Towards the Use of Lichens as a Source of Bioactive Substances for Topical Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lichen Specialized Metabolites
2.2. Evaluation of Cell Viability
2.3. Evaluation of the Dermatological and Cosmeceutical Potential
3. Materials and Methods
3.1. Collection of Lichen Material
3.2. Standards Used
3.3. HPLC Assays
3.4. Preparation of Crude Extracts for Biological Activity Analysis
3.5. Cell Cultures
3.6. Cell Viability Assay
3.7. Neutral Red Uptake (NRU) Assay
3.8. Alamar Blue (AB) Assay
3.9. Biochemical Analyses—ELISA Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elias, P.M.; Wakefield, J.S. Skin Barrier Function. In Nutrition for Healthy Skin: Strategies for Clinical and Cosmetic Practice; Springer: Berlin/Heidelberg, Germany, 2011; pp. 35–48. ISBN 978-3-642-12263-7. [Google Scholar]
- Richard, M.A.; Paul, C.; Nijsten, T.; Gisondi, P.; Salavastru, C.; Taieb, C.; Trakatelli, M.; Puig, L.; Stratigos, A. Prevalence of Most Common Skin Diseases in Europe: A Population-Based Study. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.S.; Estanqueiro, M.; Oliveira, M.B.; Lobo, J.M.S. Main Benefits and Applicability of Plant Extracts in Skin Care Products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef]
- Dresler, S.; Kováčik, J.; Wójciak, H.; Sowa, I.; Strzemski, M.; Wójciak, M. Allantoin Content in Lichens Depends on Anthropopressure Level. Ecol. Indic. 2021, 124, 107312. [Google Scholar] [CrossRef]
- Ranković, B.; Kosanić, M. Lichens as a Potential Source of Bioactive Secondary Metabolites. In Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential; Ranković, B., Ed.; Springer International Publishing: Cham, Germany, 2015; pp. 1–26. ISBN 978-3-319-13374-4. [Google Scholar]
- Kováčik, J.; Klejdus, B.; Štork, F.; Malčovská, S. Sensitivity of Xanthoria Parietina to UV-A: Role of Metabolic Modulators. J. Photochem. Photobiol. B Biol. 2011, 103, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Ranković, B.; Kosanić, M. Biotechnological Substances in Lichens. In Natural Bioactive Compounds; Sinha, R.P., Häder, D.-P., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 249–265. ISBN 978-0-12-820655-3. [Google Scholar]
- Sahin, E.; Dabagoglu Psav, S.; Avan, I.; Candan, M.; Sahinturk, V.; Koparal, A.T. Lichen-Derived Physodic Acid Exerts Cytotoxic and Anti-Invasive Effects in Human Lung Cancer. Rend. Lincei 2021, 32, 511–520. [Google Scholar] [CrossRef]
- Burlando, B.; Ranzato, E.; Volante, A.; Appendino, G.; Pollastro, F.; Verotta, L. Antiproliferative Effects on Tumour Cells and Promotion of Keratinocyte Wound Healing by Different Lichen Compounds. Planta Med. 2009, 75, 607–613. [Google Scholar] [CrossRef]
- Queffelec, J.; Flórez-Fernández, N.; Torres, M.D.; Domínguez, H. Evernia prunastri Lichen as a Source of Bioactive Glucans with Potential for Topical Applications. Int. J. Biol. Macromol. 2024, 258, 128859. [Google Scholar] [CrossRef]
- Wang, H.; Xuan, M.; Diao, J.; Xu, N.; Li, M.; Huang, C.; Wang, C. Metabolism and Toxicity of Usnic Acid and Barbatic Acid Based on Microsomes, S9 Fraction, and 3T3 Fibroblasts in Vitro Combined with a UPLC-Q-TOF-MS Method. Front. Pharmacol. 2023, 14, 1207928. [Google Scholar] [CrossRef]
- Basile, A.; Rigano, D.; Loppi, S.; Di Santi, A.; Nebbioso, A.; Sorbo, S.; Conte, B.; Paoli, L.; De Ruberto, F.; Molinari, A.M.; et al. Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria Parietina and Its Secondary Metabolite Parietin. Int. J. Mol. Sci. 2015, 16, 7861–7875. [Google Scholar] [CrossRef]
- Stoica (Oprea), A.E.; Albuleț, D.; Bîrcă, A.C.; Iordache, F.; Ficai, A.; Grumezescu, A.M.; Vasile, B.Ș.; Andronescu, E.; Marinescu, F.; Holban, A.M. Electrospun Nanofibrous Mesh Based on PVA, Chitosan, and Usnic Acid for Applications in Wound Healing. Int. J. Mol. Sci. 2023, 24, 11037. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, Y.; Li, Y.; Bai, H.; Ma, T.; Song, X.; Zhao, J.; Gao, L. The Effects of Sodium Usnic Acid by Topical Application on Skin Wound Healing in Rats. Biomed. Pharmacother. 2018, 97, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Malaspina, P.; Catellani, E.; Burlando, B.; Brignole, D.; Cornara, L.; Bazzicalupo, M.; Candiani, S.; Obino, V.; De Feo, V.; Caputo, L.; et al. Depigmenting Potential of Lichen Extracts Evaluated by In Vitro and In Vivo Tests. PeerJ 2020, 8, e9150. [Google Scholar] [CrossRef]
- Aalto-Korte, K.; Lauerma, A.; Alanko, K. Occupational Allergic Contact Dermatitis from Lichens in Present-Day Finland. Contact Dermat. 2005, 52, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Baczewska, I.; Hawrylak-Nowak, B.; Ozimek, E.; Sęczyk, Ł.; Dresler, S. Enhanced accumulation of biological active compounds in lichens with potential functional food applications. Food Chem. 2024, 458, 140286. [Google Scholar] [CrossRef] [PubMed]
- Kosanić, M.; Ranković, B. Lichen Secondary Metabolites as Potential Antibiotic Agents. In Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential; Ranković, B., Ed.; Springer International Publishing: Cham, Germany, 2019; pp. 99–127. ISBN 978-3-030-16814-8. [Google Scholar]
- Latkowska, E.; Białczyk, J.; Węgrzyn, M.; Erychleb, U. Host Species Affects the Phenolic Compounds Content in Hypogymnia physodes (L.) Nyl. Thalli. Allelopath. J. 2019, 47, 221–232. [Google Scholar] [CrossRef]
- Dresler, S.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Zagórska-Dziok, M.; Bujak, T.; Skic, K.; Feldo, M.; Hanaka, A.; Wójciak, M.; Sowa, I.; et al. A Design-of-Experiment Approach for Obtaining Symphytum officinale L. Extracts for Cosmetic Purposes. Ind. Crops Prod. 2023, 199, 116768. [Google Scholar] [CrossRef]
- Cruz, A.M.; Gonçalves, M.C.; Marques, M.S.; Veiga, F.; Paiva-Santos, A.C.; Pires, P.C. In vitro models of anti-aging efficacy assessment: A critical update in dermocosmetic research. Cosmetics 2023, 10, 66. [Google Scholar] [CrossRef]
- Ponec, M. In vitro cultured human skin cells as alternatives to animals for skin irritancy screening. Int. J. Cosmet. Sci. 1992, 13, 6. [Google Scholar] [CrossRef]
- Nakayama, G.R.; Caton, M.C.; Nova, M.P.; Parandoosh, Z. Assessment of the Alamar Blue Assay for Cellular Growth and Viability in Vitro. J. Immunol. Methods 1997, 204, 205–208. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (Resazurin) Fluorescent Dye for the Assessment of Mammalian Cell Cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Bujak, T.; Ziemlewska, A.; Nizioł-Łukaszewska, Z. Positive Effect of Cannabis sativa L. Herb Extracts on Skin Cells and Assessment of Cannabinoid-Based Hydrogels Properties. Molecules 2021, 26, 802. [Google Scholar] [CrossRef] [PubMed]
- Ingólfsdóttir, K. Usnic Acid. Phytochemistry 2002, 61, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Kumar KC, S.; Müller, K. Lichen Metabolites. 2. Antiproliferative and Cytotoxic Activity of Gyrophoric, Usnic, and Diffractaic Acid on Human Keratinocyte Growth. J. Nat. Prod. 1999, 62, 821–823. [Google Scholar] [CrossRef] [PubMed]
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A. Emodin—A Natural Anthraquinone Derivative with Diverse Pharmacological Activities. Phytochemistry 2021, 190, 112854. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Kim, J.; Rehman, N.U.; Kim, H.-J.; Ahn, M.-J.; Chung, H.J. Effect of Rumex acetosa Extract, a Herbal Drug, on the Absorption of Fexofenadine. Pharmaceutics 2020, 12, 547. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, R.; Wang, Y.; Wang, L.; Zhou, T.; Jia, D.; Meng, Z. The Anti-Breast Cancer Property of Physcion via Oxidative Stress-Mediated Mitochondrial Apoptosis and Immune Response. Pharm. Biol. 2021, 59, 303–310. [Google Scholar] [CrossRef]
- Gundogdu, G.; Gundogdu, K.; Nalci, K.A.; Demirkaya, A.K.; Yılmaz Tascı, S.; Demirkaya Miloglu, F.; Senol, O.; Hacimuftuoglu, A. The Effect of Parietin Isolated From Rheum Ribes L on In Vitro Wound Model Using Human Dermal Fibroblast Cells. Int. J. Low. Extrem. Wounds 2019, 18, 56–64. [Google Scholar] [CrossRef]
- Elečko, J.; Vilková, M.; Frenák, R.; Routray, D.; Ručová, D.; Bačkor, M.; Goga, M.A. Comparative Study of Isolated Secondary Metabolites from Lichens and Their Antioxidative Properties. Plants 2022, 11, 1077. [Google Scholar] [CrossRef]
- Yañez, O.; Osorio, M.I.; Osorio, E.; Tiznado, W.; Ruíz, L.; García, C.; Nagles, O.; Simirgiotis, M.J.; Castañeta, G.; Areche, C.; et al. Antioxidant activity and enzymatic of lichen substances: A study based on cyclic voltammetry and theoretical. Chem. Biol. Interact. 2023, 372, 110357. [Google Scholar] [CrossRef]
- Torres-Benítez, A.; Ortega-Valencia, J.E.; Jara-Pinuer, N.; Sanchez, M.; Vargas-Arana, G.; Gómez-Serranillos, M.P.; Simirgiotis, M.J. Antioxidant and antidiabetic activity and phytoconstituents of lichen extracts with temperate and polar distribution. Front. Pharmacol. 2023, 14, 1251856. [Google Scholar] [CrossRef]
- Studzińska-Sroka, E.; Majchrzak-Celińska, A.; Zalewski, P.; Szwajgier, D.; Baranowska-Wójcik, E.; Kaproń, B.; Plech, T.; Żarowski, M.; Cielecka-Piontek, J. Lichen-Derived Compounds and Extracts as Biologically Active Substances with Anticancer and Neuroprotective Properties. Pharmaceuticals 2021, 14, 1293. [Google Scholar] [CrossRef] [PubMed]
- Studzińska-Sroka, E.; Bulicz, M.; Henkel, M.; Rosiak, N.; Paczkowska-Walendowska, M.; Szwajgier, D.; Baranowska-Wójcik, E.; Korybalska, K.; Cielecka-Piontek, J. Pleiotropic Potential of Evernia prunastri Extracts and Their Main Compounds Evernic Acid and Atranorin: In Vitro and In Silico Studies. Molecules 2024, 29, 233. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Koh, H.Y.; Oh, H.; Han, S.J.; Kim, I.-C.; Lee, H.K.; Yim, J.H. Human Dermal Fibroblast Proliferation Activity of Usimine-C from Antarctic Lichen Ramalina terebrata. Biotechnol. Lett. 2010, 32, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Baczewska, I.; Strzemski, M.; Feldo, M.; Hanaka, A.; Dresler, S. Green Extraction of Depsidones and Depsides from Hypogymnia physodes (L.) Nyl. Using Natural Deep Eutectic Solvents. Int. J. Mol. Sci. 2024, 25, 5500. [Google Scholar] [CrossRef] [PubMed]
- Bujak, T.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Complexes of Ectoine with the Anionic Surfactants as Active Ingredients of Cleansing Cosmetics with Reduced Irritating Potential. Molecules 2020, 25, 1433. [Google Scholar] [CrossRef]
- Page, B.; Page, M.; Noel, C. A new fluorometric assay for cytotoxicity measurements in-vitro. Int. J. Oncol. 1993, 3, 473–476. [Google Scholar] [CrossRef]
Lichen Species | Identified Metabolites | Metabolite Contents (mg/g DW) (± SD) |
---|---|---|
Evernia prunastri (L.) Ach. (Parmeliaceae) | evernic acid atranorin allantoin | 13.16 ± 4.35 25.27 ± 4.96 0.337 ± 0.059 |
Hypogymnia physodes (L.) Nyl. (Parmaliaceae) | physodic acid 3-hydroxyphysodic acid physodalic acid atranorin allantoin | 32.99 ± 5.78 28.07 ± 1.93 39.83 ± 1.96 6.81 ± 1.89 0.488 ± 0.219 |
Parmelia sulcata (Taylor) (Parmeliaceae) | salazinic acid atranorin allantoin | 26.42 ± 5.23 2.19 ± 0.43 0.023 ± 0.002 |
Pseudoevernia furfuracea (L.) Zopf (Parmeliaceae) | evernic acid atranorin allantoin | 1.37 ± 0.52 42.47 ± 14.00 0.002 ± 0.001 |
Cladonia unicialis (L.) Weber ex F.H. Wigg. (Cladoniaceae) | usnic acid allantoin | 10.51 ± 1.22 0.230 ± 0.017 |
Physcia adscendens (Fr.) H. Olivier (Physciaceae) | atranorin ethyl orsellinate allantoin | 2.03 ± 0.38 4.71 ± 0.82 1.36 ± 0.20 |
Xanthoria parietina (L.) Th. Fr. (Teloschistaceae) | physcion allantoin | 2.55 ± 0.54 0.284 ± 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baczewska, I.; Hawrylak-Nowak, B.; Zagórska-Dziok, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Borowski, G.; Dresler, S. Towards the Use of Lichens as a Source of Bioactive Substances for Topical Applications. Molecules 2024, 29, 4352. https://doi.org/10.3390/molecules29184352
Baczewska I, Hawrylak-Nowak B, Zagórska-Dziok M, Ziemlewska A, Nizioł-Łukaszewska Z, Borowski G, Dresler S. Towards the Use of Lichens as a Source of Bioactive Substances for Topical Applications. Molecules. 2024; 29(18):4352. https://doi.org/10.3390/molecules29184352
Chicago/Turabian StyleBaczewska, Izabela, Barbara Hawrylak-Nowak, Martyna Zagórska-Dziok, Aleksandra Ziemlewska, Zofia Nizioł-Łukaszewska, Grzegorz Borowski, and Sławomir Dresler. 2024. "Towards the Use of Lichens as a Source of Bioactive Substances for Topical Applications" Molecules 29, no. 18: 4352. https://doi.org/10.3390/molecules29184352
APA StyleBaczewska, I., Hawrylak-Nowak, B., Zagórska-Dziok, M., Ziemlewska, A., Nizioł-Łukaszewska, Z., Borowski, G., & Dresler, S. (2024). Towards the Use of Lichens as a Source of Bioactive Substances for Topical Applications. Molecules, 29(18), 4352. https://doi.org/10.3390/molecules29184352