Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Preparation of Catalyst I·HCl
4.3. Preparation of Compound 3 in the Presence of Catalyst I·HCl
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Liu, W.; Xue, G.; Tan, T.; Yang, C.; An, P.; Chen, W.; Zhao, W.; Fan, T.; Cui, C.; et al. Modulating Charges of Dual Sites in Multivariate Metal–Organic Frameworks for Boosting Selective Aerobic Epoxidation of Alkenes. J. Am. Chem. Soc. 2023, 145, 11085–11096. [Google Scholar] [CrossRef] [PubMed]
- Cussó, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Asymmetric Epoxidation with H2O2 by Manipulating the Electronic Properties of Non-heme Iron Catalysts. J. Am. Chem. Soc. 2013, 135, 14871–14878. [Google Scholar] [CrossRef]
- Chang, S.; Galvin, J.M.; Jacobsen, E.N. Effect of Chiral Quaternary Ammonium Salts on (salen)Mn-Catalyzed Epoxidation of cis-Olefins. A Highly Enantioselective, Catalytic Route to Trans-Epoxides. J. Am. Chem. Soc. 1994, 116, 6937–6938. [Google Scholar] [CrossRef]
- Luo, L.; Yamamoto, H. Iron(II)-Catalyzed Asymmetric Epoxidation of Trisubstituted α,β-Unsaturated Esters. Eur. J. Org. Chem. 2014, 35, 7803–7805. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Sun, Q. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond. Acc. Chem. Res. 2019, 52, 2370–2381. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Miao, C.; Xia, C.; Lee, Y.-M.; Nam, W.; Sun, W. Mechanistic Insights into the Enantioselective Epoxidation of Olefins by Bioinspired Manganese Complexes: Role of Carboxylic Acid and Nature of Active Oxidant. ACS Catal. 2018, 8, 4528–4538. [Google Scholar] [CrossRef]
- Deng, L.; Jacobsen, E.N. A practical, highly enantioselective synthesis of the taxol side chain via asymmetric catalysis. J. Org. Chem. 1992, 57, 4320–4323. [Google Scholar] [CrossRef]
- Sawano, T.; Yamamoto, H. Regio- and Enantioselective Substrate-Directed Epoxidation. Eur. J. Org. Chem. 2020, 2020, 2369–2378. [Google Scholar] [CrossRef]
- Wang, Z.X.; Shi, Y. A New Type of Ketone Catalyst for Asymmetric Epoxidation. J. Org. Chem. 1997, 62, 8622–8623. [Google Scholar] [CrossRef]
- Takayuki Ohyoshi, T.; Iizumi, H.; Hosono, S.; Tano, H.; Kigoshi, H. Total Synthesis of Aplysiasecosterols A and B, Two Marine 9,11-Secosteroids. Org. Lett. 2023, 25, 4725–4729. [Google Scholar] [CrossRef]
- Höthker, S.; Plato, A.; Grimme, S.; Qu, A.-W.; Gansäuer, A. Stereoconvergent Approach to the Enantioselective Construction of α-Quaternary Alcohols by Radical Epoxide Allylation. Angew. Chem. Int. Ed. 2024, 63, e202405911. [Google Scholar] [CrossRef] [PubMed]
- Furutani, T.; Imashiro, R.; Hatsuda, M.; Seki, M. A Practical Procedure for the Large-Scale Preparation of Methyl (2R,3S)-3-(4-Methoxyphenyl)glycidate, a Key Intermediate for Diltiazem. J. Org. Chem. 2002, 67, 4599–4601. [Google Scholar] [CrossRef]
- Solladié-Cavallo, A.; Bouérat, L. Epoxidation of p-Methoxycinnamates Using Chiral Dioxiranes Derived from New Trisubstituted Halogenated Cyclohexanones: Enhanced Efficiency of Ketones Having an Axial Halogen. Org. Lett. 2000, 2, 3531–3534. [Google Scholar] [CrossRef] [PubMed]
- Imperio, D.; Valloni, F.; Caprioglio, D.; Minassi, A.; Casali, E.; Panza, L. Stereoselective Shi-type epoxidation with 3-oxo-4,6-O-benzylidene pyranoside catalysts: Unveiling the role of carbohydrate skeletons. RSC Adv. 2024, 14, 16778–16783. [Google Scholar] [CrossRef] [PubMed]
- Höthker, S.; Mika, R.; Goli, H.; Gansäuer, A. Converging Stereodivergent Reactions: Highly Stereoselective Formal anti-Markovnikov Addition of H2O to Mixtures of Olefins. Chem. Eur. J. 2023, 29, e202301031. [Google Scholar] [CrossRef] [PubMed]
- Yudin, A.K. Aziridines and Epoxides in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Moschona, F.; Savvopoulou, I.; Tsitopoulou, M.; Tataraki, D.; Rassias, G. Epoxide Syntheses and Ring-Opening Reactions in Drug Development. Catalysts 2020, 10, 1117. [Google Scholar] [CrossRef]
- Hanif, M.; Zahoor, A.F.; Saif, M.J.; Nazeer, U.; Ali, K.G.; Parveen, B.; Mansha, A.; Chaudhry, A.R.; Irfan, A. Exploring the synthetic potential of epoxide ring opening reactions toward the synthesis of alkaloids and terpenoids: A review. RSC Adv. 2024, 14, 13100–13128. [Google Scholar] [CrossRef]
- Meninno, S.; Alessandra Lattanzi, A. Epoxides: Small Rings to Play with under Asymmetric Organocatalysis. ACS Org. Inorg. Au 2022, 2, 289–305. [Google Scholar] [CrossRef]
- Jat, J.L.; Kumar, G. Isomerization of Epoxides. Adv. Synth. Catal. 2019, 361, 4426–4441. [Google Scholar] [CrossRef]
- López, I.; Rodríguez, S.; Izquierdo, J.; González, F.V. Highly Stereoselective Epoxidation of α-Methyl-γ-hydroxy-α,β-unsaturated Esters: Rationalization and Synthetic Applications. J. Org. Chem. 2007, 72, 6614–6617. [Google Scholar] [CrossRef]
- de los Santos, J.M.; Ochoa de Retana, A.M.; Martı´nez de Marigorta, E.; Vicario, J.; Palacios, F. Catalytic Asymmetric Darzens and Aza-Darzens Reactions for the Synthesis of Chiral Epoxides and Aziridines. ChemCatChem 2018, 10, 5092–5114. [Google Scholar] [CrossRef]
- Wang, H.L.; Wei, T.; Bi, R.-Y.; Xie, M.-S.; Guo, H.-M. Imidazolidine-Pyrroloimidazolone Pyridine-Ni(acac)2 Complex Catalyzed Asymmetric Darzens Reaction of Isatins with Phenacyl Chlorides: A Chiral Amplification Effect. Adv. Synth. Catal. 2024, 366, 3188–3193. [Google Scholar] [CrossRef]
- Kimura, C.; Kashiwaya, K.; Murai, K.; Katada, H. Darzens glycidic ester condensation of benzaldehyde in solid-liquid two-phase system. Ind. Eng. Chem. Prod. Res. Dev. 1983, 22, 118–120. [Google Scholar] [CrossRef]
- Jonczyk, A.; Zomerfeld, T. Convenient synthesis of t-butyl Z-3-substituted glycidates under conditions of phase-transfer catalysis. Tetrahedron Lett. 2003, 44, 2359–2361. [Google Scholar] [CrossRef]
- Liu, Y.; Provencher, B.A.; Bartelson, K.J.; Deng, L. Highly enantioselective asymmetric Darzens reactions with a phase transfer catalyst. Chem. Sci. 2011, 2, 1301–1304. [Google Scholar] [CrossRef]
- Zha, Q.; Wu, Y. Enantioselective Total Synthesis of 10-Desoxy Analogue of a Previously Reported Natural Peroxyguaidiol. J. Org. Chem. 2022, 87, 10114–10137. [Google Scholar] [CrossRef]
- Delost, M.D.; Njardarson, J.T. Mild Darzens Annulations for the Assembly of Trifluoromethylthiolated (SCF3) Aziridine and Cyclopropane Structures. Org. Lett. 2021, 23, 6121–6125. [Google Scholar] [CrossRef]
- Luo, J.; Hu, L.; Zhang, M.; Tang, Q. An efficient Darzens reaction promoted by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Tetrahedron Lett. 2019, 60, 1949–1951. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Siva, A.; Chidamdaram, R.R. A highly enantioselective asymmetric Darzens reaction catalysed by proline based efficient organocatalysts for the synthesis of di- and tri-substituted epoxides. Chem. Commun. 2017, 53, 10926–10929. [Google Scholar] [CrossRef]
- Mamedov, V.A.; Mamedova, V.L.; Syakaev, V.V.; Khikmatova, G.Z.; Korshin, D.E.; Kushatov, T.A.; Latypov, S.K. A new and efficient method for the synthesis of 3-(2-nitrophenyl) pyruvic acid derivatives and indoles based on the Reissert reaction. Tetrahedron Lett. 2018, 59, 3923–3925. [Google Scholar] [CrossRef]
- Arai, S.; Suzuki, Y.; Tokumaru, K.; Shioiri, T. Diastereoselective Darzens reactions of α-chloroesters, amides and nitriles with aromatic aldehydes under phase-transfer catalyzed conditions. Tetrahedron Lett. 2002, 43, 833–836. [Google Scholar] [CrossRef]
- Dong, Z.; Chen, C.; Wang, J.; Xu, J.; Yang, Z. Dual roles of bisphosphines and epoxides: Rh-catalyzed highly chemoselective and diastereoselective (3 + 2) transannulations of 1,2,3-thiadiazoles with cyanoepoxides. Org. Chem. Front. 2021, 8, 6687–6698. [Google Scholar] [CrossRef]
- Uritis, A.; Phillips, H.; Phillips, H.; Coombs, T.C. House-Meinwald rearrangement of aryl-substituted epoxysulfones in hexafluoroisopropanol (HFIP). Tetrahedron Lett. 2023, 128, 154716. [Google Scholar] [CrossRef]
- Ku, J.-M.; Yoo, M.-S.; Park, H.-g.; Jew, S.-s.; Jeong, B.-S. Asymmetric synthesis of α,β-epoxysulfones via phase-transfer catalytic Darzens reaction. Tetrahedron 2007, 63, 8099–8103. [Google Scholar] [CrossRef]
- Delost, M.D.; Njardarson, J.T. Strategic Vinyl Sulfone Nucleophile β-Substitution Significantly Impacts Selectivity in Vinylogous Darzens and Aza-Darzens Reactions. Org. Lett. 2020, 22, 6917–6921. [Google Scholar] [CrossRef]
- Nam, D.G.; Shim, S.Y.; Jeong, H.-M.; Ryu, D.H. Catalytic Asymmetric Darzens-Type Epoxidation of Diazoesters: Highly Enantioselective Synthesis of Trisubstituted Epoxides. Angew. Chem. Int. Ed. 2021, 60, 22236–22240. [Google Scholar] [CrossRef]
- Pan, J.; Wu, J.-H.; Zhang, H.; Ren, X.; Tan, J.-P.; Zhu, L.; Zhang, H.-S.; Jiang, C.; Wang, T. Highly Enantioselective Synthesis of Fused Tri- and Tetrasubstituted Aziridines: Aza-Darzens Reaction of Cyclic Imines with a-Halogenated Ketones Catalyzed by Bifunc-tional Phosphonium Salt. Angew. Chem. Int. Ed. 2019, 58, 7425–7430. [Google Scholar] [CrossRef]
- Wu, J.-H.; Pan, J.; Wang, T. Dipeptide-Based Phosphonium Salt Catalysis: Application to Enantioselective Synthesis of Fused Tri- and Tetrasubstituted Aziridines. Synlett 2019, 30, 2101–2106. [Google Scholar] [CrossRef]
- Patamia, V.; Saccullo, E.; Zagni, C.; Tomarchio, R.; Quattrocchi, G.; Floresta, G.; Rescifina, A. γ-Cyclodextrins as Supramolecular Reactors for the Three-component Aza-Darzens Reaction in Water. Chem. Eur. J. 2024, 30, e202303984. [Google Scholar] [CrossRef]
- Bierschenk, S.M.; Pan, J.Y.; Settineri, N.S.; Warzok, U.; Bergman, R.G.; Raymond, K.N.; Toste, D.F. Impact of Host Flexibility on Selectivity in a Supramolecular Host-Catalyzed Enantioselective aza-Darzens Reaction. J. Am. Chem. Soc. 2022, 144, 11425–11433. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Z.; Bai, D.; Li, J.; Cui, X.; Xu, Z.J.; Tang, Y.; Tang, X.; Liu, W. A Discrete 3d–4f Metallacage as an Efficient Catalytic Nanoreactor for a Three-Component Aza-Darzens Reaction. Inorg. Chem. 2022, 61, 4009–4017. [Google Scholar] [CrossRef] [PubMed]
- Bierschenk, S.M.; Bergman, R.G.; Raymond, K.N.; Toste, D.F. A Nanovessel-Catalyzed Three-Component Aza-Darzens Reaction. J. Am. Chem. Soc. 2020, 142, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Lops, C.A.; Pengo, P.; Pasquato, L. Highly Efficient Darzens Reactions Mediated by Phosphazene Bases under Mild Conditions. Chem. Open 2022, 11, e202200179. [Google Scholar] [CrossRef] [PubMed]
- Bandar, J.S.; Lambert, T.H. Cyclopropenimine-Catalyzed Enantioselective Mannich Reactions of tert-Butyl Glycinates with N-Boc-Imines. J. Am. Chem. Soc. 2013, 135, 11799–11802. [Google Scholar] [CrossRef] [PubMed]
- Bandar, J.S.; Sauer, G.S.; Wulff, W.D.; Lambert, T.H.; Vetticatt, M.J. Transition State Analysis of Enantioselective Brønsted Base Catalysis by Chiral Cyclopropenimines. J. Am. Chem. Soc. 2014, 136, 10700–10707. [Google Scholar] [CrossRef]
- Bandar, J.S.; Lambert, T.H. Enantioselective Brønsted Base Catalysis with Chiral Cyclopropenimines. J. Am. Chem. Soc. 2012, 134, 5552–5555. [Google Scholar] [CrossRef]
- Leonardi, C.; Brandolese, A.; Preti, L.; Bortolini, O.; Polo, E.; Dambruoso, P.; Ragno, D.; Di Carmine, G.; Massia, A. Expanding the Toolbox of Heterogeneous Asymmetric Organocatalysts: Bifunctional Cyclopropenimine Superbases for Enantioselective Catalysis in Batch and Continuous Flow. Adv. Synth. Catal. 2021, 363, 5473–5485. [Google Scholar] [CrossRef]
- Lauridsen, V.H.; Ibsen, L.; Blom, J.; Jørgensen, K.A. Asymmetric Brønsted Base Catalyzed and Directed [3+2] Cycloaddition of 2-Acyl Cycloheptatrienes with Azomethine Ylides. Chem. Eur. J. 2016, 22, 3259–3263. [Google Scholar] [CrossRef]
- Nacsa, E.D.; Lambert, T.H. Higher-Order Cyclopropenimine Superbases: Direct Neutral Brønsted Base Catalyzed Michael Reactions with α-Aryl Esters. J. Am. Chem. Soc. 2015, 137, 10246–10253. [Google Scholar] [CrossRef]
- Komatsu, K.; Kitagawa, T. Cyclopropenylium Cations, Cyclopropenones, and Heteroanalogues-Recent Advances. Chem. Rev. 2003, 103, 1371–1428. [Google Scholar] [CrossRef]
- Bandar, J.S.; Barthelme, A.; Mazori, A.Y.; Lambert, T.H. Structure–activity relationship studies of cyclopropenimines as enantioselective Brønsted base catalysts. Chem. Sci. 2015, 6, 1537–1547. [Google Scholar] [CrossRef] [PubMed]
- Cussó, O.; Garcia-Bosch, I.; Font, D.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Highly Stereoselective Epoxidation with H2O2 Catalyzed by Electron-Rich Aminopyridine Manganese Catalysts. Org. Lett. 2013, 15, 6158–6161. [Google Scholar] [CrossRef] [PubMed]
- Borrell, M.; Costas, M. Mechanistically Driven Development of an Iron Catalyst for Selective Syn-Dihydroxylation of Alkenes with Aqueous Hydrogen Peroxide. J. Am. Chem. Soc. 2017, 139, 12821–12829. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.K.; Blackburn, P.; Fieldhouse, R.; Jones, R.V.H. Catalytic sulfur ylide reactions: Use of diazoacetamides for the diastereoselective synthesis of glycidic amides. Tetrahedron Lett. 1998, 39, 8517–8520. [Google Scholar] [CrossRef]
- Ooi, T.; Maruoka, K. Recent Advances in Asymmetric Phase-Transfer Catalysis. Angew. Chem. Int. Ed. 2007, 46, 4222–4266. [Google Scholar] [CrossRef]
- Bakó, P.; Rapi, Z.; Keglevich, G.; Szabó, T.; Sóti, P.L.; Vígh, T.; Grűn, A.; Holczbauer, T. Asymmetric C–C bond formation via Darzens condensation and Michael addition using monosaccharide-based chiral crown ethers. Tetrahedron Lett. 2011, 52, 1473–1476. [Google Scholar] [CrossRef]
- Rapi, Z.; Szabó, T.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Bakó, P. Enantioselective synthesis of heteroaromatic epoxyketones under phase-transfer catalysis using D-glucose- and D-mannose-based crown ethers. Tetrahedron Asymmetry 2011, 22, 1189–1196. [Google Scholar] [CrossRef]
- Rapi, Z.; Bakó, P.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Botyánszki, A.; Holczbauer, T. Asymmetric phase transfer Darzens reactions catalyzed by D-glucose- and D-mannose-based chiral crown ethers. Tetrahedron Asymmetry 2012, 23, 489–496. [Google Scholar] [CrossRef]
- Lehmann, F. Cesium Carbonate (Cs2CO3). Synlett 2004, 15, 2447–2448. [Google Scholar] [CrossRef]
- Kowalkowska, A.; Jończyk, A. Effect of Phase-Transfer Catalyst on Stereochemistry of tert-Butyl-3-aryl(alkyl)-Substituted Glycidates. Org. Process Res. Dev. 2010, 14, 728–731. [Google Scholar] [CrossRef]
- Sharifi, A.; Abaee, M.S.; Mirzaei, M.; Salimi, R. Ionic Liquid-Mediated Darzens Condensation: An Environmentally-Friendly Procedure for the Room-Temperature Synthesis of α,β-Epoxy Ketones. J. Iran. Chem. Soc. 2008, 5, 135–139. [Google Scholar] [CrossRef]
Entry | Solvent | Time (hours) 2 | Conv. (%) 3,4 | Yield (%) 3,5 | (cis/trans) 3,4,6 |
---|---|---|---|---|---|
1 7 | dry CH3CN | 16 | 44 | 34 | 1/0.85 |
2 7 | dry EtOAc | 24 | - | - | - |
3 | CH2Cl2/KOH aq. 50% 8 | 16 | 33 | 21 | 1/0.6 9 |
4 10 | CH2Cl2/KOH aq. 50% 8 | 16 | 17 | - | - |
5 | toluene/KOH aq. 50% 8 | 16 | 28 | 17 | 1/0.8 9 |
Entry | R | Solvent | Base | I·HCl (mol %) | Conv. (%) 2,3 | Yield (%) 3,4 | cis/trans 2,5 |
---|---|---|---|---|---|---|---|
1 6 | t-Bu | CH3CN | Cs2CO3 | - | 18 | - | - |
2 | t-Bu | CH3CN | Cs2CO3 | 20 | 14 | - | - |
3 | t-Bu | CH3CN | K2CO3 | - | - | - | - |
4 | t-Bu | CH3CN | K2CO3 | 20 | 49 | 36 | 1/0.7 |
5 7 | t-Bu | CH3CN | K2CO3 | 20 | 85 | 60 | 1/0.7 |
6 7 | t-Bu | CH3CN | K2CO3 | 30 | 93 | 67 | 1/0.7 |
7 | Me | CH3CN | K2CO3 | 20 | 16 | - | - |
8 | t-Bu | THF | K2CO3 | 20 | - | - | - |
9 | t-Bu | Toluene | Cs2CO3 | 20 | - | - | - |
10 | t-Bu | CH2Cl2 | Pyridine | 20 | - | - | - |
11 | Me | CH3CN | DIPEA | 20 | - | - | - |
12 | Me | CH3CN | Proton Sponge | 20 | - | - | - |
13 | Me | CH2Cl2 | DIPEA | 20 | - | - | - |
14 | Me | CH2Cl2 | Proton Sponge | 20 | - | - | - |
Entry | Pronucleophile | Aldehyde | Conv.(%) 2 | Yield (%) 3 | cis/trans 2 |
---|---|---|---|---|---|
1 | 1a | 2b | 88 | 65 | 1/0.7 |
2 | 1a | 2c | 66 | 32 | 1/0.9 |
3 | 1a | 2d | 87 | 47 | 1/0.7 |
4 | 1a | 2e | >99 | 78 | 1/0.7 |
5 | 1a | 2f | 80 | 41 | 1/0.6 |
6 | 1c | 2e | 48 | 32 | 1/0.9 |
7 | 1d | 2e | >99 | 86 | 1/0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lops, C.; Pasquato, L.; Pengo, P. Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase. Molecules 2024, 29, 4350. https://doi.org/10.3390/molecules29184350
Lops C, Pasquato L, Pengo P. Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase. Molecules. 2024; 29(18):4350. https://doi.org/10.3390/molecules29184350
Chicago/Turabian StyleLops, Carmine, Lucia Pasquato, and Paolo Pengo. 2024. "Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase" Molecules 29, no. 18: 4350. https://doi.org/10.3390/molecules29184350
APA StyleLops, C., Pasquato, L., & Pengo, P. (2024). Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase. Molecules, 29(18), 4350. https://doi.org/10.3390/molecules29184350