu-zeolite catalysts. Catal. Today 2019, 327, 295–307. [Google Scholar] [CrossRef]
- Wilken, N.; Nedyalkova, R.; Kamasamudram, K.; Li, J.; Currier, N.W.; Vedaiyan, R.; Yezerets, A.; Olsson, L. Investigation of the effect of accelerated hydrothermal aging on the Cu sites in a Cu-BEA catalyst for NH3-SCR applications. Top. Catal. 2013, 56, 317–322. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, R.; Zhao, R.; Shi, C.; Gies, H.; Xiao, F.S.; Vos, D.D.; Yokoi, T.; Bao, X.; Kolb, U.; et al. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability. Appl. Catal. B 2017, 217, 421–428. [Google Scholar] [CrossRef]
- Xie, L.; Liu, F.; Ren, L.; Shi, X.; Xiao, F.S.; He, H. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3. Environ. Sci. Technol. 2014, 48, 566–572. [Google Scholar] [CrossRef]
- Fickel, D.W.; D’Addio, E.; Lauterbach, J.A.; Lobo, R.F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B 2011, 102, 441–448. [Google Scholar] [CrossRef]
- Shan, Y.; Shan, W.; Shi, X.; Du, J.; Yu, Y.; He, H. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13. Appl. Catal. B 2020, 264, 118511. [Google Scholar] [CrossRef]
- Li, R.; Zhu, Y.; Zhang, Z.; Zhang, C.; Fu, G.; Yi, X.; Huang, Q.; Yang, F.; Liang, W.; Zheng, A.; et al. Remarkable performance of selective catalytic reduction of NOx by ammonia over copper-exchanged SSZ-52 catalysts. Appl. Catal. B 2021, 283, 119641. [Google Scholar] [CrossRef]
- Cao, Y.; Fan, D.; Tian, P.; Cao, L.; Sun, T.; Xu, S.; Yang, M.; Liu, Z. The influence of low-temperature hydration methods on the stability of Cu-SAPO-34 SCR catalyst. Chem. Eng. J. 2018, 354, 85–92. [Google Scholar] [CrossRef]
- Jo, D.; Lim, J.B.; Ryu, T.; Nam, I.S.; Camblor, M.A.; Hong, S.B. Unseeded hydroxide-mediated synthesis and CO2 adsorption properties of an aluminosilicate zeolite with the RTH topology. J. Mater. Chem. A Mater. 2015, 3, 19322–19329. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Z.; Xu, L.; Ohnishi, T.; Yanaba, Y.; Ogura, M.; Wakihara, T.; Okubo, T. Understanding the high hydrothermal stability and NH3-SCR activity of the fast-synthesized ERI zeolite. J. Catal. 2020, 391, 346–356. [Google Scholar] [CrossRef]
- Wei, X.; Ke, Q.; Cheng, H.; Guo, Y.; Yuan, Z.; Zhao, S.; Sun, T.; Wang, S. Seed-assisted synthesis of Cu-(Mn)-UZM-9 zeolite as excellent NO removal and N2O inhibition catalysts in wider temperature window. Chem. Eng. J. 2020, 391, 123491. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.J.; Ryu, T.; Kim, P.S.; Kim, C.H.; Hong, S.B. Synthesis of zeolite UZM-35 and catalytic properties of copper-exchanged UZM-35 for ammonia selective catalytic reduction. Appl. Catal. B 2017, 200, 428–438. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Zhao, Z.; Liao, J.; Chen, C.; Li, Q. Recent progress of metal-exchanged zeolites for selective catalytic reduction of NOx with NH3 in diesel exhaust. Fuel 2021, 305, 121482. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, C.; Pang, L.; Ming, S.; Guo, W.; Liu, P.; Chen, H.; Li, T. One-pot synthesis of high performance Cu-SAPO-18 catalyst for NO reduction by NH3-SCR: Influence of silicon content on the catalytic properties of Cu-SAPO-18. Chem. Eng. J. 2018, 348, 608–617. [Google Scholar] [CrossRef]
- Gao, Q.; Han, S.; Ye, Q.; Cheng, S.; Kang, T.; Dai, H. Effects of lanthanide doping on the catalytic activity and hydrothermal stability of Cu-SAPO-18 for the catalytic removal of NOx (NH3-SCR) from diesel engines. Catalysts 2020, 10, 336. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Q.; Pan, X.; Bao, X. Growth of Cu/SSZ-13 on SiC for selective catalytic reduction of NO with NH3. Chin. J. Catal. 2018, 39, 71–78. [Google Scholar] [CrossRef]
- Lin, Q.; Feng, X.; Zhang, H.; Lin, C.; Liu, S.; Xu, H.; Chen, Y. Hydrothermal deactivation over CuFe/BEA for NH3-SCR. J. Ind. Eng. Chem. 2018, 65, 40–50. [Google Scholar] [CrossRef]
- Wan, J.; Chen, J.; Zhao, R.; Zhou, R. One-pot synthesis of Fe/Cu-SSZ-13 catalyst and its highly efficient performance for the selective catalytic reduction of nitrogen oxide with ammonia. J. Environ. Sci. 2021, 100, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Feng, X.; Xu, H.; Lan, L.; Gong, M.; Chen, Y. Novel promotional effect of yttrium on Cu–SAPO-34 monolith catalyst for selective catalytic reduction of NOx by NH3 (NH3-SCR). Catal. Commun. 2016, 76, 33–36. [Google Scholar] [CrossRef]
- Feng, X.; Lin, Q.; Cao, Y.; Zhang, H.; Li, Y.; Xu, H.; Lin, C.; Chen, Y. Neodymium promotion on the low-temperature hydrothermal stability of a Cu/SAPO-34 NH3-SCR monolith catalyst. J. Taiwan. Inst. Chem. Eng. 2017, 80, 805–812. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, L.; Qu, H.; Liu, L.; Xie, H.; Zhong, Q. Controllable positions of Cu2+ to enhance low-temperature SCR activity on novel Cu-Ce-La-SSZ-13 by a simple one-pot method. Chem. Commun. 2020, 56, 2360–2363. [Google Scholar] [CrossRef]
- Han, S.; Cheng, J.; Ye, Q.; Cheng, S.; Kang, T.; Dai, H. Ce doping to Cu-SAPO-18: Enhanced catalytic performance for the NH3-SCR of NO in simulated diesel exhaust. Microporous Mesoporous Mater. 2019, 276, 133–146. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Z.; Zhao, N.; Teng, Y. One-pot synthesis of Cu–Ce co-doped SAPO-5/34 hybrid crystal structure catalysts for NH3-SCR reaction with SO2 resistance. J. Rare Earth 2021, 39, 1217–1223. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, C.; Lin, J.; Yang, H.; Zhou, R. Promotional effects of cerium modification of Cu-USY catalysts on the low-temperature activity of NH3-SCR. Catal. Commun. 2018, 114, 60–64. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Teng, W.; Liu, W.; Ren, S.; Yang, J.; Liu, Q. Revealing the crystal-plane effects of CuO during the NH3-SCR over CuO/TiO2 catalysts. J. Environ. Chem. Eng. 2023, 11, 110787. [Google Scholar] [CrossRef]
- Bjørkedal, O.H.; Regli, S.K.; Nuguid, R.J.G.; Vullum, P.E.; Kröcher, O.; Ferri, D.; Rønning, M. One-pot synthesis of highly dispersed mesoporous Cu/ZrO2 catalysts for NH3-SCR. Catal. Today 2022, 384, 113–121. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, S.; Cheng, H.; Li, H.; Zhu, W.; Liu, J. Unveiling the role of high-valent copper cations in the selective catalytic reduction of NOx with NH3 at low temperature. Fuel 2022, 318, 123607. [Google Scholar] [CrossRef]
- Wu, X.; Meng, H.; Du, Y.; Liu, J.; Hou, B.; Xie, X. Insight into Cu2O/CuO collaboration in the selective catalytic reduction of NO with NH3: Enhanced activity and synergistic mechanism. J. Catal. 2020, 384, 72–87. [Google Scholar] [CrossRef]
- Zhang, T.; Qiu, F.; Li, J. Design and synthesis of core-shell structured meso-Cu-SSZ-13@ mesoporous aluminosilicate catalyst for SCR of NOx with NH3: Enhancement of activity, hydrothermal stability and propene poisoning resistance. Appl. Catal. B 2016, 195, 48–58. [Google Scholar] [CrossRef]
- Ting-Ting, X.; Gang-Gang, L.; Kai-Hua, Z.; Xin-Yan, Z.; Xin, Z.; Shao-Qing, Z. Effective reduction of nitric oxide over a core–shell Cu-SAPO-34@ Fe-MOR zeolite catalyst. RSC Adv. 2023, 13, 638–651. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Liu, J.; Huang, D.; Zhao, J.; Zhang, J.; Li, K.; Li, Z.; Zhu, W.; Zhao, Z.; Liu, J. Interface engineering of a bifunctional Cu-SSZ-13@ CZO core–shell catalyst for boosting potassium ion and SO2 tolerance. ACS Catal. 2022, 12, 11281–11293. [Google Scholar] [CrossRef]
- Deng, S.; Wang, Z.; Deng, D.; Chen, Z.; He, D.; He, H.; Ji, Y.; Hou, G.; Sun, W.; Liu, L. One-pot synthesis of hollow single crystal SSZ-13 zeolite by creating aluminum gradients with excellent activity for NH3-SCR. Microporous Mesoporous Mater. 2021, 314, 110865. [Google Scholar] [CrossRef]
- Jabłońska, M. Review of the application of Cu-containing SSZ-13 in NH3-SCR-DeNOx and NH3-SCO. RSC Adv. 2022, 12, 25240–25261. [Google Scholar] [CrossRef]
- Chen, J.; Huang, W.; Bao, S.; Zhang, W.; Liang, T.; Zheng, S.; Yi, L.; Guo, L.; Wu, X. A review on the characterization of metal active sites over Cu-based and Fe-based zeolites for NH3-SCR. RSC Adv. 2022, 12, 27746–27765. [Google Scholar] [CrossRef]
- Mohan, S.; Dinesha, P.; Kumar, S. NOx reduction behaviour in copper zeolite catalysts for ammonia SCR systems: A review. Chem. Eng. J. 2020, 384, 123253. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, S.; Zhang, X.; Chen, S.; Wang, L.; Zhang, C.; Gao, S.; Yu, D.; Fan, X.; Cheng, Y.; et al. Research progress on the preparation of transition metal-modified zeolite catalysts and their catalytic performance for the purification of engine exhausts. J. Mater. Chem. A Mater. 2024, 12, 16293–16328. [Google Scholar] [CrossRef]
- Guo, A.; Liu, H.; Li, Y.; Luo, Y.; Ye, D.; Jiang, J.; Chen, P. Recent progress in novel zeolite catalysts for selective catalytic reduction of nitrogen oxides. Catal. Today 2023, 422, 114212. [Google Scholar] [CrossRef]
- Gao, F. Fe-exchanged small-pore zeolites as ammonia selective catalytic reduction (NH3-SCR) catalysts. Catalysts 2020, 10, 1324. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Liu, Z. Selective catalytic reduction of NOx by NH3 over Cu-AEI zeolite catalyst: Current status and future perspective. Appl. Catal. B 2023, 343, 123479. [Google Scholar] [CrossRef]
- Leistner, K.; Mihai, O.; Wijayanti, K.; Kumar, A.; Kamasamudram, K.; Currier, N.W.; Yezerts, A.; Olsson, L. Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions. Catal. Today 2015, 258, 49–55. [Google Scholar] [CrossRef]
- Kamasamudram, K.; Currier, N.W.; Chen, X.; Yezerets, A. Overview of the practically important behaviors of zeolite-based urea-SCR catalysts, using compact experimental protocol. Catal. Today 2010, 151, 212–222. [Google Scholar] [CrossRef]
- Gao, F.; Mei, D.; Wang, Y.; Szanyi, J.; Peden, C.H. Selective catalytic reduction over Cu/SSZ-13: Linking homo-and heterogeneous catalysis. J. Am. Chem. Soc. 2017, 139, 4935–4942. [Google Scholar] [CrossRef]
- Gao, F.; Peden, C.H. Recent progress in atomic-level understanding of Cu/SSZ-13 selective catalytic reduction catalysts. Catalysts 2018, 8, 140. [Google Scholar] [CrossRef]
- Chen, L.; Janssens, T.V.; Vennestrøm, P.N.; Jansson, J.; Skoglundh, M.; Gronbeck, H. A complete multisite reaction mechanism for low-temperature NH3-SCR over Cu-CHA. ACS Catal. 2020, 10, 5646–5656. [Google Scholar] [CrossRef]
- Hammershøi, P.S.; Jensen, A.D.; Janssens, T.V. Impact of SO2-poisoning over the lifetime of a Cu-CHA catalyst for NH3-SCR. Appl. Catal. B 2018, 238, 104–110. [Google Scholar] [CrossRef]
- Hammershøi, P.S.; Jangjou, Y.; Epling, W.S.; Jensen, A.D.; Janssens, T.V. Reversible and irreversible deactivation of Cu-CHA NH3-SCRcatalysts by SO2 and SO3. Appl. Catal. B 2018, 226, 38–45. [Google Scholar] [CrossRef]
- Hammershøi, P.S.; Vennestrøm, P.N.; Falsig, H.; Jensen, A.D.; Janssens, T.V. Importance of the Cu oxidation state for the SO2-poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction. Appl. Catal. B 2018, 236, 377–383. [Google Scholar] [CrossRef]
- Shan, Y.; Shi, X.; Yan, Z.; Liu, J.; Yu, Y.; He, H. Deactivation of Cu-SSZ-13 in the presence of SO2 during hydrothermal aging. Catal. Today 2019, 320, 84–90. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, Y.; Wang, J.; Wang, C.; Wang, J. Nature of SO3 poisoning on Cu/SAPO-34 SCR catalysts. J. Catal. 2018, 358, 277–286. [Google Scholar] [CrossRef]
- Wijayanti, K.; Andonova, S.; Kumar, A.; Li, J.; Kamasamudram, K.; Currier, N.W.; Yezerets, A.; Olsson, L. Impact of sulfur oxide on NH3-SCR over Cu-SAPO-34. Appl. Catal. B 2015, 166, 568–579. [Google Scholar] [CrossRef]
- Wijayanti, K.; Xie, K.; Kumar, A.; Kamasamudram, K.; Olsson, L. Effect of gas compositions on SO2 poisoning over Cu/SSZ-13 used for NH3-SCR. Appl. Catal. B 2017, 219, 142–154. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Fan, X. Deactivation of Cu SCR catalysts based on small-pore SSZ-13 zeolites: A review. Chem. Phys. 2023, 6, 100207. [Google Scholar] [CrossRef]
- Han, S.; Ye, Q.; Gao, Q.; Dai, H. Improved SO2 tolerance of Cu-SAPO-18 by Ce-doping in the selective catalytic reduction of NO with NH3. Catalysts 2020, 10, 783. [Google Scholar] [CrossRef]
- Yang, J.; Li, Z.; Cui, J.; Ma, Y.; Li, Y.; Zhang, Q.; Song, K.; Yang, C. Fabrication of wide temperature lanthanum and cerium doped Cu/TNU-9 catalyst with excellent NH3-SCR performance and outstanding SO2+ H2O tolerance. J. Rare Earth 2023, 41, 1195–1202. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Z.; Ma, L.; Niu, H.; Liu, C.; Li, J.; Zhang, Z. MnOx-CeO2 supported on Cu-SSZ-13: A novel SCR catalyst in a wide temperature range. Appl. Catal. A Gen. 2017, 547, 146–154. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Z.; Yu, Y.; Li, Y. Reasonably designed CuSbTiOx series catalysts with high NH3-SCR activity and obviously improved SO2 tolerance. New J. Chem. 2024, 48, 4335–4345. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, C.; He, C.; Miao, J.; Chen, J. In situ growth synthesis of CuO@Cu-MOFs core-shell materials as novel low-temperature NH3-SCR catalysts. ChemCatChem 2019, 11, 979–984. [Google Scholar] [CrossRef]
- Shi, J.W.; Wang, Y.; Duan, R.; Gao, C.; Wang, B.; He, C.; Niu, C. The synergistic effects between Ce and Cu in CuyCe1− yW5Ox catalysts for enhanced NH3-SCR of NOx and SO2 tolerance. Catal. Sci. Technol. 2019, 9, 718–730. [Google Scholar] [CrossRef]
- Hao, Z.; Liu, G.; Ma, N.; Zhang, H.; Li, Y.; Xia, Y.; Zhang, D.; Zhan, S. Oxygen-vacancy mediated acidity and redox properties on WOx/Cu-doped CeO2 for the removal of NOx. J. Environ. Chem. Eng. 2021, 9, 106024. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Ying, Q.; Yao, W.; Wu, Z. The superior performance of Nb-modified Cu-Ce-Ti mixed oxides for the selective catalytic reduction of NO with NH3 at low temperature. Appl. Catal. A Gen. 2018, 562, 19–27. [Google Scholar] [CrossRef]
- Qin, B.; Guo, R.T.; Zhou, J.; Wei, L.G.; Yin, T.Y.; Pan, W.G. Promotional role of Nb modification on CuCeOx catalyst for low temperature selective catalytic reduction of NO with NH3: A mechanism investigation. Fuel 2022, 329, 125390. [Google Scholar] [CrossRef]
- Jiang, J.; Zheng, R.; Jia, Y.; Guo, L.; Huang, M.; Hu, J.; Xia, Y. Investigation of SO2 and H2O poisoning over Cu-HPMo/TiO2 catalyst for Low temperature SCR: An experimental and DFT study. Mol. Catal. 2020, 493, 111044. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, L.; Qu, H.; Zhou, B.; Xie, H.; Zhong, Q. Migration of cations and shell functionalization for Cu-Ce-La/SSZ-13@ ZSM-5: The contribution to activity and hydrothermal stability in the selective catalytic reduction reaction. J. Catal. 2020, 392, 217–230. [Google Scholar] [CrossRef]
- Di, Z.; Wang, H.; Zhang, R.; Chen, H.; Wei, Y.; Jia, J. ZSM-5 core–shell structured catalyst for enhancing low-temperature NH3-SCR efficiency and poisoning resistance. Appl. Catal. A Gen. 2022, 630, 118438. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H.; Zhang, X.; Wu, M.; Qu, H. Construction of multifunctional interface engineering on Cu-SSZ-13@ Ce-MnOx/Mesoporous-silica catalyst for boosting activity, SO2 tolerance and hydrothermal stability. J. Hazard. Mater. 2024, 477, 135268. [Google Scholar] [CrossRef]
- Jangjou, Y.; Do, Q.; Gu, Y.; Lim, L.G.; Sun, H.; Wang, D.; Kumar, A.; Li, J.; Grabow, L.C.; Epling, W.S. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure. ACS Catal. 2018, 8, 1325–1337. [Google Scholar] [CrossRef]
- Su, W.; Li, Z.; Zhang, Y.; Meng, C.; Li, J. Identification of sulfate species and their influence on SCR performance of Cu/CHA catalyst. Catal. Sci. Technol. 2017, 7, 1523–1528. [Google Scholar] [CrossRef]
- Wijayanti, K.; Leistner, K.; Chand, S.; Kumar, A.; Kamasamudram, K.; Currier, N.W.; Yezerets, A.; Olsson, L. Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions. Catal. Sci. Technol. 2016, 6, 2565–2579. [Google Scholar] [CrossRef]
- Bergman, S.L.; Dahlin, S.; Mesilov, V.V.; Xiao, Y.; Englund, J.; Xi, S.; Tang, C.; Skoglundh, M.; Pettersson, L.J.; Bernasek, S.L. In-situ studies of oxidation/reduction of copper in Cu-CHA SCR catalysts: Comparison of fresh and SO2-poisoned catalysts. Appl. Catal. B 2020, 269, 118722. [Google Scholar] [CrossRef]
- Shen, M.; Wen, H.; Hao, T.; Yu, T.; Fan, D.; Wang, J.; Li, W.; Wang, J. Deactivation mechanism of SO2 on Cu/SAPO-34 NH3-SCR catalysts: Structure and active Cu2+. Catal. Sci. Technol. 2015, 5, 1741–1749. [Google Scholar] [CrossRef]
- He, J.; Impeng, S.; Zhang, J.; Zhang, J.; Wang, P.; Zhang, D. SO2-tolerant NOx reduction over SO42--coordinated Cu-SAPO-34 catalysts via protecting the reduction and re-oxidation of Cu sites. Chem. Eng. J. 2022, 448, 137720. [Google Scholar] [CrossRef]
- Li, P.; Xin, Y.; Zhang, H.; Yang, F.; Tang, A.; Han, D.; Jia, J.; Wang, J.; Li, Z.; Zhang, Z. Recent progress in performance optimization of Cu-SSZ-13 catalyst for selective catalytic reduction of NOx. Front. Chem. 2022, 10, 1033255. [Google Scholar] [CrossRef]
- Yu, Y.; Tan, W.; An, D.; Wang, X.; Liu, A.; Zou, W.; Tang, C.; Ge, C.; Tong, Q.; Sun, J.; et al. Insight into the SO2 resistance mechanism on γ-Fe2O3 catalyst in NH3-SCR reaction: A collaborated experimental and DFT study. Appl. Catal. B 2021, 281, 119544. [Google Scholar] [CrossRef]
- Qin, G.; Zheng, J.; Li, Y.; Yang, Y.; Liu, X.; Han, X.; Huang, Z. Tailor the crystal planes of MIL-101 (Fe) derivatives to enhance the activity of SCR reaction at medium and low temperature. J. Colloid Interface Sci. 2022, 615, 432–444. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, B.; Zhang, Y.; Ren, J.; Wu, C.; Gates, I.D.; Liu, Y.; Gao, Z. A novel low-temperature Fe-Fe double-atom catalyst for a “fast SCR” reaction. Mol. Catal. 2022, 533, 112769. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, J.; Li, Q.; Xin, Y.; Zheng, L.; Wang, Y.; Zhang, Z. Enhanced selective catalytic reduction of NOx with NH3 over homoatomic dinuclear sites in defective α-Fe2O3. Chem. Eng. J. 2021, 426, 131845. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Z.; Wang, L.; Zhan, W.; Guo, Y.; Guo, Y. Understanding the role of redox properties and NO adsorption over MnFeOx for NH3-SCR. Catal. Sci. Technol. 2022, 12, 2030–2041. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, X.; Yan, Z.; Shan, Y.; Zhu, Y.; Yu, Y.; He, H. Design of high-performance iron–niobium composite oxide catalysts for NH3-SCR: Insights into the interaction between Fe and Nb. ACS Catal. 2021, 11, 9825–9836. [Google Scholar] [CrossRef]
- Xin, Y.; Zhang, N.; Li, Q.; Zhang, Z.; Cao, X.; Zheng, L.; Zeng, Y.; Anderson, J.A. Active site identification and modification of electronic states by atomic-scale doping to enhance oxide catalyst innovation. ACS Catal. 2018, 8, 1399–1404. [Google Scholar] [CrossRef]
- Chen, W.; Yang, S.; Liu, H.; Huang, F.; Shao, Q.; Liu, L.; Sun, J.; Sun, C.; Chen, D.; Dong, L. Single-atom Ce-modified α-Fe2O3 for selective catalytic reduction of NO with NH3. Environ. Sci. Technol. 2022, 56, 10442–10453. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Jin, S.; Wang, J.; Wu, J.; Cai, L.; Zhou, Y.; Wang, X.; Zhang, R.; Ling, L.; Jin, M. Deep insights into the promotion role of Sm doping in the sulfur resistance of Fe2O3 catalyst for NH3-SCR: A combined experimental and DFT study. J. Phys. Chem. Solids 2024, 184, 111666. [Google Scholar] [CrossRef]
- Xin, Y.; Zhang, N.; Li, Q.; Zhang, Z.; Cao, X.; Zheng, L.; Zeng, Y.; Anderson, J.A. Selective catalytic reduction of NOx with NH3 over short-range ordered WOFe structures with high thermal stability. Appl. Catal. B 2018, 229, 81–87. [Google Scholar] [CrossRef]
- Liu, Z.; Su, H.; Chen, B.; Li, J.; Woo, S.I. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3. Chem. Eng. J. 2016, 299, 255–262. [Google Scholar] [CrossRef]
- Liu, F.; Shan, W.; Lian, Z.; Liu, J.; He, H. The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3. Appl. Catal. B 2018, 230, 165–176. [Google Scholar] [CrossRef]
- Shu, Y.; Sun, H.; Quan, X.; Chen, S. Enhancement of catalytic activity over the iron-modified Ce/TiO2 catalyst for selective catalytic reduction of NOx with ammonia. J. Phys. Chem. C 2012, 116, 25319–25327. [Google Scholar] [CrossRef]
- Tang, X.; Shi, Y.; Gao, F.; Zhao, S.; Yi, H.; Xie, Z. Promotional role of Mo on Ce0. 3FeOx catalyst towards enhanced NH3-SCR catalytic performance and SO2 resistance. Chem. Eng. J. 2020, 398, 125619. [Google Scholar] [CrossRef]
- Stahl, A.; Wang, Z.; Schwämmle, T.; Ke, J.; Li, X. Novel Fe-W-Ce mixed oxide for the selective catalytic reduction of NOx with NH3 at low temperatures. Catalysts 2017, 7, 71. [Google Scholar] [CrossRef]
- Ren, Z.; Fan, H.; Wang, R. A novel ring-like Fe2O3-based catalyst: Tungstophosphoric acid modification, NH3-SCR activity and tolerance to H2O and SO2. Catal. Commun. 2017, 100, 71–75. [Google Scholar] [CrossRef]
- Yao, G.; Wei, Y.; Gui, K.; Ling, X. Catalytic performance and reaction mechanisms of NO removal with NH3 at low and medium temperatures on Mn-W-Sb modified siderite catalysts. J. Environ. Sci. 2022, 115, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Han, L.; He, J.; Li, H.; Yan, T.; Chen, G.; Zhang, J.; Shi, L.; Zhang, D. Improved NOx reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2–WO3 catalysts. Environ. Sci. Technol. 2018, 53, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Gao, M.; Feng, C.; Shi, L.; Zhang, D. Fe2O3–CeO2@Al2O3 nanoarrays on Al-mesh as SO2-tolerant monolith catalysts for NOx reduction by NH3. Environ. Sci. Technol. 2019, 53, 5946–5956. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Cong, Q.; Ma, H.; Li, S.; Li, W. Design of a hierarchical Fe-ZSM-5@ CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3. Chem. Eng. J. 2019, 369, 957–967. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Zhao, Z.; Wei, Y.; Song, W. Fe-Beta@ CeO2 core-shell catalyst with tunable shell thickness for selective catalytic reduction of NOx with NH3. AIChE J. 2017, 63, 4430–4441. [Google Scholar] [CrossRef]
- Jiang, M.; Yan, Z.; Zhang, Y.; Zhang, C.; Chang, C.; Xiao, M.; Ruan, L.; Yan, Y.; Yu, Y.; He, H. Simultaneous modification of redox and acidic properties of FeOx catalysts derived from MIL-100 (Fe) via HPW incorporation for NH3-SCR. Appl. Catal. B 2024, 358, 124416. [Google Scholar] [CrossRef]
- Ren, Z.; Teng, Y.; Zhao, L.; Wang, R. Keggin-tungstophosphoric acid decorated Fe2O3 nanoring as a new catalyst for selective catalytic reduction of NOx with ammonia. Catal. Today 2017, 297, 36–45. [Google Scholar] [CrossRef]
- Tan, W.; Xie, S.; Shan, W.; Lian, Z.; Xie, L.; Liu, A.; Gao, F.; Dong, L.; He, H.; Liu, F. CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study. Front. Environ. Sci. Eng. 2022, 16, 60. [Google Scholar] [CrossRef]
- Ma, S.; Tan, H.; Li, Y.; Wang, P.; Zhao, C.; Niu, X.; Zhu, Y. Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0. 02Fe0. 2CeyTi1-yOx (y= 0.1, 0.2, 0.3) catalysts. Chemosphere 2020, 243, 125309. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Hou, Y.; Li, Q.; Han, X.; Wang, H.; Wu, Z.; Huang, Z. Amorphous FeOx–Mn0. 1Oy catalyst with rich oxygen vacancies for ammonia selective catalytic reduction of nitrogen oxide at low temperatures. Fuel 2023, 349, 128644. [Google Scholar] [CrossRef]
- Wang, H.; Qu, Z.; Liu, L.; Dong, S.; Qiao, Y. Promotion of NH3-SCR activity by sulfate-modification over mesoporous Fe doped CeO2 catalyst: Structure and mechanism. J. Hazard. Mater. 2021, 414, 125565. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, L.; Wang, W.; Wang, X.; Li, B.; Zhang, S.; Li, W.; Li, S. Revealing the excellent low-temperature activity of the Fe1–x CexOδ-S catalyst for NH3-SCR: Improvement of the lattice oxygen mobility. ACS Appl. Mater. Interfaces 2023, 15, 17834–17847. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Meeprasert, J.; Namuangruk, S.; Zha, K.; Li, H.; Huang, L.; Maitarad, P.; Shi, L.; Zhang, D. Facet–activity relationship of TiO2 in Fe2O3/TiO2 nanocatalysts for selective catalytic reduction of NO with NH3: In situ DRIFTs and DFT studies. J. Phys. Chem. C 2017, 121, 4970–4979. [Google Scholar] [CrossRef]
- Han, J.; Meeprasert, J.; Maitarad, P.; Nammuangruk, S.; Shi, L.; Zhang, D. Investigation of the facet-dependent catalytic performance of Fe2O3/CeO2 for the selective catalytic reduction of NO with NH3. J. Phys. Chem C 2016, 120, 1523–1533. [Google Scholar] [CrossRef]
- Teng, W.; Li, J.; Dai, X.; Chen, Y.; Wu, H.; Liu, W.; Ren, S.; Yang, J.; Liu, Q. Promoting the NH3-SCR performance of Fe2O3-TiO2 catalyst through regulation of the exposed crystal facets of Fe2O3. Appl. Surf. Sci. 2024, 647, 158938. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, B.; Liu, B.; Sun, S. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: Reaction mechanism and catalyst deactivation. RSC Adv. 2017, 7, 26226–26242. [Google Scholar] [CrossRef]
- Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Li, C.; Li, J.; Shi, Y.; Meng, X. A review on selective catalytic reduction of NOx by NH3 over Mn–based catalysts at low temperatures: Catalysts, mechanisms, kinetics and DFT calculations. Catalysts 2017, 7, 199. [Google Scholar] [CrossRef]
- Guo, R.T.; Qin, B.; Wei, L.G.; Yin, T.Y.; Zhou, J.; Pan, W.G. Recent progress of low-temperature selective catalytic reduction of NOx with NH3 over manganese oxide-based catalysts. Phys. Chem. Chem. Phys. 2022, 24, 6363–6382. [Google Scholar] [CrossRef]
- Peña, D.A.; Uphade, B.S.; Smirniotis, P.G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals. J. Catal. 2004, 221, 421–431. [Google Scholar] [CrossRef]
- He, G.; Gao, M.; Peng, Y.; Yu, Y.; Shan, W.; He, H. Superior oxidative dehydrogenation performance toward NH3 determines the excellent low-temperature NH3-SCR activity of Mn-based catalysts. Environ. Sci. Technol. 2021, 55, 6995–7003. [Google Scholar] [CrossRef] [PubMed]
- Kapteijn, F.; Singoredjo, L.; Andreini, A.; Moulijn, J.A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B 1994, 3, 173–189. [Google Scholar] [CrossRef]
- Tang, X.; Hao, J.; Xu, W.; Li, J. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods. Catal. Commun. 2007, 8, 329–334. [Google Scholar] [CrossRef]
- Kang, M.; Park, E.D.; Kim, J.M.; Yie, J.E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl. Catal. A Gen. 2007, 327, 261–269. [Google Scholar] [CrossRef]
- Kang, M.; Yeon, T.H.; Park, E.D.; Yie, J.E.; Kim, J.M. Novel MnOx catalysts for NO reduction at low temperature with ammonia. Catal. Lett. 2006, 106, 77–80. [Google Scholar] [CrossRef]
- Tang, X.; Li, J.; Sun, L.; Hao, J. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3. Appl. Catal. B 2010, 99, 156–162. [Google Scholar] [CrossRef]
- Fang, X.; Liu, Y.; Chen, L.; Cheng, Y. Influence of surface active groups on SO2 resistance of birnessite for low-temperature NH3-SCR. Chem. Eng. J. 2020, 399, 125798. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Y.; Li, P.Z.; Zhang, P.; Su, W.; Sun, Y.; Zou, R.; Zhao, Y. Experimental and theoretical investigation of mesoporous MnO2 nanosheets with oxygen vacancies for high-efficiency catalytic DeNOx. ACS Catal. 2018, 8, 3865–3874. [Google Scholar] [CrossRef]
- Xu, S.; Chen, J.; Li, Z.; Liu, Z. Highly ordered mesoporous MnOx catalyst for the NH3-SCR of NOx at low temperatures. Appl. Catal. A Gen. 2023, 649, 118966. [Google Scholar] [CrossRef]
- Chen, R.; Fang, X.; Li, Z.; Liu, Z. Selective catalytic reduction of NOx with NH3 over a novel MOF-derived MnOx catalyst. Appl. Catal. A Gen. 2022, 643, 118754. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Chen, G.; Leng, Z.; Xia, D.; Wang, Z. Enabling wide-temperature selective catalytic reduction of NOX via modulating redox ability of Mn-based catalysts. Energy Fuels 2024, 38, 8960–8967. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, P.; Shen, Z.; Chen, S.; Wang, Q.; Cheng, D.; Zhang, D. Low-temperature NOx reduction over hydrothermally stable SCR catalysts by engineering low-coordinated Mn active sites. Chem. Eng. J. 2022, 442, 136182. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Zhong, L.; Song, Z.; Yu, S.; Zhang, C.; Fang, Q.; Chen, G. DFT analysis of the reaction mechanism for NH3-SCR of NOx over Mn/γ-Al2O3 catalyst. J. Phys. Chem. C 2019, 123, 25185–25196. [Google Scholar] [CrossRef]
- Zeng, Y.; Lyu, F.; Wang, Y.; Zhang, S.; Zhong, Q.; Zhong, Z. New insight on N2O formation over MnOx/TiO2 catalysts for selective catalytic reduction of NOx with NH3. Mol. Catal. 2022, 525, 112356. [Google Scholar] [CrossRef]
- Yang, S.; Xiong, S.; Liao, Y.; Xiao, X.; Qi, F.; Peng, Y.; Fu, Y.; Shan, W.; Li, J. Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel. Environ. Sci. Technol. 2014, 48, 10354–10362. [Google Scholar] [CrossRef]
- Guo, J.; Gan, F.; Zhao, Y.; He, J.; Wang, B.; Gao, T.; Jiang, X.; Ma, S. Revealing the crystal facet effect on N2O formation during the NH3-SCR over α-MnO2 catalysts. RSC Adv. 2023, 13, 4032–4039. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, B.; Zheng, C.; Zhou, J.; Su, T.; Guo, J.; Chen, J.; Chen, Y.; Zhang, J.; Dang, H.; et al. Research on the resistance of catalysts for selective catalytic reduction: Current progresses and future perspectives. J. Clean. Prod. 2023, 434, 139920. [Google Scholar] [CrossRef]
- Hou, Q.; Liu, Y.; Hou, Y.; Han, X.; Huang, Z. Ordered mesoporous MnAlOx oxides dominated by calcination temperature for the selective catalytic reduction of NOx with NH3 at low temperature. Catalysts 2022, 12, 637. [Google Scholar] [CrossRef]
- Li, Y.; Wan, Y.; Sun, R.; Qian, G.; Liu, Z.; Dan, J.; Yu, F. Novel 2D layered manganese silicate nanosheets with excellent performance for selective catalytic reduction of NO with ammonia. ChemCatChem 2022, 14, e202200909. [Google Scholar] [CrossRef]
- Yao, X.; Chen, L.; Cao, J.; Chen, Y.; Tian, M.; Yang, F.; Sun, J.; Tang, C.; Dong, L. Enhancing the deNOx performance of MnOx/CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification. Chem. Eng. J. 2019, 369, 46–56. [Google Scholar] [CrossRef]
- Yang, R.; Gao, Z.; Sun, M.; Fu, G.; Cheng, G.; Liu, W.; Yang, X.; Zhao, X.; Yu, L. A highly active VOx-MnOx/CeO2 for selective catalytic reduction of NO: The balance between redox property and surface acidity. J. Rare Earth 2021, 39, 1370–1381. [Google Scholar] [CrossRef]
- Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Wang, J.; Gu, T. Improvement of activity, selectivity and H2O & SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx. Appl. Surf. Sci. 2019, 466, 411–424. [Google Scholar] [CrossRef]
- Fan, H.; Fan, J.; Chang, T.; Wang, X.; Wang, X.; Huang, Y.; Zhang, Y.; Shen, Z. Low-temperature Fe–MnO2 nanotube catalysts for the selective catalytic reduction of NOx with NH3. Catal. Sci. Technol. 2021, 11, 6553–6563. [Google Scholar] [CrossRef]
- Zhu, J.; Shao, Y.; Li, Z.; Li, K.; Ren, X.; Jia, L.; Li, H.; Cheng, H.; Liu, J.; Liu, J. Modulating the acidity and reducibility of FeMn/TiO2 to boost the low-temperature selective catalytic reduction of NOx. Fuel 2024, 366, 131316. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, S.; Xing, X.; Li, X.; Chen, L.; Wang, M. Unveiling the inductive strategy of different precipitants on MnFeOx catalyst for low-temperature NH3-SCR reaction. Fuel 2023, 335, 126986. [Google Scholar] [CrossRef]
- Wei, L.; Li, X.; Mu, J.; Wang, X.; Fan, S.; Yin, Z.; Tadé, M.O.; Liu, S. Rationally tailored redox properties of a mesoporous Mn–Fe spinel nanostructure for boosting low-temperature selective catalytic reduction of NOx with NH3. ACS Sustain. Chem. Eng. 2020, 8, 17727–17739. [Google Scholar] [CrossRef]
- Gu, J.; Zhu, B.; Duan, R.; Chen, Y.; Wang, S.; Liu, L.; Wang, X. Highly dispersed MnOx–FeOx supported by silicalite-1 for the selective catalytic reduction of NOx with NH3 at low temperatures. Catal. Sci. Technol. 2020, 10, 5525–5534. [Google Scholar] [CrossRef]
- Chen, C.; Feng, C.; Wang, Y.; Li, J.; Liu, Z.; Wang, W.; Pan, Y.; Liu, Y. Design of robust Co-doped Mn3O4 spinel catalysts for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Surf. Sci. 2022, 602, 154384. [Google Scholar] [CrossRef]
- Wang, G.; Liang, Y.; Song, J.; Xu, K.; Pan, Y.; Xu, X.; Zhao, Y. Co-doped MnCeOx/ZrO2 catalysts for low temperature selective catalytic reduction of NO. Res. Chem. Intermed. 2022, 48, 2627–2640. [Google Scholar] [CrossRef]
- Zhu, Y.; Xiao, X.; Wang, J.; Ma, C.; Jia, X.; Qiao, W.; Ling, L. Enhanced activity and water resistance of hierarchical flower-like Mn-Co binary oxides for ammonia-SCR reaction at low temperature. Appl. Surf. Sci. 2021, 569, 150989. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, B.; Li, J.; Wang, X.; Crocker, M.; Shi, C. Insights into the structure-activity relationships of highly efficient CoMn oxides for the low temperature NH3-SCR of NOx. Appl. Catal. B 2020, 277, 119215. [Google Scholar] [CrossRef]
- Perumal, S.K.; Yu, H.; Aghalayam, P.; Kim, H.S. Unravelling the role of Zr–Laponite supports in enhancing the activity of a MnNi catalyst for the low-temperature NH3-selective catalytic reduction reaction. Energy Fuels 2024, 38, 4516–4525. [Google Scholar] [CrossRef]
- Kang, M.; Park, E.D.; Kim, J.M.; Yie, J.E. Cu–Mn mixed oxides for low temperature NO reduction with NH3. Catal. Today 2006, 111, 236–241. [Google Scholar] [CrossRef]
- Luo, W.; Yang, L.; Zhang, Z.; Cao, G.; Li, J.; Liu, B. Flexible Ti mesh-supported MnOx–CuOx/TiO2 nanosheet monolithic catalysts for low-temperature selective catalytic reduction of NOx with NH3. ACS Appl. Nano Mater. 2024, 7, 6262–6272. [Google Scholar] [CrossRef]
- La Greca, E.; Kharlamova, T.S.; Grabchenko, M.V.; Svetlichnyi, V.A.; Pantaleo, G.; Consentino, L.; Stonkus, O.A.; Vodyankina, O.V.; Liotta, L.F. Influence of Y doping on catalytic activity of CeO2, MnOx, and CeMnOx catalysts for selective catalytic reduction of NO by NH3. Catalysts 2023, 13, 901. [Google Scholar] [CrossRef]
- Jiang, B.; Deng, B.; Zhang, Z.; Wu, Z.; Tang, X.; Yao, S.; Lu, H. Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe–Mn/Ti catalysts. J. Phys. Chem. C 2014, 118, 14866–14875. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, B.; Ren, S.; Chen, Z.; Su, Z.; Yang, J.; Chen, L.; Wang, M. Nb2O5-modified Mn-Ce/AC catalyst with high ZnCl2 and SO2 tolerance for low-temperature NH3-SCR of NO. J. Environ. Chem. Eng. 2021, 9, 106323. [Google Scholar] [CrossRef]
- Hu, X.; Shi, Q.; Zhang, H.; Wang, P.; Zhan, S.; Li, Y. NH3-SCR performance improvement over Mo modified Mo (x)-MnOx nanorods at low temperatures. Catal. Today 2017, 297, 17–26. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Q.; Hu, X.; Huang, Y. A Novel MnOx–MoOx Codoped Iron-Based Catalyst for NH3-SCR with Superior Catalytic Activity over a Wide Temperature Range. Ind. Eng. Chem. Res. 2024, 63, 8163–8174. [Google Scholar] [CrossRef]
- Dong, Y.; Ran, M.; Zhang, X.; Lin, S.; Li, W.; Yang, Y.; Song, H.; Wu, W.; Liu, S.; Zheng, C.; et al. Promoting effect of polyoxometallic acid modification on the NH3-SCR performance of Mn-based catalysts. J. Environ. Chem. Eng. 2024, 12, 112823. [Google Scholar] [CrossRef]
- Cao, F.; Xiang, J.; Su, S.; Wang, P.; Hu, S.; Sun, L. Ag modified Mn–Ce/γ-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature. Fuel Process Technol. 2015, 135, 66–72. [Google Scholar] [CrossRef]
- Wang, H.; Lin, M.; Murayama, T.; Feng, S.; Haruta, M.; Miura, H.; Shishido, T. Ag size/structure-dependent effect on low-temperature selective catalytic oxidation of NH3 over Ag/MnO2. ACS Catal. 2021, 11, 8576–8584. [Google Scholar] [CrossRef]
- Chang, H.; Chen, X.; Li, J.; Ma, L.; Wang, C.; Liu, C.; Schwank, J.W.; Hao, J. Improvement of activity and SO2 tolerance of Sn-modified MnOx–CeO2 catalysts for NH3-SCR at low temperatures. Environ. Sci. Technol. 2013, 47, 5294–5301. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Chen, C.; He, P.; Mu, G.; Wang, K.; Yang, C.; Chai, S.; Wang, N.; Ge, C. Promoting H2O/SO2 resistance of Ce-Mn/TiO2 nanostructures by Sb5+/Sb3+ addition for Selective catalytic reduction of NO with NH3. Appl. Surf. Sci. 2022, 600, 154146. [Google Scholar] [CrossRef]
- Li, X.; Yin, Y.; Yao, C.; Zuo, S.; Lu, X.; Luo, S.; Ni, C. La1− xCexMnO3/attapulgite nanocomposites as catalysts for NO reduction with NH3 at low temperature. Particuology 2016, 26, 66–72. [Google Scholar] [CrossRef]
- Fan, X.; Hao, L.; Gu, X.; Li, S. Low-temperature selective catalytic reduction of NO with NH3 over a biochar-supported perovskite oxide catalyst. Energy Fuels 2023, 37, 7339–7352. [Google Scholar] [CrossRef]
- Yao, X.; Ma, K.; Zou, W.; He, S.; An, J.; Yang, F.; Dong, L. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature. Chin. J. Catal. 2017, 38, 146–159. [Google Scholar] [CrossRef]
- Chen, X.; Wang, P.; Fang, P.; Ren, T.; Liu, Y.; Cen, C.; Wang, H.; Wu, Z. Tuning the property of Mn-Ce composite oxides by titanate nanotubes to improve the activity, selectivity and SO2/H2O tolerance in middle temperature NH3-SCR reaction. Fuel Process Technol. 2017, 167, 221–228. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, L.; Sun, N.; Wang, H.; Zhong, L.; He, C.; Wei, W.; Sun, Y. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation. Chem. Eng. J. 2017, 322, 46–55. [Google Scholar] [CrossRef]
- Qi, G.; Yang, R.T.; Chang, R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B 2004, 51, 93–106. [Google Scholar] [CrossRef]
- Li, S.; Zheng, Z.; Zhao, Z.; Wang, Y.; Yao, Y.; Liu, Y.; Zhang, J.; Zhang, Z. CeO2 Nanoparticle-loaded MnO2 nanoflowers for selective catalytic reduction of NOx with NH3 at low temperatures. Molecules 2022, 27, 4863. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Shi, J.W.; Niu, C.; Wang, B.; He, C.; Liu, W.; Xiao, L.; Ma, D.; Wang, H.; Cheng, Y. FeVO4-supported Mn–Ce oxides for the low-temperature selective catalytic reduction of NOx by NH3. Catal. Sci. Technol. 2021, 11, 6770–6781. [Google Scholar] [CrossRef]
- Huang, X.; Dong, F.; Zhang, G.; Tang, Z. Constructing TiO2@CeMnOx nanocages by self-sacrificial hydrolytic etching MIL-125 for efficient wide-temperature selective catalytic reduction of nitrogen oxides. Chem. Eng. J. 2022, 432, 134236. [Google Scholar] [CrossRef]
- Wu, T.; Ren, S.; Guo, R.T.; Li, C.F.; You, Y.H.; Guo, S.Y.; Pan, W.G. The promotion effect of Pr doping on the catalytic performance of MnCeOx catalysts for low-temperature NH3-SCR. Fuel 2024, 357, 129917. [Google Scholar] [CrossRef]
- Rong, J.; Zhao, W.; Luo, W.; Kang, K.; Long, L.; Chen, Y.; Yao, X. Doping effect of rare earth metal ions Sm3+, Nd3+ and Ce4+ on denitration performance of MnOx catalyst in low temperature NH3-SCR reaction. J. Rare Earth 2023, 41, 1323–1335. [Google Scholar] [CrossRef]
- Ji, X.; Cai, Y.; Zhang, B.; Yu, H.; Liu, Q.; Wang, X.; Liu, A.; Qian, Q.; Tong, Q.; Tan, W.; et al. Optimization of robust FeMnSmOx catalyst for low-temperature (<150 °C) NH3–SCR of NOx. Ind. Eng. Chem. Res. 2024, 63, 2705–2716. [Google Scholar] [CrossRef]
- He, X.; Zhu, F.; Dong, L.; Guo, H.; Liu, X.; Ren, G.; Ma, X. Sm-MnOx/TiO2-{001} with preferentially exposed anatase {001} facet for selective catalytic reduction of NO with NH3. Appl. Catal. A Gen. 2023, 664, 119353. [Google Scholar] [CrossRef]
- Wang, F.; Wang, P.; Lan, T.; Shen, Y.; Ren, W.; Zhang, D. Ultralow-temperature NOx reduction over SmMn2O5 Mullite catalysts via modulating the superficial dual-functional active sites. ACS Catal. 2022, 12, 7622–7632. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Wei, L.; Wang, K.; Liu, C.; Ma, D.; Liu, Q. Promotional mechanism of activity of CeEuMnOx ternary oxide for low temperature SCR of NOx. J. Rare Earth 2023, 41, 965–974. [Google Scholar] [CrossRef]
- Guan, J.; Zhou, L.; Li, W.; Hu, D.; Wen, J.; Huang, B. Improving the performance of Gd addition on catalytic activity and SO2 resistance over MnOx/ZSM-5 catalysts for low-temperature NH3-SCR. Catalysts 2021, 11, 324. [Google Scholar] [CrossRef]
- Gao, C.; Xiao, B.; Shi, J.W.; He, C.; Wang, B.; Ma, D.; Cheng, Y.; Niu, C. Comprehensive understanding the promoting effect of Dy-doping on MnFeOx nanowires for the low-temperature NH3-SCR of NOx: An experimental and theoretical study. J. Catal. 2019, 380, 55–67. [Google Scholar] [CrossRef]
- Xu, B.; Wang, Z.; Hu, J.; Zhang, L.; Zhang, Z.; Liang, H.; Zhang, Y.; Fan, G. Dy-modified Mn/TiO2 catalyst used for the selective catalytic reduction of NO in ammonia at low temperatures. Molecules 2024, 29, 277. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, K.; ZHANG, Y.P.; HUANG, T.J.; Bin, L.U.; Kai, S.H.E.N. Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR. J. Fuel Chem. Technol. 2017, 45, 1356–1364. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, S.; Wang, A.; Guo, Y.; Guo, Y.; Wang, L.; Zhan, W. Er-modified MnOx for selective catalytic reduction of NOx with NH3 at low temperature: Promoting effect of erbium on catalytic performance. J. Rare Earth 2023, 41, 917–925. [Google Scholar] [CrossRef]
- Niu, C.; Wang, B.; Xing, Y.; Su, W.; He, C.; Xiao, L.; Xu, Y.; Zhao, S.; Cheng, Y.; Shi, J.W. Thulium modified MnOx/TiO2 catalyst for the low-temperature selective catalytic reduction of NO with ammonia. J. Clean. Prod. 2021, 290, 125858. [Google Scholar] [CrossRef]
- Liu, J.; Lv, D.; Wang, Y.; Zhao, Y.; Li, G.; Zhang, G. Influence of catalyst structural remodelling on the performance of NH3-SCR reactions: A Mini Review. ChemCatChem, 2024; e202401076, Early View. [Google Scholar] [CrossRef]
- Zha, K.; Cai, S.; Hu, H.; Li, H.; Yan, T.; Shi, L.; Zhang, D. In situ DRIFTs investigation of promotional effects of tungsten on MnOx-CeO2/meso-TiO2 catalysts for NOx reduction. J. Phys. Chem. C 2017, 121, 25243–25254. [Google Scholar] [CrossRef]
- Xue, H.; Guo, X.; Mao, D.; Meng, T.; Yu, J.; Ma, Z. Phosphotungstic acid-modified MnOx for selective catalytic reduction of NOx with NH3. Catalysts 2022, 12, 1248. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Wang, J.; Chen, Q.; Zhang, Z.; Pan, X.; Miao, Z.; Zhan, B.; Wu, Z.; Yang, X. BiMnO3 perovskite catalyst for selective catalytic reduction of NO with NH3 at low temperature. Chin. J. Catal. 2012, 33, 1448–1454. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, W.; Wu, H.; Liu, Q.; Yao, L. Promoting effect of Si on MnOx catalysts for low-temperature NH3-SCR of NO: Enhanced N2 selectivity and SO2 resistance. Fuel 2024, 355, 129478. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Ma, C.; Zhang, Y.; Qiao, W.; Ling, L. Development of highly active three-dimensional cross-linked structural manganese-titanium composite oxides for NOx abatement: Insight into the resistance to sulfur and alkali metal poisoning mechanism. Chem. Eng. J. 2023, 474, 145573. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Q.; Li, H.; Li, X.; Wang, L.; Tsang, S.C. Cr–MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature. J. Catal. 2010, 276, 56–65. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, F.; Li, H.; Yang, Q.; Wang, L.; Li, X. Low-temperature selective catalytic reduction of NOx with NH3 over Fe–Mn mixed-oxide catalysts containing Fe3Mn3O8 phase. Ind. Eng. Chem. Res. 2012, 51, 202–212. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, F.; Sun, R.; Tian, J.; Wang, Q.; Dai, B.; Dan, J.; Pfeiffer, H. Two-dimensional MnFeCo layered double oxide as catalyst for enhanced selective catalytic reduction of NOx with NH3 at low temperature (25–150 °C). Appl. Catal. A Gen. 2020, 592, 117432. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, L.; Niu, S.; Lu, C.; Wang, D.; Zhang, Q.; Li, J. Iron-manganese-magnesium mixed oxides catalysts for selective catalytic reduction of NOx with NH3. Korean J. Chem. Eng. 2017, 34, 1858–1866. [Google Scholar] [CrossRef]
- Chen, S.; Yan, Q.; Zhang, C.; Wang, Q. A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR. Catal. Today 2019, 327, 81–89. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, S.; Wang, M.; Yang, J.; Chen, Z.; Chen, L. Mn and Fe oxides co-effect on nanopolyhedron CeO2 catalyst for NH3-SCR of NO. J. Energy Inst. 2021, 99, 97–104. [Google Scholar] [CrossRef]
- Yu, J.; Guo, F.; Wang, Y.; Zhu, J.; Liu, Y.; Su, F.; Gao, S.; Xu, G. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Appl. Catal. B 2010, 95, 160–168. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, N.; Wang, Z.; Sun, W.; Sun, K. Porous bimetallic Mn2Co1Ox catalysts prepared by a one-step combustion method for the low temperature selective catalytic reduction of NOx with NH3. Catal. Commun. 2015, 72, 111–115. [Google Scholar] [CrossRef]
- Hu, X.; Huang, L.; Zhang, J.; Li, H.; Zha, K.; Shi, L.; Zhang, D. Facile and template-free fabrication of mesoporous 3D nanosphere-like MnxCo3–xO4 as highly effective catalysts for low temperature SCR of NOx with NH3. J. Mater. Chem. A 2018, 6, 2952–2963. [Google Scholar] [CrossRef]
- Jiang, H.; Kong, D.; Niu, Y.; Wang, S. Synthesis of Co-doped MnO2 catalysts with the assistance of PVP for low-temperature SCR. Catal. Sci. Technol. 2020, 10, 8086–8093. [Google Scholar] [CrossRef]
- Chen, R.; Fang, X.; Li, J.; Zhang, Y.; Liu, Z. Mechanistic investigation of the enhanced SO2 resistance of Co-modified MnOx catalyst for the selective catalytic reduction of NOx by NH3. Chem. Eng. J 2023, 452, 139207. [Google Scholar] [CrossRef]
- Qiu, M.; Zhan, S.; Yu, H.; Zhu, D. Low-temperature selective catalytic reduction of NO with NH3 over ordered mesoporous MnxCo3−xO4 catalyst. Catal. Commun. 2015, 62, 107–111. [Google Scholar] [CrossRef]
- Gao, F.; Tang, X.; Yi, H.; Li, J.; Zhao, S.; Wang, J.; Chu, C.; Li, C. Promotional mechanisms of activity and SO2 tolerance of Co-or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chem. Eng. J. 2017, 317, 20–31. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Chen, L.; Zhang, Y.; Mi, Y.; Liao, M.; Liu, W.; Wu, D.; Li, Z.; Peng, H. Ternary MnCoVOx catalysts with remarkable deNOx performance: Dual acid-redox sites control strategy. Appl. Catal. B 2022, 318, 121779. [Google Scholar] [CrossRef]
- Wan, Y.; Zhao, W.; Tang, Y.; Li, L.; Wang, H.; Cui, Y.; Gu, J.; Li, Y.; Shi, J. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3. Appl. Catal. B 2014, 148, 114–122. [Google Scholar] [CrossRef]
- Gao, F.; Tang, X.; Sani, Z.; Yi, H.; Zhao, S.; Yu, Q.; Zhou, Y.; Shi, Y.; Ni, S. Spinel-structured Mn–Ni nanosheets for NH3-SCR of NO with good H2O and SO2 resistance at low temperature. Catal. Sci. Technol. 2020, 10, 7486–7501. [Google Scholar] [CrossRef]
- Han, Y.; Mu, J.; Li, X.; Gao, J.; Fan, S.; Tan, F.; Zhao, Q. Triple-shelled NiMn2O4 hollow spheres as an efficient catalyst for low-temperature selective catalytic reduction of NOx with NH3. Chem. Commun. 2018, 54, 9797–9800. [Google Scholar] [CrossRef]
- Yan, Q.; Xiao, J.; Gui, R.; Chen, Z.; Wang, Y.; Li, Y.; Zhu, T.; Wang, Q.; Xin, Y. Insights into enhancement of NH3-SCR activity and N2 selectivity of LDHs-derived NiMnAlOx catalysts: Combination of experiments and DFT calculations. Appl. Catal. B 2024, 343, 123489. [Google Scholar] [CrossRef]
- Hou, Q.; Liu, Y.; Hou, Y.; Han, X.; Huang, Z. Tunable highly dispersed Nia-xMnxAlOy catalysts derived from layered double oxide for low temperature NOx removal. Catal. Lett. 2024, 154, 4389–4402. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Li, R.; Zhao, Q.; Ke, J.; Xiao, H.; Wang, L.; Liu, S.; Tade, M.; Wang, S. Facile synthesis of tube-shaped Mn-Ni-Ti solid solution and preferable Langmuir-Hinshelwood mechanism for selective catalytic reduction of NOx by NH3. Appl. Catal. A Gen. 2018, 549, 289–301. [Google Scholar] [CrossRef]
- Chen, L.; Li, R.; Li, Z.; Yuan, F.; Niu, X.; Zhu, Y. Effect of Ni doping in NixMn1− xTi10 (x = 0.1–0.5) on activity and SO2 resistance for NH3-SCR of NO studied with in situ DRIFTS. Catal. Sci. Technol. 2017, 7, 3243–3257. [Google Scholar] [CrossRef]
- Yan, Q.; Xiao, J.; Gui, R.; Chen, Z.; Li, Y.; Zhu, T.; Wang, Q.; Xin, Y. Mechanistic insight into the promotion of the low-temperature NH3–SCR activity over NiMnFeOx LDO catalysts: A Combined Experimental and DFT Study. Environ. Sci. Technol. 2023, 57, 20708–20717. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Chen, Z.; Wang, F.; Yu, Y.; Wang, L.; Li, X. Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn–Zr mixed oxide catalysts. Ind. Eng. Chem. Res. 2014, 53, 2647–2655. [Google Scholar] [CrossRef]
- Zhang, B.; Liebau, M.; Liu, B.; Li, L.; Zhang, S.; Gläser, R. Selective catalytic reduction of NOx with NH3 over Mn–Zr–Ti mixed oxide catalysts. J. Mater. Sci. 2019, 54, 6943–6960. [Google Scholar] [CrossRef]
- Lian, Z.; Liu, F.; He, H.; Shi, X.; Mo, J.; Wu, Z. Manganese–niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chem. Eng. J. 2014, 250, 390–398. [Google Scholar] [CrossRef]
- Chang, H.; Li, J.; Chen, X.; Ma, L.; Yang, S.; Schwank, J.W.; Hao, J. Effect of Sn on MnOx–CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2. Catal. Commun. 2012, 27, 54–57. [Google Scholar] [CrossRef]
- Wang, C.; Gao, F.; Ko, S.; Liu, H.; Yi, H.; Tang, X. Structural control for inhibiting SO2 adsorption in porous MnCe nanowire aerogel catalysts for low-temperature NH3-SCR. Chem. Eng. J. 2022, 434, 134729. [Google Scholar] [CrossRef]
- Song, J.; Liu, S.; Ji, Y.; Xu, W.; Yu, J.; Liu, B.; Chen, W.; Zhang, J.; Jia, L.; Zhu, T.; et al. Dual single-atom Ce-Ti/MnO2 catalyst enhances low-temperature NH3-SCR performance with high H2O and SO2 resistance. Nano Res. 2023, 16, 299–308. [Google Scholar] [CrossRef]
- Wei, Y.; Jin, S.; Zhang, R.; Li, W.; Wang, J.; Yang, S.; Wang, H.; Yang, M.; Liu, Y.; Qiao, W.; et al. Preparation of mesoporous Mn–Ce–Ti–O aerogels by a one-pot sol–gel method for selective catalytic reduction of NO with NH3. Materials 2020, 13, 475. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhu, J.; Li, J.; Ma, L.; Woo, S.I. Novel Mn–Ce–Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3. ACS Appl. Mater. Interfaces 2014, 6, 14500–14508. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yao, X.; Cao, J.; Yang, F.; Tang, C.; Dong, L. Effect of Ti4+ and Sn4+ co-incorporation on the catalytic performance of CeO2-MnOx catalyst for low temperature NH3-SCR. Appl. Surf. Sci. 2019, 476, 283–292. [Google Scholar] [CrossRef]
- Meng, D.; Zhan, W.; Guo, Y.; Guo, Y.; Wang, L.; Lu, G. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: Promotional role of Sm and its catalytic performance. ACS Catal. 2015, 5, 5973–5983. [Google Scholar] [CrossRef]
- Gao, C.; Shi, J.W.; Fan, Z.; Wang, B.; Wang, Y.; He, C.; Wang, X.; Li, J.; Niu, C. “Fast SCR” reaction over Sm-modified MnOx-TiO2 for promoting reduction of NOx with NH3. Appl. Catal. A Gen. 2018, 564, 102–112. [Google Scholar] [CrossRef]
- Xu, Q.; Fang, Z.; Chen, Y.; Guo, Y.; Guo, Y.; Wang, L.; Wang, Y.; Zhang, J.; Zhan, W. Titania–samarium–manganese composite oxide for the low-temperature selective catalytic reduction of NO with NH3. Environ. Sci. Technol. 2020, 54, 2530–2538. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, S.; Wang, M.; Yang, J.; Chen, L.; Liu, W.; Liu, Q.; Su, B. Insights into samarium doping effects on catalytic activity and SO2 tolerance of MnFeOx catalyst for low-temperature NH3-SCR reaction. Fuel 2022, 321, 124113. [Google Scholar] [CrossRef]
- Sun, C.; Liu, H.; Chen, W.; Chen, D.; Yu, S.; Liu, A.; Dong, L.; Feng, S. Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction. Chem. Eng. J. 2018, 347, 27–40. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.; Han, L.; Hou, Y.; Bao, W.; Zhang, C.; Feng, G.; Chang, L.; Huang, Z.; Wang, J. Improved activity and SO2 resistance by Sm-modulated redox of MnCeSmTiOx mesoporous amorphous oxides for low-temperature NH3-SCR of NO. ACS Catal. 2020, 10, 9034–9045. [Google Scholar] [CrossRef]
- Sun, P.; Guo, R.T.; Liu, S.M.; Wang, S.X.; Pan, W.G.; Li, M.Y. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu. Appl. Catal. A Gen. 2017, 531, 129–138. [Google Scholar] [CrossRef]
- Fan, Z.; Shi, J.W.; Gao, C.; Gao, G.; Wang, B.; Wang, Y.; He, C.; Niu, C. Gd-modified MnOx for the selective catalytic reduction of NO by NH3: The promoting effect of Gd on the catalytic performance and sulfur resistance. Chem. Eng. J. 2018, 348, 820–830. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, X.; Feng, Y.; Si, Z.; Weng, D. Effects of WO3 doping on stability and N2O escape of MnOx–CeO2 mixed oxides as a low-temperature SCR catalyst. Catal. Commun. 2015, 69, 188–192. [Google Scholar] [CrossRef]
- Yang, S.; Qi, F.; Xiong, S.; Dang, H.; Liao, Y.; Wong, P.K.; Li, J. MnOx supported on Fe–Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity. Appl. Catal. B 2016, 181, 570–580. [Google Scholar] [CrossRef]
- Jia, B.; Guo, J.; Shu, S.; Fang, N.; Li, J.; Chu, Y. Effects of different Zr/Ti ratios on NH3–SCR over MnOx/ZryTi1-yO2: Characterization and reaction mechanism. Mol. Catal. 2017, 443, 25–37. [Google Scholar] [CrossRef]
- Lee, S.M.; Park, K.H.; Hong, S.C. MnOx/CeO2–TiO2 mixed oxide catalysts for the selective catalytic reduction of NO with NH3 at low temperature. Chem. Eng. J. 2012, 195, 323–331. [Google Scholar] [CrossRef]
- Shen, B.; Zhang, X.; Ma, H.; Yao, Y.; Liu, T. A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O. J. Environ. Sci. 2013, 25, 791–800. [Google Scholar] [CrossRef]
- Zhang, Q.; Qiu, C.; Xu, H.; Lin, T.; Lin, Z.; Gong, M.; Chen, Y. Low-temperature selective catalytic reduction of NO with NH3 over monolith catalyst of MnOx/CeO2–ZrO2–Al2O3. Catal. Today 2011, 175, 171–176. [Google Scholar] [CrossRef]
- Wang, H.; Chen, W.; Jin, W.; Liu, Y. Mn mixed oxide catalysts supported on Sn-doped CoAl-LDO for low-temperature NH3-SCR. Catal. Sci. Technol. 2023, 13, 3147–3157. [Google Scholar] [CrossRef]
- Xie, A.; Tang, Y.; Huang, X.; Jin, X.; Gu, P.; Luo, S.; Yao, C.; Li, X. Three-dimensional nanoflower MnCrOx/Sepiolite catalyst with increased SO2 resistance for NH3-SCR at low temperature. Chem. Eng. J. 2019, 370, 897–905. [Google Scholar] [CrossRef]
- Mu, J.; Li, X.; Sun, W.; Fan, S.; Wang, X.; Wang, L.; Qin, M.; Gan, G.; Yin, Z.; Zhang, D. Enhancement of low-temperature catalytic activity over a highly dispersed Fe–Mn/Ti catalyst for selective catalytic reduction of NOx with NH3. Ind. Eng. Chem. Res. 2018, 57, 10159–10169. [Google Scholar] [CrossRef]
- Shen, B.; Liu, T.; Zhao, N.; Yang, X.; Deng, L. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. J. Environ. Sci. 2010, 22, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, B.; Smirniotis, P.G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. J. Catal. 2012, 288, 74–83. [Google Scholar] [CrossRef]
- Xiao, F.; Gu, Y.; Tang, Z.; Han, F.; Shao, J.; Xu, Q.; Zhu, H. ZrO2 modified MnOx/attapulgite catalysts for NH3-SCR of NO at low temperature. J. Chem. Eng. Jpn. 2015, 48, 481–487. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, X.; Zhao, T.; Cui, R.; Zhang, J.; Tang, Z. Rationally designed confined structure Ce-Mn-TNTs catalyst for low-temperature NH3-SCR reaction with superior activity and H2O/SO2 tolerance. ACS Sustain. Chem. Eng. 2024, 12, 9987–10001. [Google Scholar] [CrossRef]
- Jin, R.; Liu, Y.; Wang, Y.; Cen, W.; Wu, Z.; Wang, H.; Weng, X. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl. Catal. B 2014, 148, 582–588. [Google Scholar] [CrossRef]
- Li, F.; Xie, J.; Fang, D.; He, F.; Qi, K.; Gong, P. Mechanistic study of Ce-modified MnOx/TiO2 catalysts with high NH3-SCR performance and SO2 resistance at low temperatures. Res. Chem. Intermediat. 2017, 43, 5413–5432. [Google Scholar] [CrossRef]
- Zhao, X.; Mao, L.; Dong, G. Mn-Ce-V-WOx/TiO2 SCR catalysts: Catalytic activity, stability and interaction among catalytic oxides. Catalysts 2018, 8, 76. [Google Scholar] [CrossRef]
- Huang, J.; Huang, H.; Jiang, H.; Liu, L. The promotional role of Nd on Mn/TiO2 catalyst for the low-temperature NH3-SCR of NOx. Catal. Today 2019, 332, 49–58. [Google Scholar] [CrossRef]
- Liu, J.; Guo, R.T.; Li, M.Y.; Sun, P.; Liu, S.M.; Pan, W.G.; Liu, S.W.; Sun, X. Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study. Fuel 2018, 223, 385–393. [Google Scholar] [CrossRef]
- Li, W.; Zhang, C.; Li, X.; Tan, P.; Zhou, A.; Fang, Q.; Chen, G. Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NOx with NH3: Evaluation and characterization. Chin. J. Catal. 2018, 39, 1653–1663. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Q.; Wang, Q. Design of practical Ce/CoMnAl-LDO catalyst for low-temperature NH3-SCR. Catal. Commun. 2020, 142, 106037. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Q.; Ran, G.; Kong, M.; Ren, S.; Yang, J.; Li, J. V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO. Chem. Eng. J. 2019, 370, 810–821. [Google Scholar] [CrossRef]
- Wang, C.; Sani, Z.; Tang, X.; Wang, Y.; Yi, H.; Gao, F. Novel Ni-Mn bi-oxides doped active coke catalysts for NH3-SCR De-NOx at low temperature. ChemistrySelect 2020, 5, 6494–6503. [Google Scholar] [CrossRef]
- Li, R.; Yue, T.; Zheng, Y.; Li, G.; Gao, J.; Tong, Y.; Wang, J.; Ma, M.; Su, W. Promotional mechanism of La-Mn-Fe modification on activated coke for NH3-SCR of NOx at low temperatures. Fuel 2024, 371, 132016. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, J.; Tong, W.; Zhang, T.; Kong, M.; Ren, S. Low-temperature flue gas denitration with transition metal oxides supported on biomass char. J. Energy Inst. 2019, 92, 1158–1166. [Google Scholar] [CrossRef]
- Chen, L.; Ren, S.; Liu, W.; Yang, J.; Chen, Z.; Wang, M.; Liu, Q. Low-temperature NH3-SCR activity of M (M= Zr, Ni and Co) doped MnOx supported biochar catalysts. J. Environ. Chem. Eng. 2021, 9, 106504. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, D.; Cai, S.; Zhang, L.; Huang, L.; Li, H.; Maitarad, P.; Shi, L.; Gao, R.; Zhang, J. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route. Nanoscale 2013, 5, 9199–9207. [Google Scholar] [CrossRef]
- Pourkhalil, M.; Moghaddam, A.Z.; Rashidi, A.; Towfighi, J.; Mortazavi, Y. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3. Appl. Surf. Sci. 2013, 279, 250–259. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Fang, C.; Gao, R.; Qian, Y.; Shi, L.; Zhang, J. MnOx–CeOx/CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3. RSC Adv. 2013, 3, 8811–8819. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Shi, L.; Fang, C.; Li, H.; Gao, R.; Huang, L.; Zhang, J. In situ supported MnOx–CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale 2013, 5, 1127–1136. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, P.; Pu, Y.; Jiang, L.; Yang, L.; Jiang, W.; Yao, L. MnCe/GAC-CNTs catalyst with high activity, SO2 and H2O tolerance for low-temperature NH3-SCR. Sep. Purif. Technol. 2023, 305, 122498. [Google Scholar] [CrossRef]
- You, X.; Sheng, Z.; Yu, D.; Yang, L.; Xiao, X.; Wang, S. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature. Appl. Surf. Sci. 2017, 423, 845–854. [Google Scholar] [CrossRef]
- Sheng, Z.; Ma, D.; Yu, D.; Xiao, X.; Huang, B.; Yang, L.; Wang, S. Synthesis of novel MnOx@ TiO2 core-shell nanorod catalyst for low-temperature NH3-selective catalytic reduction of NOx with enhanced SO2 tolerance. Chin. J. Catal. 2018, 39, 821–830. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, G.; Han, W.; Tang, Z. The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating. Chem. Eng. J. 2021, 426, 131334. [Google Scholar] [CrossRef]
- Ma, D.; Yang, L.; Huang, B.; Wang, L.; Wang, X.; Sheng, Z.; Dong, F. MnOx–CeO2@TiO2 core–shell composites for low temperature SCR of NOx. New J. Chem. 2019, 43, 15161–15168. [Google Scholar] [CrossRef]
- Cheng, S.; Shao, J.; Huang, B.; Guan, J.; Zhou, L. Promotion effect of urchin-like MnOx@PrOx hollow core–shell structure catalysts for the low-temperature selective catalytic reduction of NO with NH3. RSC Adv. 2020, 10, 13855–13865. [Google Scholar] [CrossRef]
- Li, S.; Huang, B.; Yu, C. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO. Catal. Commun. 2017, 98, 47–51. [Google Scholar] [CrossRef]
- Gan, L.; Li, K.; Yang, W.; Chen, J.; Peng, Y.; Li, J. Core-shell-like structured α-MnO2@CeO2 catalyst for selective catalytic reduction of NO: Promoted activity and SO2 tolerance. Chem. Eng. J. 2020, 391, 123473. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, G.; Tang, Z.; Zhang, J. MnFe@ CeOx core–shell nanocages for the selective catalytic reduction of NO with NH3 at low temperature. ACS Appl. Nano Mater. 2022, 5, 3619–3631. [Google Scholar] [CrossRef]
- Yu, C.; Hou, D.; Huang, B.; Lu, M.; Peng, R.; Zhong, Z. A MnOx@Eu-CeOx nanorod catalyst with multiple protective effects: Strong SO2-tolerance for low temperature DeNOx processes. J. Hazard. Mater. 2020, 399, 123011. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Y.; Zhang, Y.; Yang, Y.; Huang, Z. Confinement of MnOx@Fe2O3 core-shell catalyst with titania nanotubes: Enhanced N2 selectivity and SO2 tolerance in NH3-SCR process. J. Colloid Interface Sci. 2022, 608, 2224–2234. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Huang, X.; Cui, R.; Zhang, G.; Tang, Z. Unveiling a remarkable enhancement role by designing a confined structure Ho-TNTs@Mn catalyst for low-temperature NH3-SCR reaction. Nanoscale 2023, 15, 12540–12557. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Huang, X.; Cui, R.; Song, X.; Tang, Z. Design the confinement structure Mn-TNTs@Ce catalyst for selective catalytic reduction of nitrogen oxides with superior SO2 resistance over a wider operation window. Appl. Catal. B 2024, 358, 124353. [Google Scholar] [CrossRef]
- Huang, X.; Dong, F.; Zhang, G.; Guo, Y.; Tang, Z. A strategy for constructing highly efficient yolk-shell Ce@Mn@TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3. Chem. Eng. J. 2021, 419, 129572. [Google Scholar] [CrossRef]
- Yan, R.; Lin, S.; Li, Y.; Liu, W.; Mi, Y.; Tang, C.; Wang, L.; Peng, H. Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NOx with enhanced SO2/H2O tolerance. J. Hazard Mater. 2020, 396, 122592. [Google Scholar] [CrossRef]
- Cai, S.; Hu, H.; Li, H.; Shi, L.; Zhang, D. Design of multi-shell Fe2O3@ MnOx@CNTs for the selective catalytic reduction of NO with NH3: Improvement of catalytic activity and SO2 tolerance. Nanoscale 2016, 8, 3588–3598. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, D.; Zhang, J.; Cai, S.; Fang, C.; Huang, L.; Li, H.; Gao, R.; Shi, L. Design of meso-TiO2@MnOx–CeOx/CNTs with a core–shell structure as DeNOx catalysts: Promotion of activity, stability and SO2-tolerance. Nanoscale 2013, 5, 9821–9829. [Google Scholar] [CrossRef]
- Qi, Z.; Gao, F.; Ko, S.; Tang, X.; Yi, H.; Liu, H.; Luo, N.; Du, Y. Synthesis of novel Co(3-x) MnxO4@TiO2 core-shell catalyst for low-temperature NH3-SCR of NOx with enhanced SO2 tolerance. Chem. Phys. 2022, 5, 100120. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Z.; Xu, Y.; Li, Q. Promoting effect of Ti addition on three-dimensionally ordered macroporous Mn-Ce catalysts for NH3-SCR reaction: Enhanced N2 selectivity and remarkable water resistance. Appl. Surf. Sci. 2021, 569, 151047. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, B.; Chen, J.; Sun, Y.; Xu, M. Effect of Fe doping on NH3 adsorption and resistance to sulfur poisoning on the surface of β-MnO2 (110): A DFT-D study. J. Mater. Sci. 2022, 57, 18468–18485. [Google Scholar] [CrossRef]
- Tian, B.; Ma, S.; Guo, J.; Zhao, Y.; Gao, T.; Jiang, X. Superior indicative and regulative function of Fe doping amount for MnO2 catalyst with an oxygen vacancy in NH3-SCR reaction: A DFT+ U study. Appl. Surf. Sci. 2022, 601, 154162. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, B.; Liu, Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B 2008, 79, 347–355. [Google Scholar] [CrossRef]
- Lin, Q.; Li, J.; Ma, L.; Hao, J. Selective catalytic reduction of NO with NH3 over Mn–Fe/USY under lean burn conditions. Catal. Today 2010, 151, 251–256. [Google Scholar] [CrossRef]
- Feng, X.; Wang, B.; Gao, G.; Gao, S.; Xie, C.; Shi, J.W. MnyCo3−yOx bimetallic oxide prepared by ultrasonic technology for significantly improved catalytic performance in the reduction of NOx with NH3. Fuel 2023, 352, 129159. [Google Scholar] [CrossRef]
- Kang, H.; Wang, J.; Zheng, J.; Chu, W.; Tang, C.; Ji, J.; Ren, R.; Wu, M.; Jing, F. Solvent-free elaboration of Ni-doped MnOx catalysts with high performance for NH3-SCR in low and medium temperature zones. Mol. Catal. 2021, 501, 111376. [Google Scholar] [CrossRef]
- Liu, J.; Wu, X.; Hou, B.; Du, Y.; Liu, L.; Yang, B. NiMn2O4 sphere catalyst for the selective catalytic reduction of NO by NH3: Insight into the enhanced activity via solvothermal method. J. Environ. Chem. Eng. 2021, 9, 105152. [Google Scholar] [CrossRef]
- Che, Y.; Liu, X.; Shen, Z.; Zhang, K.; Hu, X.; Chen, A.; Zhang, D. Improved N2 selectivity of MnOx catalysts for NOx reduction by engineering bridged Mn3+ sites. Langmuir 2023, 39, 7434–7443. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Zou, Y.; Liu, W.; Zhang, H.; Lu, S.; Li, Z.; Zhang, S.; Peng, H. Unveiling the remarkable deNOx performance of MnMoVOx catalysts via dual regulation of the redox and acid sites. Appl. Catal. B 2024, 344, 123612. [Google Scholar] [CrossRef]
- Li, M.; Gao, M.; He, G.; Yu, Y.; He, H. Mechanistic insight into the promotion of the low-temperature NH3-selective catalytic reduction activity over MnxCe1–xOy catalysts: A combined experimental and density functional theory study. Environ. Sci. Technol. 2023, 57, 3875–3882. [Google Scholar] [CrossRef]
- Fang, X.; Liu, Y.; Cheng, Y.; Cen, W. Mechanism of Ce-modified birnessite-MnO2 in promoting SO2 poisoning resistance for low-temperature NH3-SCR. ACS Catal. 2021, 11, 4125–4135. [Google Scholar] [CrossRef]
- Cheng, L.; Sin, S.; Ji, J.; Yang, S.; Tan, C.; Gu, Z.; Song, W.; Huang, C.; Sun, C.; Tang, C.; et al. Selective catalytic reduction of NO with NH3 over MnOx-CeO2 catalysts: The great synergy between CeO2 and crystalline phase of Mn3O4. Fuel 2023, 342, 127772. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, A.; Zhang, J.; Guo, Y.; Guo, Y.; Wang, L.; Zhan, W. Low-temperature NH3-SCR on Cex-Mn-Tiy mixed oxide catalysts: Improved performance by the mutual effect between Ce and Ti. Catalysts 2022, 12, 471. [Google Scholar] [CrossRef]
- Teng, Y.; Guo, X.; Xue, H.; Meng, T.; Han, L. Activity improvement of Mn/Al2O3 for NH3-SCR reaction via the rare-earth (Ce, La, Nd and Y) oxides modification. Catal. Lett. 2024, 154, 3645–3653. [Google Scholar] [CrossRef]
- Gevers, L.E.; Enakonda, L.R.; Shahid, A.; Ould-Chikh, S.; Silva, C.I.; Paalanen, P.P.; Aguilar-Tapia, A.; Jean-Louis, H.; Nejib Hedhili, M.; Wen, F.; et al. Unraveling the structure and role of Mn and Ce for NOx reduction in application-relevant catalysts. Nat. Commun. 2022, 13, 2960. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gu, T.; Weng, X.; Wang, Y.; Wu, Z.; Wang, H. DRIFT studies on the selectivity promotion mechanism of Ca-modified Ce-Mn/TiO2 catalysts for low-temperature NO reduction with NH3. J. Phys. Chem. C 2012, 116, 16582–16592. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, Y.J.; Lee, K.Y.; Ha, H.P.; Kwon, D.W. Surface insights into MnOx-based catalysts containing metal oxides for the selective catalytic reduction of NOx with NH3. Appl. Catal. A Gen. 2022, 643, 118770. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, F.; Ko, S.; Wang, C.; Liu, H.; Tang, X.; Yi, H.; Zhou, Y. Superior catalytic performance within H2O vapor of W-modified CoMn2O4/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2022, 434, 134770. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, G.; Tang, Z.; Zhang, J. Engineering yolk–shell MnFe@CeOx@TiOx nanocages as a highly efficient catalyst for selective catalytic reduction of NO with NH3 at low temperatures. Nanoscale 2022, 14, 12281–12296. [Google Scholar] [CrossRef]
- Qiao, T.; Liu, Z.; Liu, C.; Meng, W.; Sun, H.; Lu, Y. MnOx location on MnOx-ZSM-5 to influence the catalytic activity for selective catalytic reduction of NOx by NH3. Appl. Catal. A Gen. 2021, 617, 118128. [Google Scholar] [CrossRef]
- Ran, X.; Li, M.; Wang, K.; Qian, X.; Fan, J.; Sun, Y.; Luo, W.; Teng, W.; Zhang, W.; Yang, J. Spatially confined tuning the interfacial synergistic catalysis in mesochannels toward selective catalytic reduction. ACS Appl. Mater. Interfaces 2019, 11, 19242–19251. [Google Scholar] [CrossRef]
- Guo, K.; Fan, G.; Gu, D.; Yu, S.; Ma, K.; Liu, A.; Tan, W.; Wang, J.; Du, X.; Zou, W.; et al. Pore size expansion accelerates ammonium bisulfate decomposition for improved sulfur resistance in low-temperature NH3-SCR. ACS Appl. Mater. Interfaces 2019, 11, 4900–4907. [Google Scholar] [CrossRef] [PubMed]
- Ito, E.; Hultermans, R.J.; Lugt, P.M.; Burgers, M.H.W.; Rigutto, M.S.; Van Bekkum, H.; Van den Bleek, C.M. Selective reduction of NOx with ammonia over cerium-exchanged mordenite. Appl. Catal. B 1994, 4, 95–104. [Google Scholar] [CrossRef]
- Liu, J.; Shi, X.; Lv, Z.; Yu, Y.; He, H. Ceria–tungsten–tin oxide catalysts with superior regeneration capacity after sulfur poisoning for NH3-SCR process. Catal. Sci. Technol. 2022, 12, 2471–2481. [Google Scholar] [CrossRef]
- Li, P.; Xin, Y.; Li, Q.; Wang, Z.; Zhang, Z.; Zheng, L. Ce–Ti amorphous oxides for selective catalytic reduction of NO with NH3: Confirmation of Ce–O–Ti active sites. Environ. Sci. Technol. 2012, 46, 9600–9605. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J.; Xin, L.; Zhang, T.; Xu, Y.; Jiang, F.; Liu, X. Unraveling reactivity descriptors and structure sensitivity in low-temperature NH3-SCR reaction over CeTiOx catalysts: A combined computational and experimental study. ACS Catal. 2021, 11, 7613–7636. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, H.; Dong, L. Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Catal. Sci. Technol. 2016, 6, 1248–1264. [Google Scholar] [CrossRef]
- Ma, L.; Seo, C.Y.; Nahata, M.; Chen, X.; Li, J.; Schwank, J.W. Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NOx with NH3. Appl. Catal. B 2018, 232, 246–259. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, R.T.; Wu, L.J.; Pan, W.G. The enhancement of NH3-SCR performance for CeO2 catalyst by CO pretreatment. Environ. Sci. Pollut. Res. 2020, 27, 13617–13636. [Google Scholar] [CrossRef]
- Yao, X.; Wang, Z.; Yu, S.; Yang, F.; Dong, L. Acid pretreatment effect on the physicochemical property and catalytic performance of CeO2 for NH3-SCR. Appl. Catal. A Gen. 2017, 542, 282–288. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Q.; Wang, X.; Cong, Q.; Ma, H.; Guo, T.; Li, S.; Li, W. High-performance CeO2/halloysite hierarchical catalysts with promotional redox property and acidity for the selective catalytic reduction of NO with NH3. Chem. Eng. J. 2020, 390, 124251. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Cao, Y.; Yao, X.; Ge, C.; Gao, F.; Deng, Y.; Tang, C.; Dong, L. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3. Appl. Catal. B 2015, 165, 589–598. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, R.; Wang, M.; Li, Y.; Tong, Y.; Yang, P.; Zhu, Y. Two steps synthesis of CeTiOx oxides nanotube catalyst: Enhanced activity, resistance of SO2 and H2O for low temperature NH3-SCR of NOx. Appl. Catal. B 2021, 282, 119542. [Google Scholar] [CrossRef]
- Yao, X.; Kang, K.; Cao, J.; Chen, L.; Luo, W.; Zhao, W.; Rong, J.; Chen, Y. Enhancing the denitration performance and anti-K poisoning ability of CeO2-TiO2/P25 catalyst by H2SO4 pretreatment: Structure-activity relationship and mechanism study. Appl. Catal. B 2020, 269, 118808. [Google Scholar] [CrossRef]
- Zhou, Q.; He, K.; Wang, X.; Lim, K.H.; Liu, P.; Wang, W.; Wang, Q. Investigation on the redox/acidic features of bimetallic MOF-derived CeMOx catalysts for low-temperature NH3-SCR of NOx. Appl. Catal. A Gen. 2022, 643, 118796. [Google Scholar] [CrossRef]
- Zhang, R.; Zhong, Q.; Zhao, W.; Yu, L.; Qu, H. Promotional effect of fluorine on the selective catalytic reduction of NO with NH3 over CeO2-TiO2 catalyst at low temperature. Appl. Surf. Sci. 2014, 289, 237–244. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, Y.; Hongmanorom, P.; Wang, Z.; Zhang, S.; Chen, J.; Zhong, Q.; Kawi, S. Active sites adjustable phosphorus promoted CeO2/TiO2 catalysts for selective catalytic reduction of NOx by NH3. Chem. Eng. J. 2021, 409, 128242. [Google Scholar] [CrossRef]
- Zhao, W.; Tang, Y.; Wan, Y.; Li, L.; Yao, S.; Li, X.; Gu, J.; Li, Y.; Shi, J. Promotion effects of SiO2 or/and Al2O3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3. J. Hazard. Mater. 2014, 278, 350–359. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Li, J.; Ma, L.; Arandiyan, H.; Du, Y.; Xu, J.; Hao, J. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2–SiO2 for the selective catalytic reduction of NO by NH3. Environ. Sci. Technol. 2012, 46, 6182–6189. [Google Scholar] [CrossRef]
- Li, L.; Tan, W.; Wei, X.; Fan, Z.; Liu, A.; Guo, K.; Ma, K.; Yu, S.; Ge, C.; Tang, C.; et al. Mo doping as an effective strategy to boost low temperature NH3-SCR performance of CeO2/TiO2 catalysts. Catal. Commun. 2018, 114, 10–14. [Google Scholar] [CrossRef]
- Wang, D.; Peng, Y.; Yang, Q.; Hu, F.; Li, J.; Crittenden, J. NH3-SCR performance of WO3 blanketed CeO2 with different morphology: Balance of surface reducibility and acidity. Catal. Today 2019, 332, 42–48. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Zhao, K.; Shan, Y.; Ma, Y.; Wang, C.; Li, Z.; Sun, X.; Li, K.; He, H.; et al. The design of the highly active NH3-SCR catalyst Ce-W/UiO-66: Close coupling of active sites and acidic sites. Sep. Purif. Technol. 2022, 300, 121864. [Google Scholar] [CrossRef]
- Yang, B.; Shen, Y.; Zeng, Y.; Li, B.; Shen, S.; Zhu, S. Effects of tin doping level on structure, acidity and catalytic performance of Ti-Ce-Ox catalyst for selective catalytic reduction of NO by ammonia. J. Mol. Catal. A Chem. 2016, 418, 138–145. [Google Scholar] [CrossRef]
- Guo, R.T.; Li, M.Y.; Sun, P.; Pan, W.G.; Liu, S.M.; Liu, J.; Sun, X.; Liu, S.W. Mechanistic investigation of the promotion effect of bi modification on the NH3–SCR performance of Ce/TiO2 catalyst. J. Phys. Chem. C 2017, 121, 27535–27545. [Google Scholar] [CrossRef]
- Mu, Y.; Huang, X.; Tang, Z.; Wang, Q. Ordered mesoporous TiO2 framework confined CeSn catalyst exhibiting excellent high activity for selective catalytic reduction of NO with NH3 at low temperature. Chem. Eng. J. 2023, 454, 140181. [Google Scholar] [CrossRef]
- Zhang, G.; Han, W.; Zhao, H.; Zong, L.; Tang, Z. Solvothermal synthesis of well-designed ceria-tin-titanium catalysts with enhanced catalytic performance for wide temperature NH3-SCR reaction. Appl. Catal. B 2018, 226, 117–126. [Google Scholar] [CrossRef]
- Mu, Y.; Huang, X.; Tang, Z.; Wang, Q. Facile strategy to promote SO2-resistance ability for NH3-SCR catalyst CeSnTiOx via copper sulfate-modified: Boost from a double reaction site. Sep. Purif. Technol. 2025, 353, 128490. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Zhao, Q.; Ke, J.; Xiao, H.; Lv, X.; Liu, S.; Tade, M.; Wang, S. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: In situ FTIR analysis for structure-activity correlation. Appl. Catal. B 2017, 200, 297–308. [Google Scholar] [CrossRef]
- Chang, H.; Li, J.; Yuan, J.; Chen, L.; Dai, Y.; Arandiyan, H.; Xu, J.; Hao, J. Ge, Mn-doped CeO2–WO3 catalysts for NH3–SCR of NOx: Effects of SO2 and H2 regeneration. Catal. Today 2013, 201, 139–144. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, L.; Liebau, M.; Ren, Y.; Luo, C.; Liu, B.; Zhang, S.; Gläser, R. Promotion effect of niobium on ceria catalyst for selective catalytic reduction of NO with NH3. J. Rare Earth 2022, 40, 1535–1545. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, R. Rational design of porous CexNb1− x oxide hollow nanospheres as a novel NH3-SCR catalyst. J. Mater. Chem. A Mater. 2022, 10, 12269–12277. [Google Scholar] [CrossRef]
- Ma, S.; Gao, W.; Yang, Z.; Lin, R.; Wang, X.; Zhu, X.; Jiang, Y. Superior Ce–Nb–Ti oxide catalysts for selective catalytic reduction of NO with NH3. J. Energy Inst. 2021, 94, 73–84. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, W.; Bao, C.; Yang, Z.; Lin, R.; Wang, X. Comparative study of Ce-Nb-Ti oxide catalysts prepared by different methods for selective catalytic reduction of NO with NH3. Mol. Catal. 2020, 496, 111161. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, S.; Liu, Q.; Yang, P.; Cai, Y.; Tan, W.; Song, W.; Gao, F.; Dong, L. The enhancement effect of Nb over CeSi2 catalyst for the low-temperature NH3-SCR performance. Chem. Phys. 2023, 6, 100205. [Google Scholar] [CrossRef]
- Zhang, L.; Qu, H.; Du, T.; Ma, W.; Zhong, Q. H2O and SO2 tolerance, activity and reaction mechanism of sulfated Ni–Ce–La composite oxide nanocrystals in NH3-SCR. Chem. Eng. J. 2016, 296, 122–131. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, J.; Zhang, S.; Ma, L.; Woo, S.I. Selective catalytic reduction of NOx by NH3 over MoO3-promoted CeO2/TiO2 catalyst. Catal. Commun. 2014, 46, 90–93. [Google Scholar] [CrossRef]
- Tan, W.; Wang, J.; Cai, Y.; Li, L.; Xie, S.; Gao, F.; Liu, F.; Dong, L. Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NOx removal. Catal. Today 2022, 397, 475–483. [Google Scholar] [CrossRef]
- Liu, W.; Gao, Z.; Zhao, X.; Gao, J.; Yang, R.; Yu, L. Promotion effect of chromium on the activity and SO2 resistance of CeO2–TiO2 catalysts for the NH3-SCR reaction. Ind. Eng. Chem. Res. 2021, 60, 11676–11688. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Guo, R.T.; Guan, Z.Z.; Shi, X.; Pan, W.G.; Fu, Z.G.; Qin, H.; Liu, X.Y. The promotion effect of Cr additive on CeZr2Ox catalyst for the low-temperature selective catalytic reduction of NOx with NH3. Appl. Surf. Sci. 2019, 485, 133–140. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, R.; Chu, B.; Xie, S.; Chen, K.; Li, L.; Zhao, S.; Li, B.; Dong, L. Significantly enhanced activity and SO2 resistance of Zr-modified CeTiOx catalyst for low-temperature NH3-SCR by H2 reduction treatment. Mol. Catal. 2022, 518, 112069. [Google Scholar] [CrossRef]
- Gong, P.; Xie, J.; Fang, D.; He, F.; Li, F.; Qi, K. Enhancement of the NH3-SCR property of Ce-Zr-Ti by surface and structure modification with P. Appl. Surf. Sci. 2020, 505, 144641. [Google Scholar] [CrossRef]
- Jin, Q.; Chen, M.; Tao, X.; Lu, B.; Shen, J.; Shen, Y.; Zeng, Y. Component synergistic catalysis of Ce-Sn-W-Ba-Ox/TiO2 in selective catalytic reduction of NO with ammonia. Appl. Surf. Sci. 2020, 512, 145757. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, G.; Mu, B.; Tang, Z.; Zhang, J. The promoting effect of palygorskite on CeO2-WO3-TiO2 catalyst for the selective catalytic reduction of NOx with NH3. Appl. Clay Sci. 2020, 192, 105641. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, W.; Wu, Q.; Mi, J.; Wang, X.; Ma, L.; Jiang, L.; Au, C.; Li, J. Effects of anaerobic SO2 treatment on nano-CeO2 of different morphologies for selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2020, 382, 122910. [Google Scholar] [CrossRef]
- Tan, W.; Wang, J.; Li, L.; Liu, A.; Song, G.; Guo, K.; Luo, Y.; Liu, F.; Gao, F.; Dong, L. Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal. J. Hazard. Mater. 2020, 388, 121729. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Yu, D.; Sheng, Z.; Yang, L. Novel CeO2@TiO2 core–shell nanostructure catalyst for selective catalytic reduction of NOx with NH3. J. Environ. Sci. 2017, 55, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Luo, J.; Tang, W.; Li, B.; Li, A.; Zhou, D.; Ou, Y.; Hou, C. A superior CeO2@TiO2 catalyst with high dispersion of CeO2 for selective catalytic reduction of NOx with NH3. Appl. Catal. A Gen. 2023, 661, 119168. [Google Scholar] [CrossRef]
- Liu, J.; Huo, Y.; Shi, X.; Liu, Z.; Shan, Y.; Yu, Y.; Shan, W.; He, H. Insight into the remarkable enhancement of NH3-SCR performance of Ce-Sn oxide catalyst by tungsten modification. Catal. Today 2023, 410, 36–44. [Google Scholar] [CrossRef]
- Liu, C.; Bi, Y.; Wang, H.; Zhang, Z.; Wang, J.; Guo, M.; Liu, Q. Promotional effects on NH3-SCR performance of CeO2–SnO2 catalysts doped by TiO2: A mechanism study. Cataly. Surv. Asia 2021, 25, 48–57. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, X.; Chen, S.; Zhu, X.; Liu, H.; Chen, J.; Chen, D.; Sun, C.; Li, J. Hexavalent metal cations doped into ceria inducing the formation of binuclear sites Ce3+–O–Ce3+ to boost the NH3-SCR reaction. ACS Catal. 2024, 14, 7277–7288. [Google Scholar] [CrossRef]
- Liu, H.; Gao, C.; Chen, J.; Mi, J.; Yang, S.; Chen, D.; Si, W.; Peng, Y.; Sun, C.; Li, J. Optimized local geometry and electronic structure of MoO3/CeO2 catalyst by adding copper cations for boosted nitrogen oxide reduction performance. Appl. Catal. B 2023, 332, 122742. [Google Scholar] [CrossRef]
- Chen, W.; Gu, J.; He, B.; Duan, R.; Liu, L.; Wang, X. Computational screening and synthesis of M(M= Mo and Cu)-doped CeO2/silicalite-1 for medium-/low-temperature NH3–SCR. Ind. Eng. Chem. Res. 2022, 61, 10091–10105. [Google Scholar] [CrossRef]
- He, J.F.; Xiong, Z.B.; Du, Y.P.; Lu, W. Morphology effect of tungsten oxide on Ce/W catalyst for selective catalytic reduction of NO with NH3: Influence of structure-directing agents. J. Energy Inst. 2021, 94, 85–95. [Google Scholar] [CrossRef]
- Fang, X.; Qu, W.; Qin, T.; Hu, X.; Chen, L.; Ma, Z.; Liu, X.; Tang, X. Abatement of nitrogen oxides via selective catalytic reduction over Ce1–W1 atom-pair sites. Environ. Sci. Technol. 2022, 56, 6631–6638. [Google Scholar] [CrossRef] [PubMed]
- Inomata, Y.; Hata, S.; Mino, M.; Kiyonaga, E.; Morita, K.; Hikino, K.; Yoshida, K.; Kubota, H.; Toyao, T.; Shimizu, K.; et al. Bulk vanadium oxide versus conventional V2O5/TiO2: NH3–SCR catalysts working at a low temperature below 150 °C. ACS Catal. 2019, 9, 9327–9331. [Google Scholar] [CrossRef]
- Lian, Z.; Wei, J.; Shan, W.; Yu, Y.; Radjenovic, P.M.; Zhang, H.; He, G.; Liu, F.; Li, J.-F.; Tian, Z.-Q.; et al. Adsorption-induced active vanadium species facilitate excellent performance in low-temperature catalytic NOx abatement. J. Am. Chem. Soc. 2021, 143, 10454–10461. [Google Scholar] [CrossRef]
- Yin, Y.; Luo, B.; Li, K.; Moskowitz, B.M.; Mosevizky Lis, B.; Wachs, I.E.; Zhu, M.; Sun, Y.; Zhu, T.; Li, X. Plasma-assisted manipulation of vanadia nanoclusters for efficient selective catalytic reduction of NOx. Nat. Commun. 2024, 15, 3592. [Google Scholar] [CrossRef]
- Lin, L.Y.; Wang, Y.C.; Liu, Z.L. Highly active and stable VOx/TiO2 nanosheets for low-temperature NH3-SCR of NO: Structure-directing role of support. Chem. Eng. J. 2024, 484, 149637. [Google Scholar] [CrossRef]
- Hwang, K.H.; Park, N.; Lee, H.; Lee, K.M.; Jeon, S.W.; Kim, H.S.; Lee, Y.; Kim, T.J.; Lee, W.B.; Kim, D.H. Mechanochemical localization of vanadia on titania to prepare a highly sulfur-resistant catalyst for low-temperature NH3-SCR. Appl. Catal. B 2023, 324, 122290. [Google Scholar] [CrossRef]
- Inomata, Y.; Kubota, H.; Honmatsu, Y.; Takamitsu, H.; Sakotani, S.; Yoshida, K.; Toyao, T.; Shimizu, K.; Murayama, T. Sodium ion intercalation in vanadium oxide promotes low-temperature NH3-SCR activity: Sodium vanadium bronzes (Na0.33V2O5) for NOx removal. Appl. Catal. B 2023, 328, 122536. [Google Scholar] [CrossRef]
- Inomata, Y.; Kubota, H.; Hata, S.; Kiyonaga, E.; Morita, K.; Yoshida, K.; Sakaguchi, N.; Toyao, T.; Shimizu, K.; Ishikawa, S.; et al. Bulk tungsten-substituted vanadium oxide for low-temperature NOx removal in the presence of water. Nat. Commun. 2021, 12, 557. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, L.; Li, H.; Hu, H.; Hu, X.; Shi, L.; Zhang, D. Promotional effects of zirconium doped CeVO4 for the low-temperature selective catalytic reduction of NOx with NH3. Appl. Catal. B 2016, 183, 269–281. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, L.; Namuangruk, S.; Hu, H.; Hu, X.; Shi, L.; Zhang, D. Morphology-dependent performance of Zr–CeVO4/TiO2 for selective catalytic reduction of NO with NH3. Catal. Sci. Technol. 2016, 6, 5543–5553. [Google Scholar] [CrossRef]
- Liu, F.; He, H.; Lian, Z.; Shan, W.; Xie, L.; Asakura, K.; Yang, W.; Deng, H. Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3. J. Catal. 2013, 307, 340. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.H.; Kwon, D.W.; Lee, K.Y.; Ha, H.P. Unveiling the traits of rare earth metal (RM)-substituted bimetallic Ce0.5RM0.5V1O4 phases to activate selective NH3 oxidation and NOx reduction. Appl. Surf. Sci. 2020, 518, 146238. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, X.; Li, Y.; Niu, X.; Zhu, Y. Improving NH3-SCR denitrification performance over WaC0.4TiOx catalysts: Effect of surface acidity due to W addition on low-temperature and high-temperature activity. Appl. Catal. A Gen. 2022, 643, 118705. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, Y.; Zhang, S.; Zhong, Q.; Rong, W.; Li, X. One-pot synthesis of ceria and cerium phosphate (CeO2-CePO4) nanorod composites for selective catalytic reduction of NO with NH3: Active sites and reaction mechanism. J. Colloid Interface Sci. 2018, 524, 8–15. [Google Scholar] [CrossRef]
- Yao, W.; Liu, Y.; Wang, X.; Weng, X.; Wang, H.; Wu, Z. The superior performance of sol–gel made Ce–O–P catalyst for selective catalytic reduction of NO with NH3. J. Phys. Chem. C 2016, 120, 221–229. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Zhang, Z.; Tan, H.; Yuan, F.; Zhu, Y. Influence of CePO4 with different crystalline phase on selective catalytic reduction of NOx with ammonia. J. Rare Earth 2022, 40, 1219–1231. [Google Scholar] [CrossRef]
- Lin, C.H.; Qin, R.C.; Cao, N.; Wang, D.; Liu, C.G. Synergistic effects of Keggin-type phosphotungstic acid-supported single-atom catalysts in a fast NH3-SCR reaction. Inorg. Chem. 2022, 61, 19156–19171. [Google Scholar] [CrossRef]
- Xie, R.; Ma, L.; Sun, K.; Zhou, G.; Qu, Z.; Yan, N. Catalytic performance and mechanistic evaluation of sulfated CeO2 cubes for selective catalytic reduction of NOx with ammonia. J. Hazard. Mater. 2021, 420, 126545. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.; Chen, C.; Ma, M.; He, C.; Miao, J.; Li, H.; Chen, J. Selective catalytic reduction of NOx with NH3 over TiO2 supported metal sulfate catalysts prepared via a sol–gel protocol. New J. Chem. 2020, 44, 13598–13605. [Google Scholar] [CrossRef]
- Koebel, M.; Madia, G.; Elsener, M. Selective catalytic reduction of NO and NO2 at low temperatures. Catal. Today 2002, 73, 239–247. [Google Scholar] [CrossRef]
- Koebel, M.; Elsener, M.; Madia, G. Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperatures. Ind. Eng. Chem. Res. 2001, 40, 52–59. [Google Scholar] [CrossRef]
- Wei, Z.; Kang, X.; Yunhao, T.; Chuan, Q.; Shan, C.; Ying, M. Application of transition metal based MOF materials in selective catalytic reduction of nitrogen oxides. Prog. Chem. 2022, 34, 2638. [Google Scholar] [CrossRef]
- Adil, K.; Świrk, K.; Zaki, A.; Assen, A.H.; Delahay, G.; Belmabkhout, Y.; Cadiau, A. Perspectives in adsorptive and catalytic mitigations of NOx using metal–organic frameworks. Energy Fuels 2022, 36, 3347–3371. [Google Scholar] [CrossRef]
- Gao, Y.; Gong, S.Y.; Chen, B.; Xing, W.H.; Fei, Y.F.; Hu, Z.T.; Pan, Z. Progress in metal-organic framework catalysts for selective catalytic reduction of NOx: A mini-review. Atmosphere 2022, 13, 793. [Google Scholar] [CrossRef]
- Szymaszek, A.; Motak, M.; Samojeden, B. The application of modified layered double hydroxides in selective catalytic reduction of nitrogen oxides by ammonia (NH-SCR). Pol. J. Chem. Technol. 2020, 22, 61–67. [Google Scholar] [CrossRef]
- Yan, Q.; Hou, X.; Liu, G.; Li, Y.; Zhu, T.; Xin, Y.; Wang, Q. Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic reduction of NOx with NH3. J. Hazard. Mater. 2020, 400, 123260. [Google Scholar] [CrossRef]
- Tan, Y.; Yi, H.; Tang, X.; Yu, Q.; Gao, F.; Liu, J.; Wang, Y.; Zhou, Y.; Kang, D.; Zhao, S. Layered double hydroxides for air pollution control: Applications, mechanisms and trends. J. Clean. Prod. 2024, 436, 140635. [Google Scholar] [CrossRef]
- Gui, R.; Yan, Q.; Xue, T.; Gao, Y.; Li, Y.; Zhu, T.; Wang, Q. The promoting/inhibiting effect of water vapor on the selective catalytic reduction of NOx. J. Hazard. Mater. 2022, 439, 129665. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.; Tan, D.; Ye, Y.; Zhang, B.; Huang, B.; Zhong, W.; Hu, J. Overview of mechanisms of promotion and inhibition by H2O for selective catalytic reduction denitrification. Fuel Process. Technol. 2023, 252, 107956. [Google Scholar] [CrossRef]
- Zhang, N.; He, H.; Wang, D.; Li, Y. Challenges and opportunities for manganese oxides in low-temperature selective catalytic reduction of NOx with NH3: H2O resistance ability. J. Solid State Chem. 2020, 289, 121464. [Google Scholar] [CrossRef]
- Shen, Z.; Ren, S.; Zhang, B.; Bian, W.; Xing, X.; Zheng, Z. Sulfur and water resistance of carbon-based catalysts for low-temperature selective catalytic reduction of NOx: A review. Catalysts 2023, 13, 1434. [Google Scholar] [CrossRef]
- He, Z.; Wang, Y.; Liu, Y.; Lian, L.; Kong, D.; Zhao, Y. Recent advances in sulfur poisoning of selective catalytic reduction (SCR) denitration catalysts. Fuel 2024, 365, 131126. [Google Scholar] [CrossRef]
- Szymaszek, A.; Samojeden, B.; Motak, M. The deactivation of industrial SCR catalysts—A short review. Energies 2020, 13, 3870. [Google Scholar] [CrossRef]
- Song, I.; Lee, H.; Jeon, S.W.; Ibrahim, I.A.; Kim, J.; Byun, Y.; Jun, D.K.; Han, J.W.; Kim, D.H. Simple physical mixing of zeolite prevents sulfur deactivation of vanadia catalysts for NOx removal. Nat. Commun. 2021, 12, 901. [Google Scholar] [CrossRef]
- Song, J.; Sun, X.; Zhang, G.; Cheng, S.; Xu, Y.; Jiang, Y. Recent advances in improving SO2 resistance of Ce-based catalysts for NH3-SCR: Mechanisms and strategies. Mol. Catal. 2024, 564, 114347. [Google Scholar] [CrossRef]
- Cai, Q.; Wang, F.; Hou, Y.; Jia, Y.; Liao, B.; Shen, B.; Zhang, D. Core-shell materials for selective catalytic reducing of NOx with ammonia: Synthesis, anti-poisoning performance, and remaining challenges. Fuel Process. Technol. 2023, 243, 107675. [Google Scholar] [CrossRef]
- Li, M.; Guo, Y.; Yang, J. Spatially nanoconfined architectures: A promising design for selective catalytic reduction of NOx. ChemCatChem 2020, 12, 5599–5610. [Google Scholar] [CrossRef]
- Chen, J.; Fang, X.; Ren, Z.; Qu, W.; Hu, X.; Ma, Z.; Chen, L.; Liu, X.; Chen, Y.; Tang, X. Single Mo atoms paired with neighbouring Ti atoms catalytically decompose ammonium bisulfate formed in low-temperature SCR. J. Mater. Chem. A Mater. 2022, 10, 6065–6072. [Google Scholar] [CrossRef]
- Guan, B.; Jiang, H.; Wei, Y.; Liu, Z.; Wu, X.; Lin, H.; Huang, Z. Density functional theory researches for atomic structure, properties prediction, and rational design of selective catalytic reduction catalysts: Current progresses and future perspectives. Mol. Catal. 2021, 510, 111704. [Google Scholar] [CrossRef]
- Dong, Y.; Ran, M.; Zhang, X.; Lin, S.; Zhao, H.; Yang, Y.; Liu, S.; Zheng, C.; Gao, X. Machine learning-accelerated disentanglement of activity–selectivity trade-off of multielement oxide denitration catalysts. ACS ES T Eng. 2024, 4, 1312–1320. [Google Scholar] [CrossRef]
- Lu, M.; Gao, F.; Tan, Y.; Yi, H.; Gui, Y.; Xu, Y.; Wang, Y.; Zhou, Y.; Tang, X.; Chen, L. Knowledge-driven experimental discovery of Ce-based metal oxide composites for selective catalytic reduction of NOx with NH3 through interpretable machine learning. ACS Appl. Mater. Interfaces 2024, 16, 3593–3604. [Google Scholar] [CrossRef] [PubMed]
Catalysts 1 | Reaction Conditions | NOx Conversion (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|
NO (ppm) | NH3 (ppm) | O2 (vol%) | H2O (vol%) | Space Velocity | T (°C) | |||
Cu-LTA | 500 | 500 | 5 | 10 | 100,000 h−1 | 230–500 | >90% | [40] |
Cu-LTA | 500 | 500 | 5 | 10 | 100,000 h−1 | 165–470 | >90% | [41] |
Cu-ZSM-5 | 500 | 575 | 4 | 5 | 30,000 h−1 | 175–375 | >90% | [42] |
Cu-ZSM-5 | 1000 | 1000 | 3 | - | 50,000 h−1 | 200–375 | ~100% | [43] |
Cu-ZSM-5 | 500 | 500 | 5 | 10 | 100,000 h−1 | 200–400 | >90% | [44] |
Cu-Beta | 1000 | 1000 | 6 | - | 300,000 h−1 | 250–325 | >90% | [45] |
Cu/BEA | 400 | 400 | 8 | 5 | 30,300 h−1 | 225–475 | >90% | [46] |
Cu-SSZ-13 | 500 | 500 | 10 | 5 | 80,000 h−1 | 160–500 | >90% | [47] |
Cu-SSZ-13 | 500 | 500 | 5 | 5 | 400,000 h−1 | 210–520 | >90% | [48] |
Cu-SSZ-16 | 500 | 500 | 10 | - | 42,500 mL·h−1·g−1 | 190–440 | >90% | [49] |
Cu-SSZ-39 | 500 | 500 | 5 | 5 | 250,000 h−1 | 225–500 | >90% | [50] |
Cu-SSZ-52 | 500 | 500 | 5 | 5 | 240,000 h−1 | 200–550 | >90% | [51] |
Cu-SAPO-34 | 500 | 500 | 6.1 | 6.4 | 300,000 h−1 | 190~500 | >90% | [52] |
Cu-RTH | 500 | 500 | 5 | 10 | 100,000 h−1 | 470–750 | >90% | [53] |
Cu-ERI | 300 | 300 | 5 | 3 | 50,000 h−1 | 240–500 | >90% | [54] |
Cu-UZM-9 | 500 | 500 | 5 | 10 | 100,000 h−1 | 250–650 | >90% | [55] |
Cu-UZM-35 | 500 | 500 | 5 | 10 | 100,000 h−1 | 200–420 | >90% | [56] |
Cu-ZJM-7 | 500 | 500 | 5 | 5 | 80,000 h−1 | 190~550 | >90% | [57] |
Cu-SAPO-18 | 1000 | 1100 | 5 | 10 | 30,000 h−1 | 250–500 | >90% | [58] |
Cu-SAPO-18 | 500 | 500 | 14 | 5 | 130,000 h−1 | 210–540 | >80% | [59] |
Cu/SSZ-13@SiC | 500 | 500 | 10 | 5 | 80,000 h−1 | 200–360 | >90% | [60] |
CuFe/BEA | 200 | 200 | 10 | 5 | 40,000 h−1 | 225–375 | >90% | [61] |
Fe/Cu-SSZ-13 | 500 | 500 | 5 | - | 50,000 h−1 | 150–500 | >90% | [62] |
CuY-SAPO-34 | 350 | 350 | 8 | 5 | 30,000 h−1 | 200–310 | >90% | [63] |
CuNd/SAPO-34 | 200 | 200 | 10 | 5 | 40,000 h−1 | 200–400 | >90% | [64] |
Cu-Ce-La-SSZ-13 | 500 | 500 | 5 | - | 150,000 h−1 | 175–400 | >90% | [65] |
Ce-Cu-SAPO-18 | 500 | 500 | 14 | 5 | 130,000 h−1 | 250–500 | >90% | [66] |
La-Cu-SAPO-18 | 500 | 500 | 5 | - | 20,000 mL·h−1·g−1 | 250~450 | >90% | [67] |
La-Cu-SAPO-18 | 500 | 500 | 14 | 5 | 130,000 h−1 | 210–580 | >80% | [59] |
Ce-Cu-SAPO-18 | 500 | 500 | 14 | 5 | 130,000 h−1 | 200–600 | >90% | [59] |
Nd-Cu-SAPO-18 | 500 | 500 | 14 | 5 | 130,000 h−1 | 250–550 | >90% | [59] |
Gd-Cu-SAPO-18 | 500 | 500 | 14 | 5 | 130,000 h−1 | 300–460 | >90% | [59] |
Tb-Cu-SAPO-18 | 500 | 500 | 14 | 5 | 130,000 h−1 | 220–570 | >90% | [59] |
Ho-Cu-SAPO-18 | 500 | 500 | 14 | 5 | 130,000 h−1 | 250–550 | >90% | [59] |
Lu-Cu-SAPO-18 | 500 | 500 | 14 | 5 | 130,000 h−1 | 250–520 | >90% | [59] |
Cu-Ce-USY | 500 | 500 | 5 | - | 48,000 h−1 | 180~250 | >90% | [68] |
CuO(111)/TiO2 | 500 | 500 | 5 | - | 45,000 h−1 | 235–285 | >90% | [69] |
Cu/ZrO2 | 600 | 600 | 10 | 5 | 58,333 h−1 | 200–360 | >90% | [70] |
LaCuO3-x/meso-Al2O3 | 500 | 500 | 3 | 10 | 100,000 h−1 | 220–275 | >50% | [71] |
CuAl-(LDO)/(CNTs) | 600 | 600 | 5 | - | 45,000 h−1 | 176–275 | >90% | [72] |
meso-Cu-SSZ-13@meso-Al-Si | 500 | 500 | 5 | 5 | 400,000 h−1 | 250–520 | >90% | [73] |
Cu-SAPO-34@Fe-MOR | 500 | 500 | 5 | - | 50,000 h−1 | 375–525 | >90% | [74] |
Cu-SSZ13@Ce0.75Zr0.25O2 | 500 | 500 | 5 | - | 60,000 h−1 | 220–480 | >90% | [75] |
Cu-SSZ-13 HN | 500 | 500 | 3 | - | 120,000 h−1 | 200~550 | >90% | [76] |
Catalysts 1 | Reaction Conditions | NOx Conversion (%) | Effects of H2O/SO2 | Ref | |||||
---|---|---|---|---|---|---|---|---|---|
NO (ppm) | NH3 (ppm) | O2 (vol%) | H2O (vol%) | Space Velocity | T (°C) | ||||
Cu-SAPO-18 | 500 | 500 | 14 | 5 | 130,000 h−1 | 200–550 | >80% | Reversible inhibition with 5% H2O and 100 ppm SO2 at 300 °C | [97] |
Cu-Ce-SAPO-18 | 500 | 500 | 14 | 5 | 130,000 h−1 | 200–600 | >90% | Reversible inhibition with 5% H2O and 100 ppm SO2 at 300 °C | [97] |
Cu/TNU-9 | 500 | 500 | 5 | 10 | 10,000 h−1 | 237–400 | >90% | Stable NOx conversion with 10% H2O and 100 ppm SO2 at 250 °C | [98] |
Cu–Ce/TNU-9 | 500 | 500 | 5 | 10 | 10,000 h−1 | 225–400 | >90% | Stable NOx conversion with 10% H2O and 100 ppm SO2 at 250 °C | [98] |
Cu–Ce–La/TNU-9 | 500 | 500 | 5 | 10 | 10,000 h−1 | 200–425 | >90% | Stable NOx conversion with 10% H2O and 100 ppm SO2 at 250 °C | [98] |
Mn-Ce/Cu-SSZ-13 | 500 | 500 | 3 | 3 | 50,000 h−1 | 125–450 | >90% | Reversible inhibition with 3% H2O and 100 ppm SO2 at 300 °C | [99] |
CuSbTiOx | 700 | 700 | 4 | 4 | 60,000 h−1 | 250–300 | >85% | Slowly deactivated with 5% H2O and 150 ppm SO2 at 250 °C | [100] |
CuO@Cu3(BTC)2 | 600 | 600 | 4 | - | 60,000 h−1 | 180–240 | >80% | Stable NOx conversion with 4% H2O and 150 ppm SO2 at 200 °C | [101] |
Cu0.5Ce0.5W5Ox | 500 | 500 | 5 | - | 36,000 h−1 | 270–390 | ~100% | Stable NOx conversion with 5% H2O and 50 ppm SO2 at 240 °C | [102] |
WOx/Cu-CeO2 | 500 | 500 | 5 | - | 60,000 h−1 | 220–400 | >90% | Stable NOx conversion with 10% H2O and 100 ppm SO2 at 250 °C | [103] |
Nb0.05CuCeTi | 600 | 600 | 3 | 5 | 40,000 h−1 | 160–360 | >90% | Reversible inhibition with 5% H2O and 50 ppm SO2 at 250 °C | [104] |
CuCeNbOx | 600 | 600 | 5 | - | 108,000 h−1 | 185–360 | >90% | Stable NOx conversion with 5% H2O and 100 ppm SO2 at 250 °C | [105] |
Cu–HPMo/TiO2 | 500 | 500 | 8 | - | 15,000 h−1 | 150–350 | >80% | 100% NOx conversion with 4% H2O and 200 ppm SO2 at 200 °C | [106] |
Cu–Ce–La/SSZ-13 | 500 | 500 | 5 | 3 | 150,000 h−1 | 210–450 | >90% | Stable NOx conversion with 10% H2O and 100 ppm SO2 at 300 °C | [107] |
Cu/(ZSM-5@CeO2) | 1000 | 1000 | 8 | 5 | 50,000 h−1 | 225–550 | >95% | Stable NOx conversion with 5% H2O and 200 ppm SO2 at 275 °C | [108] |
Cu–Ce–La/SSZ-13@ZSM-5 | 500 | 500 | 5 | 3 | 150,000 h−1 | 200–450 | >80% | Stable NOx conversion with 10% H2O and 100 ppm SO2 at 300 °C | [107] |
Cu-SSZ-13@Ce-MnOx/MS | 500 | 500 | 5 | 3 | 150,000 h−1 | 175–475 | >90% | Relatively stable NOx conversion with 10% H2O and 100 ppm SO2 at 250 °C | [109] |
Catalysts | Reaction Conditions | NOx Conversion (%) | Effects of H2O/SO2 | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
NO (ppm) | NH3 (ppm) | O2 (vol%) | H2O (vol%) | Space Velocity | T (°C) | ||||
Defective α-Fe2O3 | 500 | 500 | 5.3 | - | 50,000 h−1 | 250–300 | ~100% | 100% NOx conversion with 5% H2O and 50 ppm SO2 at 300 °C | [120] |
MnFeOx | 500 | 500 | 5 | 5 | 75,000 h−1 | 75–275 | ~100% | A rather stable NOx conversion with 5% H2O and 50 ppm SO2 at 100 °C | [121] |
Ce/α-Fe2O3 | 500 | 500 | 5 | 5 | 90,000 h−1 | 175–325 | >95% | Stable NOx conversion wit 5% H2O and 200 ppm SO2 at 250 °C | [124] |
Fe–Ce/TiO2 | 1000 | 1000 | 3 | - | 30,000 h−1 | 175–350 | >90% | Slowly deactivated with 500 ppm SO2 at 250 °C | [129] |
Mo0.4Ce0.3FeOx | 2000 | 2000 | 8 | - | 32,000 h−1 | 200–350 | >95% | Stable NOx conversion with 10% H2O and 200 ppm SO2 at 250 °C | [130] |
Fe–Ce–W oxides | 450 | 450 | 2.5 | 5 | 20,000 h−1 | 250–500 | >90% | Relatively stable NOx conversion with 5% H2O and 200 ppm SO2 at 350 °C | [131] |
Sm/Fe2O3 | 500 | 500 | 5 | 5 | 14,400 h−1 | 175–350 | ~100% | Stable NOx conversion with 5% H2O and 100 ppm SO2 at 275 °C | [125] |
WOx/Fe2O3 | 500 | 500 | 5 | - | 50,000 h−1 | 300–425 | >90% | Stable NOx conversion with 100 ppm SO2 at 300 °C | [128] |
H3PW12O40-Fe2O3 | 1000 | 1100 | 6 | - | 13,200 h−1 | 300–500 | >90% | Stable NOx conversion with 10% H2O and 200 ppm SO2 at 280 °C | [132] |
Mn-W-Sb modified siderite | 500 | 500 | 5 | - | 30,000 h−1 | 175–375 | >90% | Irreversible deactivation with 5% H2O and 100 ppm SO2 at 210 °C | [133] |
Fe2O3-promoted halloysite-supported CeO2-WO3 | 500 | 500 | 5 | - | 40,000 h−1 | 275–420 | >95% | Relatively stable NOx conversion with 8% H2O and 100 ppm SO2 at 300 °C | [134] |
Fe2O3-CeO2@Al2O3 | 500 | 500 | 5 | - | 20,000 mL·g−1·h−1 | 250–430 | >90% | Stable NOx conversion with 10% H2O and 500 ppm SO2 at 270 °C | [135] |
Fe-ZSM-5@CeO2 | 500 | 500 | 5 | - | 177,000 h−1 | 250–425 | >90% | Stable NOx conversion with 10% H2O and 100 ppm SO2 at 350 °C | [136] |
Fe-Beta@CeO2 | 500 | 500 | 3 | 5 | 50,000 h−1 | 225–575 | >90% | Stable NOx conversion with 5% H2O and 100 ppm SO2 at 300 °C | [137] |
Catalysts 1 | Reaction Conditions | NOx Conversion (%) | Effects of H2O/SO2 | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
NO (ppm) | NH3 (ppm) | O2 (vol%) | H2O (vol%) | Space Velocity | T (°C) | ||||
MnOx | 500 | 500 | 5 | - | 140,000 h−1 | 125–200 | >90% | Relatively stable NOx conversion with 50 ppm SO2 at 175 °C | [161] |
MnOx-SiO2 | 1000 | 1000 | 10 | - | 24,000 h−1 | 150–225 | >90% | Relatively stable NOx conversion with 100 ppm SO2 at 225 °C | [221] |
Mn-TiOx | 500 | 500 | 5 | - | 100,000 h−1 | 160–370 | >90% | Relatively stable NOx conversion with 5% H2O at 140 °C. Relatively stable NOx conversion with 100 ppm SO2 at 260 °C. | [222] |
Cr-MnOx | 1000 | 1000 | 3 | - | 30,000 h−1 | 115–220 | >90% | Reversible inhibition with 100 ppm SO2 at 120 °C | [223] |
CrMn2O4 spinel | 500 | 500 | 5 | - | 32,000 h−1 | 80–225 | >90% | Relatively stable NO conversion with 10% H2O and 150 ppm SO2 at 200 °C | [173] |
MnOx-Fe | 1000 | 1000 | 3 | 5 | 30,000 h−1 | 93–220 | >90% | Relatively stable NO conversion with 5% H2O and 100 ppm SO2 at 200 °C | [224] |
MnFeCo-LDO | 550 | 550 | 5 | - | 30,600 h−1 | 63–400 | >90% | Stable NO conversion with 5% H2O and 100 ppm SO2 at 120 °C | [225] |
Mn-Fe-Mg oxides | 1000 | 1000 | 4 | - | 30,000 h−1 | 125–200 | >90% | Stable NOx conversions with 3% H2O and 100 ppm SO2 at 150 °C | [226] |
Mn-Fe-Al oxides | 500 | 500 | 5 | - | 60,000 h−1 | 110–250 | >90% | Stable NOx conversions with 100 ppm SO2 at 150 °C | [227] |
Mn-Fe-Ce oxides | 500 | 500 | 11 | - | 36,000 h−1 | 180–277 | >90% | Stable NOx conversions with 100 ppm SO2 at 225 °C | [228] |
Mesoporous Mn-Fe-Ce-Ti oxides | 600 | 480 | 2 | - | 24,000 h−1 | 210–395 | >90% | Reversible inhibition with 300 ppm SO2 at 240 °C | [229] |
Mn2Co1Ox | 1000 | 1000 | 5 | - | 30,000 h−1 | 150–325 | >90% | Reversible inhibition with 10% H2O and 100 ppm SO2 at 200 °C | [230] |
Mn-Co oxides | 500 | 500 | 5 | - | 23,000 h−1 | 100–300 | >90% | Reversible inhibition with 8% H2O at 120 °C | [231] |
Mn-Co oxides | 500 | 500 | 3 | - | 30,000 h−1 | 100–280 | >90% | Stable NOx conversions with 5% H2O and 100 ppm SO2 at 160 °C | [232] |
Mn-Co oxides | 500 | 500 | 5 | - | 140,000 h−1 | 80–200 | >90% | Stable NOx conversions with 5% H2O and 50 ppm SO2 at 125 °C | [233] |
Mn-Co oxides | 500 | 500 | 5 | - | 50,000 h−1 | 60–300 | >90% | Reversible inhibition with 5% H2O and 100 ppm SO2 at 200 °C | [234] |
Co1Mn4Ce5Ox | 500 | 500 | 5 | - | 48,000 h−1 | 80–175 | >90% | Relatively stable NOx conversion with 10% H2O and 150 ppm SO2 and at 175 °C | [235] |
MnCoVOx | 500 | 500 | 5 | - | 60,000 mL·g−1·h−1 | 175–425 | >90% | Relatively stable NO conversion with 5% H2O and 100 ppm SO2 at 200 °C | [236] |
Mn-Ni oxides | 550 | 550 | 5 | - | 64,000 h−1 | 105–275 | >90% | Stable NOx conversion with 100 ppm SO2 at 230 °C | [237] |
NiMn2O4 | 500 | 500 | 5 | - | 32,000 h−1 | 73–250 | >98% | Stable NOx conversions in the presence of 150 ppm SO2 at 175 °C | [238] |
Ni1Mn4O5 | 500 | 500 | 5 | - | 48,000 h−1 | 125–200 | >90% | Relatively stable NOx conversion with 10% H2O and 150 ppm SO2 at 175 °C | [235] |
Ni1Mn2O4-S | 500 | 500 | 5 | - | 68,000 h−1 | 90–230 | >90% | Relatively stable NOx conversion with 5% H2O and 100 ppm SO2 at 150 °C | [239] |
Ni1Mn0.5Al0.5Ox | 500 | 500 | 5 | 5 | 60,000 h−1 | 100–250 | >90% | Relatively stable NO conversion with 5% H2O and 100 ppm SO2 at 200 °C | [240] |
Nia-xMnxAlOy | 500 | 500 | 6.5 | 5 | 45,000 h−1 | 120–225 | >90% | Deactivation with 5% H2O and 100 ppm SO2 at 210 °C | [241] |
Mn-Ni-Ti oxides | 500 | 500 | 5 | - | 40,000 h−1 | 320–460 | >90% | Relatively stable NOx conversion with 10% H2O and 100 ppm SO2 at 400 °C | [242] |
Mn-Ni-Ti oxides | 1000 | 1000 | 3 | - | 40,000 h−1 | 190–360 | ~100% | Relatively stable NOx conversion with 15% H2O and 100 ppm SO2 at 240 °C | [243] |
Ni0.5Mn0.5Fe0.5Ox | 500 | 500 | 5 | - | 60,000 h−1 | 100–300 | >80% | Relatively stable NOx conversion with 5% H2O and 100 ppm SO2 at 200 °C | [244] |
Mn-Zr oxides | 1000 | 1000 | 3 | - | 30,000 h−1 | 100–200 | ~100% | Reversible deactivation with 5% H2O and 100ppm SO2 at 150 °C | [245] |
Mn-Zr-Ti oxides | 650 | 650 | 5 | - | 36,000 h−1 | 160–300 | >90% | Relatively stable NOx conversion with 3% H2O and 50 ppm SO2 at 180 °C | [246] |
Mn2Nb1Ox | 500 | 500 | 5 | - | 50,000 h−1 | 120–200 | >90% | Irreversible deactivation with 100 ppm SO2 at 200 °C | [247] |
Mn-Ce oxides | 1000 | 1000 | 2 | - | 35,000 h−1 | 100–300 | >80% | Relatively stable NOx conversion with 12% H2O and 100 ppm SO2 at 110 °C | [248] |
Mn-Ce oxides | 3000 | 3000 | 15 | - | 60,000 mL·g−1·h−1 | 100–250 | >80% | Deactivation with 5% H2O and 100 ppm SO2 at 175 °C | [206] |
Mn-Ce nanowire aerogel | 500 | 500 | 5 | - | 32,000 h−1 | 100–400 | >90% | Stable NOx conversion with 10% H2O and 250 ppm SO2 at 150 °C | [249] |
Ce-Ti/MnO2 | 600 | 600 | 6 | - | 40,000 h−1 | 100–225 | >95% | Relatively stable NOx conversion with 10 vol% H2O and 50 ppm SO2 at 150 °C | [250] |
Mn–Ce–Ti oxides | 500 | 500 | 5 | - | 14,400 h−1 | 170–320 | >90% | Stable NO conversion with 5 vol% H2O and 100 ppm SO2 at 200 °C | [251] |
Mn-Ce-Ti oxides | 500 | 500 | 5 | - | 64,000 h−1 | 150–350 | >90% | Stable NO conversion with 5 vol% H2O and 50 ppm SO2 at 200 °C | [252] |
Mn-Sn-Ce oxides | 1000 | 1000 | 2 | - | 35,000 h−1 | 75–250 | >90% | Stable NO conversion with 9% H2O and 100 ppm SO2 at 220 °C | [194] |
Mn-Sn-Ce oxides | 1000 | 1000 | 2 | - | 35,000 h−1 | 75–225 | ~100% | Relatively stable NOx conversion with 12% H2O and 100 ppm SO2 at 110 °C | [248] |
Mn-Sn−Ce oxides | 500 | 500 | 5 | - | 60,000 mL·g−1·h−1 | 175–275 | >60% | Stable NO conversion with 5% H2O and 100 ppm SO2 at 250 °C | [253] |
Mn-Pr-Ce oxides | 600 | 600 | 5 | - | 108,000 h−1 | 150–400 | >80% | Stable NO conversion with 5% H2O and 100 ppm SO2 at 250 °C | [205] |
Mn-Sm oxides | 500 | 500 | 5 | - | 48,600 h−1 | 50–250 | >90% | Stable NO conversion with 2% H2O and 100 ppm SO2 at 250 °C | [254] |
Mn-Sm oxides | 500 | 500 | 5 | - | 60,000 mL·g−1·h−1 | 200–325 | >80% | Deactivation with 5% H2O and 100 ppm SO2 at 175 °C | [206] |
Mn-Sm-Ti oxides | 500 | 500 | 5 | - | 36,000 h−1 | 150–300 | >90% | Stable NO conversion with 5% H2O and 100 ppm SO2 at 200 °C | [255] |
Mn-Sm-Ti oxides | 500 | 500 | 5 | - | 50,000 h−1 | 75–230 | >90% | Stable NOx conversion with 5% H2O and 100 ppm SO2 at 100 °C | [256] |
Mn-Sm-Fe oxides | 500 | 500 | 5 | - | 60,000 h−1 | 75–200 | ~100% | Relatively stable NOx conversion with 5% H2O and 100 ppm SO2 at 200 °C | [257] |
Mn-Sm-Zr-Ti oxides | 500 | 500 | 5 | - | 30,000 h−1 | 125–275 | ~100% | Relatively stable NOx conversion with 2.5% H2O and 100 ppm SO2 at 200 °C | [258] |
Mn-Sm-Ce-Ti oxides | 500 | 500 | 5 | - | 80,000 h−1 | 150–400 | >90% | Relatively stable NO conversion with 5% H2O and 200 ppm SO2 at 200 °C | [259] |
Mn-Nd oxides | 500 | 500 | 5 | - | 60,000 mL·g−1·h−1 | 125–230 | >90% | Relatively stable NO conversion 5% H2O and 100 ppm SO2 at 175 °C | [206] |
Mn-Eu oxides | 600 | 600 | 5 | - | 108,000 h−1 | 130–400 | ~100% | Relatively stable NO conversion with 5% H2O and 100 ppm SO2 at 350 °C | [260] |
Mn-Eu-Ce oxides | 500 | 500 | 10 | 10 | 60,000 h−1 | 100–250 | >90% | Stable NOx conversions with 10% H2O and 50 ppm SO2 at 230 °C | [210] |
Mn-Gd oxides | 500 | 500 | 5 | - | 100,000 h−1 | 120–330 | ~100% | Stable NOx conversions with 100 ppm SO2 at 200 °C | [261] |
Mn-W-Ce oxides (W0.1Mn0.4Ce0.5) | 500 | 500 | 5 | - | 300,000 h−1 | 150–270 | >90% | Stable NOx conversions with 60 ppm SO2 at 175 °C | [262] |
BiMnO3 | 1000 | 1000 | 5 | - | 10,000 h−1 | 160–250 | >80% | Relatively stable NOx conversions with 5% H2O and 100 ppm SO2 at 140 °C | [220] |
Catalysts 1 | Reaction Conditions | NOx Conversion (%) | Effects of H2O and SO2 | Ref. | ||||
---|---|---|---|---|---|---|---|---|
NO (ppm) | NH3 (ppm) | O2 (vol%) | Space Velocity | T (°C) | ||||
Mn/Fe-Ti spinel | 500 | 500 | 2 | 24,000 mL·g−1·h−1 | 150–250 | >95% | Stable NOx conversion with 8% H2O and 60 ppm SO2 at 200 °C | [263] |
Mn/ZrO2-TiO2 | 500 | 500 | 4 | 35,000 h−1 | 175–350 | >97% | Irreversible deactivation with 10% H2O and 200 ppm SO2 at 200 °C | [264] |
Mn/CeO2-TiO2 | 200 | 220 | 8 | 60,000 h−1 | 180–250 | >90% | Deactivation with 6% H2O and 100 ppm SO2 at 180 °C | [265] |
Mn/CeO2-ZrO2 | 600 | 660 | 6 | 45,000 h−1 | 120–220 | >90% | Stable NOx conversion with 3% H2O and 100 ppm SO2 at 180 °C | [266] |
Mn/CeO2-ZrO2-Al2O3 | 1000 | 1000 | 5 | 10,000 h−1 | 150–300 | >90% | Relatively stable NOx conversion with 10% H2O and 100 ppm SO2 at 200 °C | [267] |
MnOx(0.25)/CoSn3Al-LDO | 500 | 500 | 5 | 30,000 h−1 | 100–350 | >95% | Irreversible deactivation with 5% H2O and 150 ppm SO2 at 200 °C | [268] |
MnCrOx/Sepiolite | 1000 | 1000 | 5 | 45,000 h−1 | 125–340 | >90% | Relatively stable NOx conversion with 200 ppm SO2 at 220 °C | [269] |
TiO2-MnOx/CeO2-ZrO2 | 500 | 500 | 5 | 60,000 mL·g−1·h−1 | 175–225 | >90% | Relatively stable NOx conversion with 5% H2O and 100 ppm SO2 at 200 °C | [171] |
Fe-Mn/TiO2 | 1000 | 1000 | 10 | 30,000 h−1 | 100–330 | >90% | Stable NOx conversion with 100 ppm SO2 at 125 °C | [270] |
Fe-Mn/Ti-Zr | 1000 | 1000 | 4 | 30,000 h−1 | 80–180 | >90% | Deactivation with 6% H2O and 100 ppm SO2 at 150 °C | [187] |
Fe-Mn-Ce/TiO2 | 600 | 600 | 3 | 50,000 h−1 | 155–260 | >90% | Stable NOx conversion with 3% H2O at 140/180 °C | [271] |
Ni-Mn/TiO2 | 400 | 400 | 2 | 50,000 h−1 | 187–240 | >90% | Superior H2O durability at 200 °C with 10% H2O | [272] |
Zr-Mn/attapulgite | 600 | 600 | 3 | 40,000 h−1 | 153–250 | >90% | Stable NOx conversion with 300 ppm SO2 at 200 °C | [273] |
xSb-4Ce-10Mn/TiO2 | 500 | 500 | 3 | 75,000 mL·g−1·h−1 | 135–325 | >95% | Deactivation with 5% H2O and 100 ppm SO2 at 200 °C | [195] |
Ce-Mn-TNTs | 500 | 500 | 5 | 30,000 h−1 | 150–425 | >90% | Stable NOx conversion with 10% H2O and 100 ppm SO2 at 280 °C | [274] |
Ce-Mn/TiO2 | 800 | 800 | 3 | 40,000 h−1 | Deactivation with 3% H2O and 100 ppm SO2 at 150 °C | [275] | ||
Ce-Mn/TiO2 | 720 | 800 | 3 | 30,000 h−1 | 120–200 | >90% | Deactivation with 100 ppm SO2 at 180 °C | [276] |
Ce-Mn-V-W/TiO2 | 1500 | 1500 | 3 | 40,000 h−1 | 150–400 | >90% | Stable NOx conversion with 5% H2O and 100 ppm SO2 at 250 °C | [277] |
Nd-Mn/TiO2 | 600 | 600 | 3 | 40,000 h−1 | 100–320 | 100% | Stable NOx conversion with 3% H2O and 50 ppm SO2 at 120 °C | [278] |
Eu-Mn/TiO2 | 600 | 600 | 5 | 108,000 h−1 | 175–400 | >90% | Deactivation with 100 ppm SO2 at 150 °C | [279] |
Ho-Mn-Ce/TiO2 | 800 | 800 | 5 | 10,000 h−1 | 140–220 | >90% | Deactivation with 10% H2O and 300 ppm SO2 at 180 °C | [280] |
Ho-Fe-Mn/TiO2 | 800 | 800 | 5 | 20,000 h−1 | Stable NOx conversion with 15% H2O and 200 ppm SO2 at 120 °C | [215] | ||
Gd-MnOx/ZSM-5 | 800 | 800 | 5 | 40,000 h−1 | 110–240 | >90% | Relatively stable NO conversion with 100 ppm SO2 at 180 °C | [212] |
Ce0.5/Co1Mn0.5Al0.5Ox | 500 | 500 | 5 | 100–250 | >90% | Deactivation with 100 ppm SO2 at 200 °C | [281] | |
Mn-Ce-V/AC | 500 | 500 | 5 | 18,000 h−1 | 125–300 | >95% | Deactivation with 10% H2O and 100 ppm SO2 at 200 °C | [282] |
Nb2O5-Zn-Ce-Mn/AC | 500 | 500 | 11 | 14,500 h−1 | 150–250 | >90% | Deactivation with 100 ppm SO2 at 200 °C | [189] |
NiMnOx/activated coke | 500 | 500 | 10 | 30,000 h−1 | 125–250 | >80% | Stable NOx conversion with 200 ppm SO2 at 200 °C | [283] |
La-Mn-Fe/activated coke | 500 | 500 | 5 | 6000 h−1 | 150–300 | >90% | Reversible deactivation with 5% H2O and 200 ppm SO2 at 150 °C | [284] |
Mn/BC | 600 | 600 | 11 | 12,000 h−1 | 160–240 | >80% | Reversible deactivation with 100 ppm SO2 at 180 °C | [285] |
Zr-Mn/BC | 500 | 500 | 5 | 36,000 h−1 | 125–250 | >75% | Stable NOx conversion with 5% H2O and 100 ppm SO2 at 200 °C | [286] |
MnOx@CNTs | 500 | 500 | 3 | 30,000 h−1 | 165–325 | >90% | 100% NOx conversion with 4% H2O at 225 °C | [287] |
MnOx/Functionalized multi-walled CNTs | 900 | 900 | 5 | 30,000 h−1 | 150–300 | >80% | Deactivation with 2.5% H2O and 100 ppm SO2 at 200 °C | [288] |
MnOx-CeOx/CNTs | 400 | 400 | 3 | 12,000 h−1 | 200–260 | >90% | Stable NOx conversion with 100 ppm SO2 at 220 °C | [289] |
MnOx-CeOx@CNTs | 500 | 500 | 3 | 10,000 h−1 | 200–350 | >90% | Stable NOx conversion with 4% H2O and 100 ppm SO2 at 300 °C | [290] |
MnCe/granular AC-CNTs | 500 | 550 | 5 | 10,000 h−1 | 125–200 | >80% | Stable NOx conversion with 5% H2O and 50 ppm SO2 at 150 °C | [291] |
MnOx-CeO2(8:1)/graphene | 500 | 500 | 5 | 24,000 h−1 | 80–140 | >99% | Reversible deactivation with 10% H2O and 200 ppm SO2 at 140 °C | [292] |
Catalysts 1 | Reaction Conditions | NOx Conversion (%) | Effects of H2O/SO2/ | Ref. | ||||
---|---|---|---|---|---|---|---|---|
NO (ppm) | NH3 (ppm) | O2 (vol%) | Space Velocity | T (°C) | ||||
MnOx@TiO2 | 500 | 500 | 5 | 24,000 h−1 | 110–260 | >90% | Deactivation with 10% H2O and 200 ppm SO2 at 160 °C | [293] |
MnOx@TiO2 | 500 | 500 | 5 | 30,000 h−1 | 130–375 | >90% | Reversible inhibition with 5% H2O at 180 °C | [294] |
MnOx–CeO2@TiO2 | 500 | 500 | 5 | 24,000 h−1 | 150–210 | >90% | Reversible inhibition with 200 ppm SO2 at 180 °C | [295] |
MnOx@PrOx | 800 | 800 | 5 | 40,000 h−1 | 93–240 | >90% | Irreversible inhibition with 10% H2O and 100 ppm SO2 at 160 °C | [296] |
MnOx@CeO2 | 800 | 800 | 5 | 40,000 h−1 | 114–220 | >90% | Deactivation with 100 ppm SO2 at 220 °C | [297] |
α-MnO2@CeO2 | 500 | 500 | 3 | 100,000 mL·g−1·h−1 | 125–250 | >90% | Deactivation with 200 ppm SO2 at 220 °C | [298] |
MnFe@CeOx | 500 | 500 | 5 | 30,000 h−1 | 160–240 | >90% | Reversible inhibition with 5% H2O at 160 °C | [299] |
MnOx@Eu-CeOx | 600 | 600 | 2.5 | 90,000 h−1 | 100–210 | >90% | Reversible inhibition with 100 ppm SO2 at 200 °C | [300] |
MnOx@Fe2O3/TNT | 500 | 500 | 5 | 40,000 h−1 | 180–360 | ~100% | Deactivation with 150 ppm SO2 at 240 °C | [301] |
Ho-TNT@Mn | 500 | 500 | 5 | 30,000 h−1 | 110–300 | >90% | Slowly deactivated with 100 ppm SO2 at 180 °C | [302] |
Mn-TNTs@Ce | 500 | 500 | 5 | 30,000 h−1 | 130–375 | >90% | Relatively stable NO conversion with 5 % H2O and 100 ppm SO2 at 200 °C | [303] |
H-MnO2@TiO2@HL | 500 | 500 | 5 | 30,000 h−1 | 175–260 | >90% | Reversible inhibition with 5% H2O at 180 °C | [294] |
Ce@Mn@TiOx | 1000 | 1000 | 5 | 30,000 h−1 | 140–230 | >90% | Inhibition with 5% H2O at low temperature | [304] |
MnCeOx@ZSM-5 | 500 | 500 | 5 | 960,000 mL·g−1·h−1 | 220–380 | >90% | Relatively stable NO conversion with 5% H2O and 100 ppm SO2 at 300 °C | [305] |
Fe2O3@MnOx@CNT | 550 | 550 | 5 | 20,000 h−1 | 120–300 | >90% | Reversible inhibition with 10% H2O and 100 ppm SO2 at 180 °C | [306] |
mesoTiO2@MnCe/CNTs | 500 | 500 | 3 | 10,000 h−1 | 225–400 | >90% | Relatively stable NO conversion with 200 ppm SO2 at 300 °C | [307] |
Co(3-x)MnxO4@TiO2 | 500 | 500 | 5 | 24,000 h−1 | 125–275 | >80% | Relatively stable NO conversion with 10% H2O and 100 ppm SO2 at 225 °C | [308] |
Catalysts 1 | Reaction Conditions | NOx Conversion (%) | Effects of H2O/SO2 | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
NO (ppm) | NH3 (ppm) | O2 (vol%) | H2O (vol%) | GHSV | T (°C) | ||||
CO-pretreated CeO2 | 600 | 600 | 5 | - | 108,000 h−1 | 250–350 | >90% | Stable NO conversion with 5% H2O and 100 ppm SO2 at 200 °C | [338] |
H2SO4-pretreated CeO2 | 500 | 500 | 5 | - | 60,000 mL·g−1·h−1 | 350–475 | >90% | Stable NO conversion with 5% H2O and 100 ppm SO2 at 400 °C | [339] |
CeO2/HAT | 500 | 500 | 5 | - | 177,000 h−1 | 250–400 | >90% | Stable NO conversion with 5% H2O and 50 ppm SO2 at 300 °C | [340] |
TiOx/CeO2 | 500 | 500 | 5 | - | 90,000 h−1 | 250–450 | >80% | Irreversible deactivation with 5% H2O and 200 ppm SO2 at 300 °C | [341] |
CeOx/TiO2 | 500 | 500 | 5 | - | 90,000 h−1 | 250–450 | >80% | Irreversible deactivation with 5% H2O and 200 ppm SO2 at 300 °C | [341] |
CeTiOx Hollow nanotube | 1000 | 1000 | 3 | - | 40,000 h−1 | 180–390 | >98% | Stable NO conversion with 6% H2O and 100 ppm SO2 at 240 °C | [342] |
CeO2-TiO2/P25 | 500 | 500 | 5 | 5 | 60,000 mL·g−1·h−1 | 300–450 | >80% | Stable NO conversion with 5% H2O and 100 ppm SO2 at 400 °C | [343] |
CeTiOx | 600 | 600 | 3 | - | 150,000 h−1 | 180–300 | >80% | Slowly deactivated with 5% H2O and 100 ppm SO2 at 225 °C | [344] |
F-Ce-Ti oxides | 500 | 600 | 5 | - | 41,000 h−1 | 180–240 | >90% | Reversible deactivation with 100 ppm SO2 at 150 °C | [345] |
P-CeO2/TiO2 | 500 | 500 | 5 | - | 60,000 h−1 | 200–430 | >80% | Relatively stable NO conversion with 5% H2O and 500 ppm SO2 at 200 °C | [346] |
Ce/Ti-Si-Al oxides | 500 | 500 | 5 | - | 65,000 h−1 | 215–465 | >80% | Reversible deactivation with 10% H2O and 100 ppm SO2 at 320 °C | [347] |
Ce/TiO2-SiO2 | 500 | 500 | 3 | - | 28,000 h−1 | 250–450 | >90% | 100% NOx conversion for 24 h with 10% H2O and 200 ppm SO2 at 300 °C | [348] |
Ce/Mo-TiO2 | 500 | 500 | 5 | - | 60,000 mL·g−1·h−1 | 200–350 | ~100% | Stable NO conversion with 2% H2O and 100 ppm SO2 at 250 °C | [349] |
WO3/CeO2 | 500 | 500 | 3.5 | - | 60,000 mL·g−1·h−1 | 250–450 | ~100% | Slowly deactivated with 4% H2O and 300 ppm SO2 at 200 °C | [350] |
Ce-W/UiO-66 | 300 | 300 | 3 | - | 10,000 h−1 | 200–350 | >90% | Stable NO conversion with 5% H2O and 200 ppm SO2 at 250 °C | [351] |
Ti-Sn-Ce-Ox | 600 | 600 | 6 | - | 20,000 h−1 | 200–375 | >90% | Stable NO conversion with 10% H2O and 300 ppm SO2 at 200 °C | [352] |
CeBi/TiO2 | 600 | 600 | 5 | - | 108,000 h−1 | 250–400 | >95% | Relatively stable NO conversion with 5% H2O and 100 ppm SO2 at 150 °C | [353] |
CeSnOx/TiO2 | 500 | 500 | 5 | - | 30,000 h−1 | 200–420 | >90% | Relatively stable NO conversion with 5% H2O and 100 ppm SO2 at 220 °C | [354] |
Sn-Ce-Ti oxides | 500 | 500 | 5 | - | 30,000 h−1 | 180–460 | >90% | Stable NO conversion with 300 ppm SO2 at 240 °C | [355] |
CuSO4-CeSnTiOx | 500 | 500 | 5 | - | 30,000 h−1 | 240–340 | >90% | Relatively stable NO conversion with of 5% H2O and 100 ppm SO2 at 240 °C | [356] |
Co-Ce-Ti oxides | 500 | 500 | 5 | - | 30,000 h−1 | 200–440 | ~100% | Slowly deactivated with 5% H2O and 100 ppm SO2 at 180 °C | [357] |
Ge-Ce-W oxides | 1000 | 1000 | 2 | - | 50,000 h−1 | 200–470 | >95% | Deactivation with 100 ppm SO2 at 220 °C | [358] |
Ce–Nb oxides | 650 | 650 | 5 | - | 120,000 mL·g−1·h−1 | 220–400 | ~100% | Stable NO conversion with 5% H2O and 50 ppm SO2 at 280 °C | [359] |
Ce0.4Nb0.6 nanospheres | 500 | 500 | 5 | - | 30,000 h−1 | 250–450 | >98% | Reversible deactivation with 200 ppm SO2 at 300 °C | [360] |
Ce20Nb20Ti oxides | 1000 | 1000 | 3 | - | 90,000 h−1 | 250–460 | >95% | Deactivated with 10% H2O and 200 ppm SO2 at 350 °C | [361] |
Ce-Nb-Ti oxides | 1000 | 1000 | 3 | - | 90,000 h−1 | 250–500 | >90% | Irreversible deactivation with 500 ppm SO2 | [362] |
Nb/CeSi2 | 500 | 500 | 4 | - | 60,000 h−1 | 215–450 | >80% | Relatively stable NO conversion with 5% H2O and 200 ppm SO2 at 250 °C | [363] |
Ni-Ce-La oxides | 1000 | 1000 | 5 | - | 20,000 h−1 | 270–390 | >90% | Stable NO conversion with 10% H2O and 500 ppm SO2 at 300 °C | [364] |
Mo-CeO2/TiO2 | 500 | 500 | 5 | - | 128,000 h−1 | 275–400 | >90% | Relatively stable NO conversion with 5% H2O and 50 ppm SO2 at 300 °C | [365] |
Mo0.1CeSi2 | 500 | 500 | 5 | - | 90,000 h−1 | 215–400 | >90% | 100% NOx conversion for10 h with 5% H2O and 200 ppm SO2 at 250 °C | [366] |
Cr-Ce-Ti oxides | 500 | 500 | 5 | - | 40,000 h−1 | 182–405 | >90% | Slowly deactivated with 5% H2O and 100 ppm SO2 at 250 °C | [367] |
Cr1CeZr2Ox | 600 | 600 | 5 | 5 | 108,000 h−1 | 200–350 | >90% | Stable NO conversion with 5% H2O and 100 ppm SO2 at 250 °C | [368] |
Zr-CeTiOx | 500 | 500 | 5 | - | 60,000 h−1 | 200–375 | >95% | Stable NO conversion with 5% H2O and 50 ppm SO2 at 225 °C | [369] |
P-Ce-Zr-Ti oxides | 800 | 720 | 3 | - | 30,000 h−1 | 180–400 | >80% | Relatively stable NO conversion with 5% H2O and 200 ppm SO2 at 300 °C | [370] |
Ce-Sn-W-Ba oxides/TiO2 | 930 | 930 | 10 | - | 8000 h−1 | 235–470 | >90% | Relatively stable NO conversion with 5% H2O and 200 ppm SO2 at 350 °C | [371] |
CeO2-WO3-palygorskite/TiO2 | 500 | 500 | 5 | - | 30,000 h−1 | 240–400 | >80% | Relatively stable NOx conversion with 100 ppm SO2 at 360 °C | [372] |
Sulfated CeO2-Rod | 500 | 500 | 3 | - | 150,000 mL·g−1·h−1 | 300–450 | ~100% | Stable NOx conversion with 5% H2O and 100 ppm SO2 at 250 °C | [373] |
Sulfated CeO2-ZrO2 | 250 | 250 | 2.5 | - | 90,000 h−1 | 250 | 90% | Relatively stable NOx conversion with 200 ppm SO2 at 250 °C | [374] |
CeO2@TiO2 Core-shell | 500 | 500 | 5 | - | 24,000 h−1 | 200–450 | >80% | Irreversible deactivation with 200 ppm SO2 at 280 °C | [375] |
CeO2@TiO2 | 500 | 500 | 5 | - | 36,000 h−1 | 225–400 | >95% | Relatively stable with 5% H2O and 100 ppm SO2 resistance at 350 °C | [376] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, E.D. Recent Progress on Low-Temperature Selective Catalytic Reduction of NOx with Ammonia. Molecules 2024, 29, 4506. https://doi.org/10.3390/molecules29184506
Park ED. Recent Progress on Low-Temperature Selective Catalytic Reduction of NOx with Ammonia. Molecules. 2024; 29(18):4506. https://doi.org/10.3390/molecules29184506
Chicago/Turabian StylePark, Eun Duck. 2024. "Recent Progress on Low-Temperature Selective Catalytic Reduction of NOx with Ammonia" Molecules 29, no. 18: 4506. https://doi.org/10.3390/molecules29184506
APA StylePark, E. D. (2024). Recent Progress on Low-Temperature Selective Catalytic Reduction of NOx with Ammonia. Molecules, 29(18), 4506. https://doi.org/10.3390/molecules29184506