Characteristics of Selected Bioactive Compounds and Malting Parameters of Hemp (Cannabis sativa L.) Seeds and Malt
Abstract
:1. Introduction
2. Results
2.1. Qualitative Characteristics of Hemp Seeds and Their Potential for Malting
2.2. Protein Profile
2.3. Antioxidant Activity
2.4. Phytic Acid and Inositol Phosphates
3. Materials and Methods
3.1. Materials
3.2. Seed Analysis
3.2.1. Weight of 1000 Seeds
3.2.2. Moisture Content
3.2.3. Seed Viability
3.2.4. Water Sensitivity
3.2.5. Water Uptake Capacity (Swelling Ability)
3.2.6. Grading by Seed Size
3.2.7. Cross-Cut Observation (Endosperm Property)
3.3. Malting Procedure
3.4. Spectrophotometric Analyses
3.4.1. Preparation of Extracts for Antioxidant Activity Determination
3.4.2. SEC-HPLC Separation of Hemp Seed Proteins
3.5. Phytate Analysis
Semi-Qualitative Analysis of the Inositol Phosphate Profile
3.6. HPLC Analysis
3.7. Colorimetric Analysis Method Using the Wade Reagent
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Żuk-Gołaszewska, K.; Gołaszewski, J. Cannabis sativa L. Cultivation and Quality of Raw Material. J. Elem. 2018, 23, 971–984. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef] [PubMed]
- Zając, M.; Guzik, P.; Kulawik, P.; Tkaczewska, J.; Florkiewicz, A.; Migdał, W. The Quality of Pork Loaves with the Addition of Hemp Seeds, de-Hulled Hemp Seeds, Hemp Protein and Hemp Flour. LWT 2019, 105, 190–199. [Google Scholar] [CrossRef]
- Malomo, S.A.; Aluko, R.E. A Comparative Study of the Structural and Functional Properties of Isolated Hemp Seed (Cannabis sativa L.) Albumin and Globulin Fractions. Food Hydrocoll. 2015, 43, 743–752. [Google Scholar] [CrossRef]
- Temple, N.J. A Rational Definition for Functional Foods: A Perspective. Front Nutr 2022, 9, 957516. [Google Scholar] [CrossRef]
- Rizzo, G.; Storz, M.A.; Calapai, G. The Role of Hemp (Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition. Foods 2023, 12, 3505. [Google Scholar] [CrossRef]
- Presa-Lombardi, J.; García, F.; Gutierrez-Barrutia, M.B.; Cozzano, S. Hemp Seed’s (Cannabis sativa L) Nutritional Potential for the Development of Snack Functional Foods. OCL-Oilseeds Fats Crops Lipids 2023, 30, 24. [Google Scholar] [CrossRef]
- Nakov, G.; Trajkovska, B.; Atanasova-Pancevska, N.; Daniloski, D.; Ivanova, N.; Lučan Čolić, M.; Jukić, M.; Lukinac, J. The Influence of the Addition of Hemp Press Cake Flour on the Properties of Bovine and Ovine Yoghurts. Foods 2023, 12, 958. [Google Scholar] [CrossRef]
- Farinon, B.; Costantini, L.; Molinari, R.; Di Matteo, G.; Garzoli, S.; Ferri, S.; Ceccantoni, B.; Mannina, L.; Merendino, N. Effect of Malting on Nutritional and Antioxidant Properties of the Seeds of Two Industrial Hemp (Cannabis sativa L.) Cultivars. Food Chem. 2022, 370, 131348. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Hempseed in Food Industry: Nutritional Value, Health Benefits, and Industrial Applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 282–308. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Waszkowiak, K.; Polanowska, K.; Mikołajczak, B.; Śmietana, N.; Hrebień-Filisińska, A.; Sadowska, J.; Mazurkiewicz-Zapałowicz, K.; Drozłowska, E. The Effect of Yogurt and Kefir Starter Cultures on Bioactivity of Fermented Industrial By-Product from Cannabis sativa Production—Hemp Press Cake. Fermentation 2022, 8, 490. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D. The Development of Fruit-Based Functional Foods Targeting the Health and Wellness Market: A Review. Int. J. Food Sci. Technol. 2011, 46, 899–920. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; Becker, K. Dietary Roles of Phytate and Phytase in Human Nutrition: A Review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Afinah, S.; Yazid, a.M.; Anis Shobirin, M.H.; Shuhaimi, M. Review Article Phytase: Application in Food Industry. Int. Food Res. J. 2010, 17, 13–21. [Google Scholar]
- Wu, P.; Tian, J.C.; Walker, C.E.; Wang, F.C. Determination of Phytic Acid in Cereals—A Brief Review. Int. J. Food Sci. Technol. 2009, 44, 1671–1676. [Google Scholar] [CrossRef]
- Dinicola, S.; Minini, M.; Unfer, V.; Verna, R.; Cucina, A.; Bizzarri, M. Nutritional and Acquired Deficiencies in Inositol Bioavailability. Correlations with Metabolic Disorders. Int. J. Mol. Sci. 2017, 18, 2187. [Google Scholar] [CrossRef]
- Henry, R.J. Factors Influencing the Rate of Modification of Barleys during Malting. J. Cereal Sci. 1989, 10, 51–59. [Google Scholar] [CrossRef]
- Bravi, E.; Marconi, O.; Perretti, G.; Fantozzi, P. Influence of Barley Variety and Malting Process on Lipid Content of Malt. Food Chem. 2012, 135, 1112–1117. [Google Scholar] [CrossRef]
- Sheichenko, V.; Petrachenko, D.; Koropchenko, S.; Rogovskii, I.; Gorbenko, O.; Volianskyi, M.; Sheichenko, D. Substantiating the Rational Parameters and Operation Modes for the Hemp Seed Centrifugal Dehuller. East.-Eur. J. Enterp. Technol. 2024, 2, 34–48. [Google Scholar] [CrossRef]
- Gaybullaev, G.S.; Eshonqulov, B.M.; Hatamov, M.; Fayzimurodov, J.B.; Kim, V. The Significance of Technical Hemp Cultivation and Biometric Indicators of the Researched Varieties in Uzbekistan. BIO Web Conf. 2024, 93, 02002. [Google Scholar] [CrossRef]
- Shapowal, O.; Mozharova, I. A Comparative Study of Application of Multifunctional Fertilizers Based on Amino Acids and Trace Elements for Winter Wheat. BIO Web Conf. 2020, 17, 00251. [Google Scholar] [CrossRef]
- Khanal, A.; Shah, A. Techno-Economic Analysis of Hemp Production, Logistics and Processing in the U.S. Biomass 2024, 4, 164–179. [Google Scholar] [CrossRef]
- Sacilik, K.; Öztürk, R.; Keskin, R. Some Physical Properties of Hemp Seed. Biosyst. Eng. 2003, 86, 191–198. [Google Scholar] [CrossRef]
- Brookes, P.A.; Lovett, D.A.; MacWilliam, I.C. The steeping of barley. a review of the metabolic consequences of water uptake, and their practical implications. J. Inst. Brew. 1976, 82, 14–26. [Google Scholar] [CrossRef]
- Shaban, M. Effect of Water and Temperature on Seed Germination and Emergence as a Seed Hydrothermal Time Model. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 1686–1691. [Google Scholar]
- Solgajová, M.; Dráb, Š.; Mendelová, A.; Kolesárová, A.; Mareček, J. Quality assessment of spring barley varieties intended for malting process. J. Microbiol. Biotechnol. Food Sci. 2022, 12, e9250. [Google Scholar] [CrossRef]
- Koliatsou, M.; Palmer, G.H. A New Method. to Assess. Mealiness and Steeliness of Barley Varieties and Relationship of Mealiness with Malting Parameters. J. Am. Soc. Brew. Chem. 2003, 61, 114–118. [Google Scholar] [CrossRef]
- Mamone, G.; Picariello, G.; Ramondo, A.; Nicolai, M.A.; Ferranti, P. Production, Digestibility and Allergenicity of Hemp (Cannabis sativa L.) Protein Isolates. Food Res. Int. 2019, 115, 562–571. [Google Scholar] [CrossRef]
- Duliński, R.; Starzyńska-Janiszewska, A.; Byczyński, Ł.; Florkiewicz, A. Myo-Inositol Phosphates Profile and in Vitro Bioavailability of Selected Minerals from Spelt: Effects of Hydrothermal Processing and Solid-State Fermentation with Rhizopus Oligosporus. J. Food Nutr. Res. 2020, 59, 147–154. [Google Scholar]
- Girgih, A.T.; He, R.; Malomo, S.; Offengenden, M.; Wu, J.; Aluko, R.E. Structural and Functional Characterization of Hemp Seed (Cannabis sativa L.) Protein-Derived Antioxidant and Antihypertensive Peptides. J. Funct. Foods 2014, 6, 384–394. [Google Scholar] [CrossRef]
- Tang, C.H.; Wang, X.S.; Yang, X.Q. Enzymatic Hydrolysis of Hemp (Cannabis sativa L.) Protein Isolate by Various Proteases and Antioxidant Properties of the Resulting Hydrolysates. Food Chem. 2009, 114, 1484–1490. [Google Scholar] [CrossRef]
- Granda, L.; Rosero, A.; Benešová, K.; Pluháčková, H.; Neuwirthová, J.; Cerkal, R. Content of Selected Vitamins and Antioxidants in Colored and Nonpigmented Varieties of Quinoa, Barley, and Wheat Grains. J. Food Sci. 2018, 83, 2439–2447. [Google Scholar] [CrossRef] [PubMed]
- Colantuono, A.; Ferracane, R.; Vitaglione, P. Potential Bioaccessibility and Functionality of Polyphenols and Cynaropicrin from Breads Enriched with Artichoke Stem. Food Chem. 2018, 245, 838–844. [Google Scholar] [CrossRef] [PubMed]
- de Boland, A.R.; Garner, G.B.; O’Dell, B.L. Identification and Properties of “Phytate” in Cereal Grains and Oilseed Products. J. Agric. Food Chem. 1975, 23, 1186–1189. [Google Scholar] [CrossRef] [PubMed]
- Schultz, C.J.; Lim, W.L.; Khor, S.F.; Neumann, K.A.; Schulz, J.M.; Ansari, O.; Skewes, M.A.; Burton, R.A. Consumer and Health-Related Traits of Seed from Selected Commercial and Breeding Lines of Industrial Hemp, Cannabis sativa L. J. Agric. Food Res. 2020, 2, 100025. [Google Scholar] [CrossRef]
- Nielsen, A.V.F.; Meyer, A.S. Phytase-Mediated Mineral Solubilization from Cereals under in Vitro Gastric Conditions. J. Sci. Food Agric. 2016, 96, 3755–3761. [Google Scholar] [CrossRef]
- Blaabjerg, K.; Hansen-Møller, J.; Poulsen, H.D. High-Performance Ion Chromatography Method for Separation and Quantification of Inositol Phosphates in Diets and Digesta. J. Chromatogr. B 2010, 878, 347–354. [Google Scholar] [CrossRef]
- Gillaspy, G.E. The Cellular Language of Myo-Inositol Signaling. New Phytol. 2011, 192, 823–839. [Google Scholar] [CrossRef]
- Honke, J.; Kozłowska, H.; Vidal-Valverde, C.; Frias, J.; Górecki, R. Changes in Quantities of Inositol Phosphates during Maturation and Germination of Legume Seeds. Eur. Food Res. Technol. 1998, 206, 279–283. [Google Scholar] [CrossRef]
- Mattila, P.H.; Pihlava, J.M.; Hellström, J.; Nurmi, M.; Eurola, M.; Mäkinen, S.; Jalava, T.; Pihlanto, A. Contents of Phytochemicals and Antinutritional Factors in Commercial Protein-Rich Plant Products. Food Qual. Saf. 2018, 2, 213–219. [Google Scholar] [CrossRef]
- Galasso, I.; Russo, R.; Mapelli, S.; Ponzoni, E.; Brambilla, I.M.; Battelli, G.; Reggiani, R. Variability in Seed Traits in a Collection of Cannabis sativa L. Genotypes. Front. Plant Sci. 2016, 7, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Russo, R. Variability in Antinutritional Compounds in Hempseed Meal of Italian and French Varieties. Plant 2013, 1, 25. [Google Scholar] [CrossRef]
- Singh, A.K.; Rehal, J.; Kaur, A.; Jyot, G. Enhancement of Attributes of Cereals by Germination and Fermentation: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1575–1589. [Google Scholar] [CrossRef] [PubMed]
- Traoré, T.; Mouquet, C.; Icard-Vernière, C.; Traoré, A.S.; Trèche, S. Changes in Nutrient Composition, Phytate and Cyanide Contents and α-Amylase Activity during Cereal Malting in Small Production Units in Ouagadougou (Burkina Faso). Food Chem. 2004, 88, 105–114. [Google Scholar] [CrossRef]
- Greiner, R.; Konietzny, U. Phytase for Food Application. Food Technol. Biotechnol. 2006, 44, 125–140. [Google Scholar]
- Abid, N.; Khatoon, A.; Maqbool, A.; Irfan, M.; Bashir, A.; Asif, I.; Shahid, M.; Saeed, A.; Brinch-Pedersen, H.; Malik, K.A. Transgenic Expression of Phytase in Wheat Endosperm Increases Bioavailability of Iron and Zinc in Grains. Transgenic Res. 2017, 26, 109–122. [Google Scholar] [CrossRef]
- Analytica EBC. European Brewery Convention; Verlag Hans Carl Getränke-Fachverlag: Nürnberg, Germany, 1998. [Google Scholar]
Parameter | 1000-Seed Weight | Moisture | Grading by Size | Seeds Viability | Water Sensitivity | Water Uptake Capacity | Appropriate Cross Section | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
<1.5 mm | 1.5 mm | 1.8 mm | 2.2 mm | 2.5 mm | |||||||
g | % | ||||||||||
Sample | 11.76 ± 0.27 | 8.63 ± 0.23 | 6.90 ± 0.76 | 2.60 ± 0.32 | 36.53 ± 2.50 | 9.85 ± 2.40 | 43.83 ± 0.74 | 78.67 ± 4.16 | 58.02 ± 8.32 | 37.31 ± 0.84 | 92.97 ± 1.10 |
Sample | Phytate (InsP6) | InsP6 | InsP5 | InsP4 | InsP3 | InsP2-1 | |
---|---|---|---|---|---|---|---|
Total | Reduction | Total [% Relative Peak Area; Average] | |||||
[mg∙g−1] | [%] | ||||||
raw | 56.25 b | - | 25.35 | n.d. | n.d. | 4.46 | 74.25 |
malted | 45.69 a | 19 | 37.63 | n.d. | n.d. | 6.94 | 55.43 |
Time (min) | Mobile Phase A (%) | Mobile Phase B (%) |
---|---|---|
0.0 | 5 | 95 |
20.0 | 28 | 72 |
21.0 | 85 | 15 |
28.0 | 85 | 15 |
28.1 | 5 | 95 |
32.1 | 5 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdaniewicz, M.; Duliński, R.; Żuk-Gołaszewska, K.; Tarko, T. Characteristics of Selected Bioactive Compounds and Malting Parameters of Hemp (Cannabis sativa L.) Seeds and Malt. Molecules 2024, 29, 4345. https://doi.org/10.3390/molecules29184345
Zdaniewicz M, Duliński R, Żuk-Gołaszewska K, Tarko T. Characteristics of Selected Bioactive Compounds and Malting Parameters of Hemp (Cannabis sativa L.) Seeds and Malt. Molecules. 2024; 29(18):4345. https://doi.org/10.3390/molecules29184345
Chicago/Turabian StyleZdaniewicz, Marek, Robert Duliński, Krystyna Żuk-Gołaszewska, and Tomasz Tarko. 2024. "Characteristics of Selected Bioactive Compounds and Malting Parameters of Hemp (Cannabis sativa L.) Seeds and Malt" Molecules 29, no. 18: 4345. https://doi.org/10.3390/molecules29184345
APA StyleZdaniewicz, M., Duliński, R., Żuk-Gołaszewska, K., & Tarko, T. (2024). Characteristics of Selected Bioactive Compounds and Malting Parameters of Hemp (Cannabis sativa L.) Seeds and Malt. Molecules, 29(18), 4345. https://doi.org/10.3390/molecules29184345