Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Preparation of Catalyst I·HCl
4.3. Preparation of Compound 3 in the Presence of Catalyst I·HCl
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Liu, W.; Xue, G.; Tan, T.; Yang, C.; An, P.; Chen, W.; Zhao, W.; Fan, T.; Cui, C.; et al. Modulating Charges of Dual Sites in Multivariate Metal–Organic Frameworks for Boosting Selective Aerobic Epoxidation of Alkenes. J. Am. Chem. Soc. 2023, 145, 11085–11096. [Google Scholar] [CrossRef] [PubMed]
- Cussó, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Asymmetric Epoxidation with H2O2 by Manipulating the Electronic Properties of Non-heme Iron Catalysts. J. Am. Chem. Soc. 2013, 135, 14871–14878. [Google Scholar] [CrossRef]
- Chang, S.; Galvin, J.M.; Jacobsen, E.N. Effect of Chiral Quaternary Ammonium Salts on (salen)Mn-Catalyzed Epoxidation of cis-Olefins. A Highly Enantioselective, Catalytic Route to Trans-Epoxides. J. Am. Chem. Soc. 1994, 116, 6937–6938. [Google Scholar] [CrossRef]
- Luo, L.; Yamamoto, H. Iron(II)-Catalyzed Asymmetric Epoxidation of Trisubstituted α,β-Unsaturated Esters. Eur. J. Org. Chem. 2014, 35, 7803–7805. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Sun, Q. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond. Acc. Chem. Res. 2019, 52, 2370–2381. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Miao, C.; Xia, C.; Lee, Y.-M.; Nam, W.; Sun, W. Mechanistic Insights into the Enantioselective Epoxidation of Olefins by Bioinspired Manganese Complexes: Role of Carboxylic Acid and Nature of Active Oxidant. ACS Catal. 2018, 8, 4528–4538. [Google Scholar] [CrossRef]
- Deng, L.; Jacobsen, E.N. A practical, highly enantioselective synthesis of the taxol side chain via asymmetric catalysis. J. Org. Chem. 1992, 57, 4320–4323. [Google Scholar] [CrossRef]
- Sawano, T.; Yamamoto, H. Regio- and Enantioselective Substrate-Directed Epoxidation. Eur. J. Org. Chem. 2020, 2020, 2369–2378. [Google Scholar] [CrossRef]
- Wang, Z.X.; Shi, Y. A New Type of Ketone Catalyst for Asymmetric Epoxidation. J. Org. Chem. 1997, 62, 8622–8623. [Google Scholar] [CrossRef]
- Takayuki Ohyoshi, T.; Iizumi, H.; Hosono, S.; Tano, H.; Kigoshi, H. Total Synthesis of Aplysiasecosterols A and B, Two Marine 9,11-Secosteroids. Org. Lett. 2023, 25, 4725–4729. [Google Scholar] [CrossRef]
- Höthker, S.; Plato, A.; Grimme, S.; Qu, A.-W.; Gansäuer, A. Stereoconvergent Approach to the Enantioselective Construction of α-Quaternary Alcohols by Radical Epoxide Allylation. Angew. Chem. Int. Ed. 2024, 63, e202405911. [Google Scholar] [CrossRef] [PubMed]
- Furutani, T.; Imashiro, R.; Hatsuda, M.; Seki, M. A Practical Procedure for the Large-Scale Preparation of Methyl (2R,3S)-3-(4-Methoxyphenyl)glycidate, a Key Intermediate for Diltiazem. J. Org. Chem. 2002, 67, 4599–4601. [Google Scholar] [CrossRef]
- Solladié-Cavallo, A.; Bouérat, L. Epoxidation of p-Methoxycinnamates Using Chiral Dioxiranes Derived from New Trisubstituted Halogenated Cyclohexanones: Enhanced Efficiency of Ketones Having an Axial Halogen. Org. Lett. 2000, 2, 3531–3534. [Google Scholar] [CrossRef] [PubMed]
- Imperio, D.; Valloni, F.; Caprioglio, D.; Minassi, A.; Casali, E.; Panza, L. Stereoselective Shi-type epoxidation with 3-oxo-4,6-O-benzylidene pyranoside catalysts: Unveiling the role of carbohydrate skeletons. RSC Adv. 2024, 14, 16778–16783. [Google Scholar] [CrossRef] [PubMed]
- Höthker, S.; Mika, R.; Goli, H.; Gansäuer, A. Converging Stereodivergent Reactions: Highly Stereoselective Formal anti-Markovnikov Addition of H2O to Mixtures of Olefins. Chem. Eur. J. 2023, 29, e202301031. [Google Scholar] [CrossRef] [PubMed]
- Yudin, A.K. Aziridines and Epoxides in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Moschona, F.; Savvopoulou, I.; Tsitopoulou, M.; Tataraki, D.; Rassias, G. Epoxide Syntheses and Ring-Opening Reactions in Drug Development. Catalysts 2020, 10, 1117. [Google Scholar] [CrossRef]
- Hanif, M.; Zahoor, A.F.; Saif, M.J.; Nazeer, U.; Ali, K.G.; Parveen, B.; Mansha, A.; Chaudhry, A.R.; Irfan, A. Exploring the synthetic potential of epoxide ring opening reactions toward the synthesis of alkaloids and terpenoids: A review. RSC Adv. 2024, 14, 13100–13128. [Google Scholar] [CrossRef]
- Meninno, S.; Alessandra Lattanzi, A. Epoxides: Small Rings to Play with under Asymmetric Organocatalysis. ACS Org. Inorg. Au 2022, 2, 289–305. [Google Scholar] [CrossRef]
- Jat, J.L.; Kumar, G. Isomerization of Epoxides. Adv. Synth. Catal. 2019, 361, 4426–4441. [Google Scholar] [CrossRef]
- López, I.; Rodríguez, S.; Izquierdo, J.; González, F.V. Highly Stereoselective Epoxidation of α-Methyl-γ-hydroxy-α,β-unsaturated Esters: Rationalization and Synthetic Applications. J. Org. Chem. 2007, 72, 6614–6617. [Google Scholar] [CrossRef]
- de los Santos, J.M.; Ochoa de Retana, A.M.; Martı´nez de Marigorta, E.; Vicario, J.; Palacios, F. Catalytic Asymmetric Darzens and Aza-Darzens Reactions for the Synthesis of Chiral Epoxides and Aziridines. ChemCatChem 2018, 10, 5092–5114. [Google Scholar] [CrossRef]
- Wang, H.L.; Wei, T.; Bi, R.-Y.; Xie, M.-S.; Guo, H.-M. Imidazolidine-Pyrroloimidazolone Pyridine-Ni(acac)2 Complex Catalyzed Asymmetric Darzens Reaction of Isatins with Phenacyl Chlorides: A Chiral Amplification Effect. Adv. Synth. Catal. 2024, 366, 3188–3193. [Google Scholar] [CrossRef]
- Kimura, C.; Kashiwaya, K.; Murai, K.; Katada, H. Darzens glycidic ester condensation of benzaldehyde in solid-liquid two-phase system. Ind. Eng. Chem. Prod. Res. Dev. 1983, 22, 118–120. [Google Scholar] [CrossRef]
- Jonczyk, A.; Zomerfeld, T. Convenient synthesis of t-butyl Z-3-substituted glycidates under conditions of phase-transfer catalysis. Tetrahedron Lett. 2003, 44, 2359–2361. [Google Scholar] [CrossRef]
- Liu, Y.; Provencher, B.A.; Bartelson, K.J.; Deng, L. Highly enantioselective asymmetric Darzens reactions with a phase transfer catalyst. Chem. Sci. 2011, 2, 1301–1304. [Google Scholar] [CrossRef]
- Zha, Q.; Wu, Y. Enantioselective Total Synthesis of 10-Desoxy Analogue of a Previously Reported Natural Peroxyguaidiol. J. Org. Chem. 2022, 87, 10114–10137. [Google Scholar] [CrossRef]
- Delost, M.D.; Njardarson, J.T. Mild Darzens Annulations for the Assembly of Trifluoromethylthiolated (SCF3) Aziridine and Cyclopropane Structures. Org. Lett. 2021, 23, 6121–6125. [Google Scholar] [CrossRef]
- Luo, J.; Hu, L.; Zhang, M.; Tang, Q. An efficient Darzens reaction promoted by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Tetrahedron Lett. 2019, 60, 1949–1951. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Siva, A.; Chidamdaram, R.R. A highly enantioselective asymmetric Darzens reaction catalysed by proline based efficient organocatalysts for the synthesis of di- and tri-substituted epoxides. Chem. Commun. 2017, 53, 10926–10929. [Google Scholar] [CrossRef]
- Mamedov, V.A.; Mamedova, V.L.; Syakaev, V.V.; Khikmatova, G.Z.; Korshin, D.E.; Kushatov, T.A.; Latypov, S.K. A new and efficient method for the synthesis of 3-(2-nitrophenyl) pyruvic acid derivatives and indoles based on the Reissert reaction. Tetrahedron Lett. 2018, 59, 3923–3925. [Google Scholar] [CrossRef]
- Arai, S.; Suzuki, Y.; Tokumaru, K.; Shioiri, T. Diastereoselective Darzens reactions of α-chloroesters, amides and nitriles with aromatic aldehydes under phase-transfer catalyzed conditions. Tetrahedron Lett. 2002, 43, 833–836. [Google Scholar] [CrossRef]
- Dong, Z.; Chen, C.; Wang, J.; Xu, J.; Yang, Z. Dual roles of bisphosphines and epoxides: Rh-catalyzed highly chemoselective and diastereoselective (3 + 2) transannulations of 1,2,3-thiadiazoles with cyanoepoxides. Org. Chem. Front. 2021, 8, 6687–6698. [Google Scholar] [CrossRef]
- Uritis, A.; Phillips, H.; Phillips, H.; Coombs, T.C. House-Meinwald rearrangement of aryl-substituted epoxysulfones in hexafluoroisopropanol (HFIP). Tetrahedron Lett. 2023, 128, 154716. [Google Scholar] [CrossRef]
- Ku, J.-M.; Yoo, M.-S.; Park, H.-g.; Jew, S.-s.; Jeong, B.-S. Asymmetric synthesis of α,β-epoxysulfones via phase-transfer catalytic Darzens reaction. Tetrahedron 2007, 63, 8099–8103. [Google Scholar] [CrossRef]
- Delost, M.D.; Njardarson, J.T. Strategic Vinyl Sulfone Nucleophile β-Substitution Significantly Impacts Selectivity in Vinylogous Darzens and Aza-Darzens Reactions. Org. Lett. 2020, 22, 6917–6921. [Google Scholar] [CrossRef]
- Nam, D.G.; Shim, S.Y.; Jeong, H.-M.; Ryu, D.H. Catalytic Asymmetric Darzens-Type Epoxidation of Diazoesters: Highly Enantioselective Synthesis of Trisubstituted Epoxides. Angew. Chem. Int. Ed. 2021, 60, 22236–22240. [Google Scholar] [CrossRef]
- Pan, J.; Wu, J.-H.; Zhang, H.; Ren, X.; Tan, J.-P.; Zhu, L.; Zhang, H.-S.; Jiang, C.; Wang, T. Highly Enantioselective Synthesis of Fused Tri- and Tetrasubstituted Aziridines: Aza-Darzens Reaction of Cyclic Imines with a-Halogenated Ketones Catalyzed by Bifunc-tional Phosphonium Salt. Angew. Chem. Int. Ed. 2019, 58, 7425–7430. [Google Scholar] [CrossRef]
- Wu, J.-H.; Pan, J.; Wang, T. Dipeptide-Based Phosphonium Salt Catalysis: Application to Enantioselective Synthesis of Fused Tri- and Tetrasubstituted Aziridines. Synlett 2019, 30, 2101–2106. [Google Scholar] [CrossRef]
- Patamia, V.; Saccullo, E.; Zagni, C.; Tomarchio, R.; Quattrocchi, G.; Floresta, G.; Rescifina, A. γ-Cyclodextrins as Supramolecular Reactors for the Three-component Aza-Darzens Reaction in Water. Chem. Eur. J. 2024, 30, e202303984. [Google Scholar] [CrossRef]
- Bierschenk, S.M.; Pan, J.Y.; Settineri, N.S.; Warzok, U.; Bergman, R.G.; Raymond, K.N.; Toste, D.F. Impact of Host Flexibility on Selectivity in a Supramolecular Host-Catalyzed Enantioselective aza-Darzens Reaction. J. Am. Chem. Soc. 2022, 144, 11425–11433. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Z.; Bai, D.; Li, J.; Cui, X.; Xu, Z.J.; Tang, Y.; Tang, X.; Liu, W. A Discrete 3d–4f Metallacage as an Efficient Catalytic Nanoreactor for a Three-Component Aza-Darzens Reaction. Inorg. Chem. 2022, 61, 4009–4017. [Google Scholar] [CrossRef] [PubMed]
- Bierschenk, S.M.; Bergman, R.G.; Raymond, K.N.; Toste, D.F. A Nanovessel-Catalyzed Three-Component Aza-Darzens Reaction. J. Am. Chem. Soc. 2020, 142, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Lops, C.A.; Pengo, P.; Pasquato, L. Highly Efficient Darzens Reactions Mediated by Phosphazene Bases under Mild Conditions. Chem. Open 2022, 11, e202200179. [Google Scholar] [CrossRef] [PubMed]
- Bandar, J.S.; Lambert, T.H. Cyclopropenimine-Catalyzed Enantioselective Mannich Reactions of tert-Butyl Glycinates with N-Boc-Imines. J. Am. Chem. Soc. 2013, 135, 11799–11802. [Google Scholar] [CrossRef] [PubMed]
- Bandar, J.S.; Sauer, G.S.; Wulff, W.D.; Lambert, T.H.; Vetticatt, M.J. Transition State Analysis of Enantioselective Brønsted Base Catalysis by Chiral Cyclopropenimines. J. Am. Chem. Soc. 2014, 136, 10700–10707. [Google Scholar] [CrossRef]
- Bandar, J.S.; Lambert, T.H. Enantioselective Brønsted Base Catalysis with Chiral Cyclopropenimines. J. Am. Chem. Soc. 2012, 134, 5552–5555. [Google Scholar] [CrossRef]
- Leonardi, C.; Brandolese, A.; Preti, L.; Bortolini, O.; Polo, E.; Dambruoso, P.; Ragno, D.; Di Carmine, G.; Massia, A. Expanding the Toolbox of Heterogeneous Asymmetric Organocatalysts: Bifunctional Cyclopropenimine Superbases for Enantioselective Catalysis in Batch and Continuous Flow. Adv. Synth. Catal. 2021, 363, 5473–5485. [Google Scholar] [CrossRef]
- Lauridsen, V.H.; Ibsen, L.; Blom, J.; Jørgensen, K.A. Asymmetric Brønsted Base Catalyzed and Directed [3+2] Cycloaddition of 2-Acyl Cycloheptatrienes with Azomethine Ylides. Chem. Eur. J. 2016, 22, 3259–3263. [Google Scholar] [CrossRef]
- Nacsa, E.D.; Lambert, T.H. Higher-Order Cyclopropenimine Superbases: Direct Neutral Brønsted Base Catalyzed Michael Reactions with α-Aryl Esters. J. Am. Chem. Soc. 2015, 137, 10246–10253. [Google Scholar] [CrossRef]
- Komatsu, K.; Kitagawa, T. Cyclopropenylium Cations, Cyclopropenones, and Heteroanalogues-Recent Advances. Chem. Rev. 2003, 103, 1371–1428. [Google Scholar] [CrossRef]
- Bandar, J.S.; Barthelme, A.; Mazori, A.Y.; Lambert, T.H. Structure–activity relationship studies of cyclopropenimines as enantioselective Brønsted base catalysts. Chem. Sci. 2015, 6, 1537–1547. [Google Scholar] [CrossRef] [PubMed]
- Cussó, O.; Garcia-Bosch, I.; Font, D.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Highly Stereoselective Epoxidation with H2O2 Catalyzed by Electron-Rich Aminopyridine Manganese Catalysts. Org. Lett. 2013, 15, 6158–6161. [Google Scholar] [CrossRef] [PubMed]
- Borrell, M.; Costas, M. Mechanistically Driven Development of an Iron Catalyst for Selective Syn-Dihydroxylation of Alkenes with Aqueous Hydrogen Peroxide. J. Am. Chem. Soc. 2017, 139, 12821–12829. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.K.; Blackburn, P.; Fieldhouse, R.; Jones, R.V.H. Catalytic sulfur ylide reactions: Use of diazoacetamides for the diastereoselective synthesis of glycidic amides. Tetrahedron Lett. 1998, 39, 8517–8520. [Google Scholar] [CrossRef]
- Ooi, T.; Maruoka, K. Recent Advances in Asymmetric Phase-Transfer Catalysis. Angew. Chem. Int. Ed. 2007, 46, 4222–4266. [Google Scholar] [CrossRef]
- Bakó, P.; Rapi, Z.; Keglevich, G.; Szabó, T.; Sóti, P.L.; Vígh, T.; Grűn, A.; Holczbauer, T. Asymmetric C–C bond formation via Darzens condensation and Michael addition using monosaccharide-based chiral crown ethers. Tetrahedron Lett. 2011, 52, 1473–1476. [Google Scholar] [CrossRef]
- Rapi, Z.; Szabó, T.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Bakó, P. Enantioselective synthesis of heteroaromatic epoxyketones under phase-transfer catalysis using D-glucose- and D-mannose-based crown ethers. Tetrahedron Asymmetry 2011, 22, 1189–1196. [Google Scholar] [CrossRef]
- Rapi, Z.; Bakó, P.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Botyánszki, A.; Holczbauer, T. Asymmetric phase transfer Darzens reactions catalyzed by D-glucose- and D-mannose-based chiral crown ethers. Tetrahedron Asymmetry 2012, 23, 489–496. [Google Scholar] [CrossRef]
- Lehmann, F. Cesium Carbonate (Cs2CO3). Synlett 2004, 15, 2447–2448. [Google Scholar] [CrossRef]
- Kowalkowska, A.; Jończyk, A. Effect of Phase-Transfer Catalyst on Stereochemistry of tert-Butyl-3-aryl(alkyl)-Substituted Glycidates. Org. Process Res. Dev. 2010, 14, 728–731. [Google Scholar] [CrossRef]
- Sharifi, A.; Abaee, M.S.; Mirzaei, M.; Salimi, R. Ionic Liquid-Mediated Darzens Condensation: An Environmentally-Friendly Procedure for the Room-Temperature Synthesis of α,β-Epoxy Ketones. J. Iran. Chem. Soc. 2008, 5, 135–139. [Google Scholar] [CrossRef]
Entry | Solvent | Time (hours) 2 | Conv. (%) 3,4 | Yield (%) 3,5 | (cis/trans) 3,4,6 |
---|---|---|---|---|---|
1 7 | dry CH3CN | 16 | 44 | 34 | 1/0.85 |
2 7 | dry EtOAc | 24 | - | - | - |
3 | CH2Cl2/KOH aq. 50% 8 | 16 | 33 | 21 | 1/0.6 9 |
4 10 | CH2Cl2/KOH aq. 50% 8 | 16 | 17 | - | - |
5 | toluene/KOH aq. 50% 8 | 16 | 28 | 17 | 1/0.8 9 |
Entry | R | Solvent | Base | I·HCl (mol %) | Conv. (%) 2,3 | Yield (%) 3,4 | cis/trans 2,5 |
---|---|---|---|---|---|---|---|
1 6 | t-Bu | CH3CN | Cs2CO3 | - | 18 | - | - |
2 | t-Bu | CH3CN | Cs2CO3 | 20 | 14 | - | - |
3 | t-Bu | CH3CN | K2CO3 | - | - | - | - |
4 | t-Bu | CH3CN | K2CO3 | 20 | 49 | 36 | 1/0.7 |
5 7 | t-Bu | CH3CN | K2CO3 | 20 | 85 | 60 | 1/0.7 |
6 7 | t-Bu | CH3CN | K2CO3 | 30 | 93 | 67 | 1/0.7 |
7 | Me | CH3CN | K2CO3 | 20 | 16 | - | - |
8 | t-Bu | THF | K2CO3 | 20 | - | - | - |
9 | t-Bu | Toluene | Cs2CO3 | 20 | - | - | - |
10 | t-Bu | CH2Cl2 | Pyridine | 20 | - | - | - |
11 | Me | CH3CN | DIPEA | 20 | - | - | - |
12 | Me | CH3CN | Proton Sponge | 20 | - | - | - |
13 | Me | CH2Cl2 | DIPEA | 20 | - | - | - |
14 | Me | CH2Cl2 | Proton Sponge | 20 | - | - | - |
Entry | Pronucleophile | Aldehyde | Conv.(%) 2 | Yield (%) 3 | cis/trans 2 |
---|---|---|---|---|---|
1 | 1a | 2b | 88 | 65 | 1/0.7 |
2 | 1a | 2c | 66 | 32 | 1/0.9 |
3 | 1a | 2d | 87 | 47 | 1/0.7 |
4 | 1a | 2e | >99 | 78 | 1/0.7 |
5 | 1a | 2f | 80 | 41 | 1/0.6 |
6 | 1c | 2e | 48 | 32 | 1/0.9 |
7 | 1d | 2e | >99 | 86 | 1/0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lops, C.; Pasquato, L.; Pengo, P. Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase. Molecules 2024, 29, 4350. https://doi.org/10.3390/molecules29184350
Lops C, Pasquato L, Pengo P. Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase. Molecules. 2024; 29(18):4350. https://doi.org/10.3390/molecules29184350
Chicago/Turabian StyleLops, Carmine, Lucia Pasquato, and Paolo Pengo. 2024. "Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase" Molecules 29, no. 18: 4350. https://doi.org/10.3390/molecules29184350
APA StyleLops, C., Pasquato, L., & Pengo, P. (2024). Development of Organocatalytic Darzens Reactions Exploiting the Cyclopropenimine Superbase. Molecules, 29(18), 4350. https://doi.org/10.3390/molecules29184350