Structural Transformation of Metastable Two-Electron Superatom Au-Doped Cu-Rich Alloy Nanocluster
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Remarks
3.2. General Synthesis
3.2.1. Synthesis of [AuCu11(H){S2P(OiPr)2}6(C≡CPh)3] (AuCu11H)
3.2.2. [AuCu11(H){S2P(OnPr)2}6(C≡CPh)3]
3.2.3. [AuCu11(H){S2P(OiBu)2}6(C≡CPhOCH3)3]
3.3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, R.; Zeng, M.; Zhou, C.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 10346–10413. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271. [Google Scholar] [CrossRef] [PubMed]
- Bonacchi, S.; Antonello, S.; Dainese, T.; Maran, F. Atomically Precise Metal Nanoclusters: Novel Building Blocks. Chem. Eur. J. 2021, 27, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Zhu, M. Transformation of Atomically Precise Nanoclusters by Ligand-Exchange. Chem. Mater. 2019, 31, 9939–9969. [Google Scholar] [CrossRef]
- Yan, J.; Teo, B.K.; Zheng, N. Surface Chemistry of Atomically Precise Coinage–Metal Nanoclusters: From Structural Control to Surface Reactivity and Catalysis. Acc. Chem. Res. 2018, 51, 3084–3093. [Google Scholar] [CrossRef]
- Du, X.; Chai, J.; Yang, S.; Li, Y.; Higaki, T.; Li, S.; Jin, R. Fusion growth patterns in atomically precise metal nanoclusters. Nanoscale 2019, 11, 19158–19165. [Google Scholar] [CrossRef]
- Lin, Z.; Lv, Y.; Jin, S.; Yu, H.; Zhu, M. Size Growth of Au4Cu4: From Increased Nucleation to Surface Capping. ACS Nano. 2023, 17, 8613–8621. [Google Scholar] [CrossRef]
- Wang, S.; Tan, Y.; Li, T.; Zhou, Q.; Li, P.; Yang, S.; Yu, H.; Zhu, M. Insight into the Role of Copper in the Transformation of a [Ag25(2,5-DMBT)16(DPPF)3]+ Nanocluster: Doping or Oxidation. Inorg. Chem. 2022, 61, 18450–18457. [Google Scholar]
- Waszkielewicz, M.; Olesiak-Banska, J.; Comby-Zerbino, C.; Bertorelle, F.; Dagany, X.; Bansal, A.K.; Sajjad, M.T.; Samuel, I.D.W.; Sanader, Z.; Rozycka, M.; et al. pH-induced transformation of captopril-capped Au25 to brighter Au23 nanoclusters. Nanoscale 2018, 10, 11335–11341. [Google Scholar] [CrossRef]
- Jiang, W.; Bai, Y.; Li, Q.; Yao, X.; Zhang, H.; Song, Y.; Meng, X.; Yu, H.; Zhu, M. Steric and Electrostatic Control of the pH-Regulated Interconversion of Au16(SR)12 and Au18(SR)14 (SR: Deprotonated Captopril). Inorg. Chem. 2020, 59, 5394–5404. [Google Scholar] [CrossRef]
- George, A.; Sundar, A.; Nair, A.S.; Maman, M.P.; Pathak, B.; Ramanan, N.; Mandal, S. Identification of Intermediate Au22(SR)4(SR′)14 Cluster on Ligand-Induced Transformation of Au25(SR)18 Nanocluster. J. Phys. Chem. Lett. 2019, 10, 4571–4576. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-H.; Zeng, H.-M.; Yu, Z.-N.; Wang, C.; Jiang, Z.-G.; Zhan, C.-H. Unusual structural transformation and luminescence response of magic-size silver(i) chalcogenide clusters via ligand-exchange. Chem. Commun. 2021, 57, 13337–13340. [Google Scholar] [CrossRef] [PubMed]
- Dass, A.; Jones, T.C.; Theivendran, J.; Sementa, L.; Fortunelli, A. Core Size Interconversions of Au30(S-tBu)18 and Au36(SPhX)24. J. Phys. Chem. C 2017, 121, 14914–14919. [Google Scholar] [CrossRef]
- Zeng, C.; Liu, C.; Pei, Y.; Jin, R. Thiol Ligand-Induced Transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano 2013, 7, 6138–6145. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Kang, X.; Wang, S.; Zhu, M. Light-Induced Size-Growth of Atomically Precise Nanoclusters. Langmuir 2019, 35, 12350–12355. [Google Scholar] [CrossRef]
- Tseng, Y.-M.; Liao, J.-H.; Chiu, T.-H.; Liang, H.; Kahlal, S.; Saillard, J.-Y.; Liu, C.W. Superatom Pruning by Diphosphine Ligands as a Chemical Scissor. Inorg. Chem. 2023, 62, 3866–3874. [Google Scholar] [CrossRef]
- Zhong, Y.-J.; Liao, J.-H.; Chiu, T.-H.; Wen, Y.-S.; Liu, C.W. A New Synthetic Methodology in the Preparation of Bimetallic Chalcogenide Clusters via Cluster-to-Cluster Transformations. Molecules 2021, 26, 5391. [Google Scholar] [CrossRef]
- Li, S.; Li, N.-N.; Dong, X.-Y.; Zang, S.-Q.; Mak, T.C.W. Chemical Flexibility of Atomically Precise Metal Clusters. Chem. Rev. 2024, 124, 7262–7378. [Google Scholar] [CrossRef]
- Zouchoune, B.; Saillard, J.-Y. Atom-Precise Ligated Copper and Copper-Rich Nanoclusters with Mixed-Valent Cu(I)/Cu(0) Character: Structure–Electron Count Relationships. Molecules 2024, 29, 605. [Google Scholar] [CrossRef]
- Baghdasaryan, A.; Burgi, T. Copper nanoclusters: Designed synthesis, structural diversity, and multiplatform applications. Nanoscale 2021, 13, 6283–6340. [Google Scholar] [CrossRef]
- Yu, W.; Hu, D.; Xiong, L.; Li, Y.; Kang, X.; Chen, S.; Wang, S.; Zhu, M. Isomer Structural Transformation in Au–Cu Alloy Nanoclusters: Water Ripple-Like Transfer of Thiol Ligands. Part. Part. Syst. Charact. 2019, 36, 1800494. [Google Scholar] [CrossRef]
- Peng, S.K.; Yang, H.; Luo, D.; Xie, M.; Tang, W.J.; Ning, G.H.; Li, D. Enhancing Photoluminescence Efficiency of Atomically Precise Copper(I) Nanoclusters Through a Solvent-Induced Structural Transformation. Inorg. Chem. Front. 2022, 9, 5327–5334. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Yuan, S.-F.; Wang, S.; Guan, Z.-J.; Jiang, D.-E.; Wang, Q.-M. Structural transformation and catalytic hydrogenation activity of amidinate-protected copper hydride clusters. Nat. Commun. 2022, 13, 2082. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Wu, X.; Yin, B.; Kang, X.; Lin, Z.; Deng, H.; Yu, H.; Jin, S.; Chen, S.; Zhu, M. Structured copper-hydride nanoclusters provide insight into the surface-vacancy-defect to non-defect structural evolution. Chem. Sci. 2022, 13, 14357–14365. [Google Scholar] [CrossRef]
- Silalahi, R.P.B.; Wang, Q.; Liao, J.-H.; Chiu, T.-H.; Wu, Y.-Y.; Wang, X.; Khalal, S.; Saillard, J.-Y.; Liu, C.W. Reactivities of Interstitial Hydrides in a Cu11 Template: En Route to Bimetallic Clusters. Angew. Chem. Int. Ed. 2022, 134, e202113266. [Google Scholar] [CrossRef]
- Silalahi, R.P.B.; Chiu, T.-H.; Kao, J.-J.; Wu, C.-Y.; Yin, C.W.; Liu, Y.-C.; Chen, Y.J.; Saillard, J.-Y.; Chiang, M.-H.; Liu, C.W. Synthesis and Luminescence Properties of Two-Electron Bimetallic Cu–Ag and Cu–Au Nanoclusters via Copper Hydride Precursor. Inorg. Chem. 2021, 60, 10799–10807. [Google Scholar] [CrossRef]
- Barik, S.K.; Huo, S.-C.; Wu, C.-Y.; Chiu, T.-H.; Liao, J.-H.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C.W. Polyhydrido Copper Nanoclusters with a Hollow Icosahedral Core: [Cu30H18{E2P(OR)2}12] (E = S or Se; R = nPr, iPr or iBu). Chem. Eur. J. 2020, 26, 10471–10479. [Google Scholar]
- Chakrahari, K.K.; Silalahi, R.P.B.; Chiu, T.-H.; Wang, X.; Azrou, N.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C.W. Synthesis of Bimetallic Copper-Rich Nanoclusters Encapsulating a Linear Palladium Dihydride Unit. Angew. Chem. Int. Ed. 2019, 58, 4943–4947. [Google Scholar] [CrossRef]
- Silalahi, R.P.B.; Chakrahari, K.K.; Liao, J.-H.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C.W. Synthesis of Two-Electron Bimetallic Cu-Ag and Cu-Au Clusters by using [Cu13(S2CNnBu2)6(C≡CPh)4]+ as a Template. Chem. Asian J. 2018, 13, 500–504. [Google Scholar]
- Chakrahari, K.K.; Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C.W. [Cu13{S2CNnBu2}6(acetylide)4]+: A Two-Electron Superatom. Angew. Chem. Int. Ed. 2016, 55, 14704–14708. [Google Scholar]
- Latouche, C.; Kahlal, S.; Furet, E.; Liao, P.K.; Lin, Y.R.; Fang, C.S.; Cuny, J.; Liu, C.W.; Saillard, J.Y. Shape Modulation of Octanuclear Cu(I) or Ag(I) Dichalcogeno Template Clusters with Respect to the Nature of Their Encapsulated Anions: A Combined Theoretical and Experimental Investigation. Inorg. Chem. 2013, 52, 7752–7765. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-A.D.; Jones, Z.R.; Leto, D.F.; Wu, G.; Scott, S.L.; Hayton, T.W. Ligand-Exchange-Induced Growth of an Atomically Precise Cu29 Nanocluster from a Smaller Cluster. Chem. Mater. 2016, 28, 8385–8390. [Google Scholar] [CrossRef]
- Zhou, H.; Duan, T.; Lin, Z.; Yang, T.; Deng, H.; Jin, S.; Pei, Y.; Zhu, M. Total Structure, Structural Transformation and Catalytic Hydrogenation of [Cu41(SC6H3F2)15Cl3(P(PhF)3)6(H)25]2− Constructed from Twisted Cu13 Units. Adv. Sci. 2024, 11, 2307085. [Google Scholar]
- Wang, J.; Cai, J.; Ren, K.-X.; Liu, L.; Zheng, S.-J.; Wang, Z.-Y.; Zang, S.-Q. Stepwise structural evolution toward robust carboranealkynyl-protected copper nanocluster catalysts for nitrate electroreduction. Sci. Adv. 2024, 10, eadn7556. [Google Scholar] [CrossRef]
- Silalahi, T.-H.; Chiu, T.-H.; Liang, H.; Kahlal, S.; Saillard, J.-Y.; Liu, C.W. A heteroleptic fused bi-cuboctahedral Cu21S2 cluster. Chem. Commun. 2023, 59, 9638–9641. [Google Scholar] [CrossRef]
- Chakrahari, K.K.; Liao, J.P.; Silalahi, R.P.B.; Chiu, T.-H.; Liao, J.-H.; Wang, X.; Khalal, S.; Saillard, J.-Y.; Liu, C.W. Isolation and Structural Elucidation of 15-Nuclear Copper Dihydride Clusters: An Intermediate in the Formation of a Two-Electron Copper Superatom. Small 2021, 17, 2002544. [Google Scholar] [CrossRef]
- Zhong, Y.-J.; Liao, J.-H.; Chiu, T.-H.; Kahlal, S.; Lin, C.-J.; Saillard, J.-Y.; Liu, C.-W. A Two-Electron Silver Superatom Isolated from Thermally Induced Internal Redox Reactions of a Silver(I) Hydride. Angew. Chem. Int. Ed. 2021, 60, 12712–12716. [Google Scholar] [CrossRef]
- Li, Q.; Yang, S.; Chen, T.; Jin, S.; Chai, J.; Zhang, H.; Zhu, M. Structure Determination of a Metastable Au22(SAdm)16 Nanocluster and its Spontaneous Transformation into Au21(SAdm)15. Nanoscale 2020, 12, 23694–23699. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.-Y.; Li, S.-J.; Zang, S.-Q.; Mak, T.C.W. Carboranealkynyl-Protected Gold Nanoclusters: Size Conversion and UV/Vis-NIR Optical Properties. Angew. Chem. Int. Ed. 2021, 60, 5959–5964. [Google Scholar] [CrossRef]
- Zhu, C.; Duan, T.; Li, H.; Wei, X.; Kang, X.; Pei, Y.; Zhu, M. Structural determination of a metastable Ag27 nanocluster and its transformations into Ag8 and Ag29 nanoclusters. Inorg. Chem. Front. 2021, 8, 4407–4414. [Google Scholar] [CrossRef]
- Shen, H.; Wei, X.; Xu, C.; Jin, S.; Wang, S.; Kang, X.; Zhu, M. Cocrystallization-driven stabilization of metastable nanoclusters: A case study of Pd1Au9. Nanoscale 2021, 13, 7694–7699. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Selenius, E.; Ruan, P.; Li, X.; Yuan, P.; Lopez-Estrada, O.; Malola, S.; Lin, S.; Teo, B.K.; Hakkinen, H.; et al. Solubility-Driven Isolation of a Metastable Nonagold Cluster with Body-Centered Cubic Structure. Chem. Eur. J. 2020, 48, 8465–8470. [Google Scholar] [CrossRef] [PubMed]
- Nasaruddin, R.R.; Yao, Q.; Chen, T.; Hulsey, M.J.; Yan, N.; Xie, J. Hydride-induced ligand dynamic and structural transformation of gold nanoclusters during a catalytic reaction. Nanoscale 2018, 10, 23113–23121. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Gao, Z.-H.; Wang, L.-S. The synthesis and characterization of a new diphosphine protected gold hydride nanocluster. J. Chem. Phys. 2023, 155, 034307. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Luo, Y.; Ma, X.; Wang, B.; Ding, M.; Wang, R.; Wang, P.; Pei, Y.; Wang, S. Poly-Hydride [AuI7(PPh3)7H5](SbF6)2 cluster complex: Structure, Transformation, and Electrocatalytic CO2 Reduction Properties. Angew. Chem. Int. Ed. 2023, 62, e202300553. [Google Scholar]
- Zheng, X.; Ma, W.; Su, Y.; Wang, Y. The structure–activity relationship of copper hydride nanoclusters in hydrogenation and reduction reactions. Nanoscale Adv. 2024, 6, 1374–1379. [Google Scholar] [CrossRef]
- Li, Q.; Tan, Y.; Huang, B.; Yang, S.; Chai, J.; Wang, X.; Pei, Y.; Zhu, M. Mechanistic Study of the Hydride Migration-Induced Reversible Isomerization in Au22(SR)15H Isomers. J. Am. Chem. Soc. 2023, 145, 15859–15868. [Google Scholar] [CrossRef]
- Qin, H.-N.; He, M.-W.; Wang, J.; Li, H.-Y.; Wang, Z.-Y.; Zang, S.-Q.; Mak, T.C.W. Thiacalix[4]arene Etching of an Anisotropic Cu70H22 Intermediate for Accessing Robust Modularly Assembled Copper Nanoclusters. J. Am. Chem. Soc. 2024, 146, 3545–3552. [Google Scholar]
- Wei, X.; Kang, X.; Duan, T.; Li, H.; Wang, S.; Pei, Y.; Zhu, M. [Au16Ag43H12(SPhCl2)34]5−: An Au−Ag Alloy Nanocluster with 12 Hydrides and Its Enlightenment on Nanocluster Structural Evolution. Inorg. Chem. 2021, 60, 11640–11647. [Google Scholar]
- Chiu, T.-H.; Liao, J.-H.; Silalahi, R.P.B.; Pillay, M.N.; Liu, C.W. Hydride-doped coinage metal superatoms and their catalytic applications. Nanoscale Horiz. 2024, 9, 675–692. [Google Scholar] [CrossRef]
- Edwards, A.J.; Dhayal, R.S.; Liao, P.-K.; Liao, J.-H.; Chiang, M.-H.; Piltz, R.O.; Khalal, S.; Saillars, J.-Y.; Liu, C.W. Chinese Puzzle Molecule: A 15 Hydride, 28 Copper Atom Nanoball. Angew. Chem. Int. Ed. 2014, 53, 7214–7218. [Google Scholar] [CrossRef] [PubMed]
- Mingos, D.M.P.; Wales, D.J. Introduction to Cluster Chemistry; Prentice Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- Kubas, G.J. Tetrakis(Acetonitrile)Copper(I) Hexafluorophosphate. Inorg. Synth. 1979, 19, 90–92. [Google Scholar]
- Burmeister, J.L.; DeStefano, N. Cooperative electronic ligand effects in pseudohalide complexes of rhodium(I), iridium(I), gold(I), and gold(III) Inorganic Chemistry. Inorg. Chem. 1971, 10, 998–1003. [Google Scholar] [CrossRef]
- Wystrach, P.; Hook, E.O.; Christopher, G.L.M. Perfluoroalkanes: Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations. J. Org. Chem. 1956, 21, 705–707. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6169. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–32305. [Google Scholar] [CrossRef]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Landis, C.R.; Weinhold, F. NBO 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2013; Available online: https://nbo6.chem.wisc.edu (accessed on 24 June 2024).
- Ullrich, C. Time-Dependent Density-Functional Theory, Concepts and Applications; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Gorelsky, S.I. Wizard Program. Revision 4.5. Available online: https://www.sg-chem.net (accessed on 13 March 2022).
- Gorelsky, S.I. AOMix Program. Available online: https://www.sg-chem.net (accessed on 13 March 2022).
- Wolinski, K.; Hilton, J.F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260. [Google Scholar] [CrossRef]
No. | Cluster Code | m/z Exp. | m/z Cacl. |
---|---|---|---|
1. | [AuCu11H + Cu+]+ | 2542.03 | 2542.34 |
2. | [AuCu11Cl + Cu+]+ | 2575.96 | 2575.31 |
3. | [AuCu12]+ | 2642.37 | 2642.37 |
AuCu11H | AuCu11Cl a | ||
---|---|---|---|
HOMO-LUMO gap (eV) | 3.51 | 3.59 | |
Interatomic distances (Å) and Wiberg indices (avg. values) | Au-Cu | 2.790 [0.062] | 2.814 [0.060] |
Cu-Cu | 2.777 [0.040] | 2.789 [0.041] | |
Cu-H/Cl | 1.633 [0.273] | 2.272 [0.198] | |
Natural atomic charges (avg. values) | Au | −0.69 | −0.73 |
Cu | 0.73 | 0.72 | |
H/Cl | −0.53 | −0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silalahi, R.P.B.; Kahlal, S.; Saillard, J.-Y.; Liu, C.W. Structural Transformation of Metastable Two-Electron Superatom Au-Doped Cu-Rich Alloy Nanocluster. Molecules 2024, 29, 4427. https://doi.org/10.3390/molecules29184427
Silalahi RPB, Kahlal S, Saillard J-Y, Liu CW. Structural Transformation of Metastable Two-Electron Superatom Au-Doped Cu-Rich Alloy Nanocluster. Molecules. 2024; 29(18):4427. https://doi.org/10.3390/molecules29184427
Chicago/Turabian StyleSilalahi, Rhone P. Brocha, Samia Kahlal, Jean-Yves Saillard, and C. W. Liu. 2024. "Structural Transformation of Metastable Two-Electron Superatom Au-Doped Cu-Rich Alloy Nanocluster" Molecules 29, no. 18: 4427. https://doi.org/10.3390/molecules29184427
APA StyleSilalahi, R. P. B., Kahlal, S., Saillard, J. -Y., & Liu, C. W. (2024). Structural Transformation of Metastable Two-Electron Superatom Au-Doped Cu-Rich Alloy Nanocluster. Molecules, 29(18), 4427. https://doi.org/10.3390/molecules29184427