Inhibitory Effect of Sorbus aucuparia Extracts on the Fusarium proliferatum and F. culmorum Growth and Mycotoxin Biosynthesis
Abstract
:1. Introduction
2. Results
2.1. Preparation of the Sorbus aucuparia Fruit Extracts by Supercritical Fluid Extraction Method
2.2. Total Phenolic Content of the Methanolic and Aqueous Extracts
2.3. The Inhibitory Effect of Sorbus aucuparia Fruit Extracts on Fusarium spp. Growth
2.4. The Effect of Sorbus aucuparia Fruit Extracts on Ergosterol Content
2.5. Mycotoxin Identification
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Fungal Material
4.3. Reagents
4.4. Supercritical Fluid Extraction
4.5. Determination of Total Phenolic Content
4.6. Study on the Effect of Sorbus aucuparia Fruit Extracts on Fusarium Growth
4.7. Determination of Ergosterol Content
4.8. Analysis of Mycotoxins
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moskalets, V.; Hulko, B.; Rozhko, I.; Moroz, V.; Ivankiv, M. Morpho-Physiological Characteristics of Plants and Biochemical Parameters of Rowan Berries, Common Rowan, and Domestic Rowan Grown in the Conditions of the Northern Forest-Steppe of Ukraine. Sci. Horiz. 2023, 26, 78–92. [Google Scholar] [CrossRef]
- Huang, S.; Yang, N.; Liu, Y.; Gao, J.; Huang, T.; Hu, L.; Zhao, J.; Li, Y.; Li, C.; Zhang, X. Grape Seed Proanthocyanidins Inhibit Colon Cancer-Induced Angiogenesis through Suppressing the Expression of VEGF and Angl. Int. J. Mol. Med. 2012, 30, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Baby, B.; Antony, P.; Vijayan, R. Antioxidant and Anticancer Properties of Berries. Crit. Rev. Food Sci. Nutr. 2018, 58, 2491–2507. [Google Scholar] [CrossRef]
- Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Wagner, H.; Verpoorte, R.; Heinrich, M. Medicinal Plants of the Russian Pharmacopoeia; Their History and Applications. J. Ethnopharmacol. 2014, 154, 481–536. [Google Scholar] [CrossRef]
- Raspé, O.; Findlay, C.; Jacquemart, A. Sorbus aucuparia L. J. Ecol. 2000, 88, 910–930. [Google Scholar] [CrossRef]
- Jędrzejewski, W.; Zalewski, A.; Jędrzejewska, B. Foraging by Pine Marten Martes Martes in Relation to Food Resources in Białowieża National Park, Poland. Acta Theriol. 1993, 38, 405–426. [Google Scholar] [CrossRef]
- Krasnov, V.; Shelest, Z.; Boiko, S.; Gulik, I.; Sieniawski, W. The Diet of the Roe Deer (Capreolus capreolus) in the Forest Ecosystems of Zhytomirske Polesie of the Ukraine. For. Res. Pap. 2015, 76, 184–190. [Google Scholar] [CrossRef]
- Guitián, J.; Munilla, I. Responses of Mammal Dispersers to Fruit Availability: Rowan (Sorbus aucuparia) and Carnivores in Mountain Habitats of Northern Spain. Acta Oecologica 2010, 36, 242–247. [Google Scholar] [CrossRef]
- Bozhuyuk, M.R.; Ercisli, S.; Ayed, R.B.; Jurikova, T.; Fidan, H.; Ilhan, G.; Ozkan, G.; Sagbas, H.I. Compositional Diversity in Fruits of Rowanberry (Sorbus aucuparia L.) Genotypes Originating from Seeds. Genetika 2020, 52, 55–65. [Google Scholar] [CrossRef]
- Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E. Supercritical Fluid Extraction: Recent Advances and Applications. J. Chromatogr. A 2010, 1217, 2495–2511. [Google Scholar] [CrossRef]
- Brunner, U. Some Antifungal Properties of Sorbic Acid Extracted from Berries of Rowan (Sorbus aucuparia). J. Biol. Educ. 1985, 19, 41–47. [Google Scholar] [CrossRef]
- Kokubun, T.; Harborne, J.B.; Eagles, J.; Waterman, P.G. Antifungal Biphenyl Compounds Are the Phytoalexins of the Sapwood of Sorbus aucuparia. Phytochemistry 1995, 40, 57–59. [Google Scholar] [CrossRef]
- Qiu, X.; Lei, C.; Huang, L.; Li, X.; Hao, H.; Du, Z.; Wang, H.; Ye, H.; Beerhues, L.; Liu, B. Endogenous Hydrogen Peroxide Is a Key Factor in the Yeast Extract-Induced Activation of Biphenyl Biosynthesis in Cell Cultures of Sorbus aucuparia. Planta 2012, 235, 217–223. [Google Scholar] [CrossRef]
- Arvinte, O.M.; Senila, L.; Becze, A.; Amariei, S. Rowanberry—A Source of Bioactive Compounds and Their Biopharmaceutical Properties. Plants 2023, 12, 3225. [Google Scholar] [CrossRef]
- Sołtys, A.; Galanty, A.; Podolak, I. Ethnopharmacologically Important but Underestimated Genus Sorbus: A Comprehensive Review; Springer: Dordrecht, The Netherlands, 2020; Volume 19, ISBN 0123456789. [Google Scholar]
- Liepiņa, I.; Nikolajeva, V.; Jākobsone, I. Antimicrobial Activity of Extracts from Fruits of Aronia melanocarpa and Sorbus aucuparia. Environ. Exp. Biol. 2013, 11, 195–199. [Google Scholar]
- Nohynek, L.J.; Alakomi, H.L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.M.; Puupponen-Pimiä, R.H. Berry Phenolics: Antimicrobial Properties and Mechanisms of Action against Severe Human Pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Krisch, J.; Galgóczy, L.; Tölgyesì, M.; Papp, T.; Vágvölgyi, C. Effect of Fruit Juices and Pomace Extracts on the Growth of Gram-Positive and Gram-Negative Bacteria. Acta Biol. Szeged. 2008, 52, 267–270. [Google Scholar]
- Bazarnova, Y.G.; Ivanchenko, O.B. Investigation of the Composition of Biologically Active Substances in Extracts of Wild Plants. Vopr. Pitan. 2016, 85, 100–107. [Google Scholar]
- Khan, S.; Kazmi, M.H.; Fatima, I.; Malik, A.; Inamullah, F.; Farheen, S.; Abbas, T. Cashmirins A and B, New Antifungal and Urease Inhibitory Prenylated Coumarins from Sorbus cashmiriana. Braz. J. Pharm. Sci. 2022, 58, e21493. [Google Scholar] [CrossRef]
- Sagdic, O.; Polat, B.; Yetim, H. Bioactivities of Some Wild Fruits Grown in Turkey. Erwerbs-Obstbau 2022, 64, 299–305. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Kong, W.; Zhao, G.; Yang, M. Mechanisms of Antifungal and Anti-Aflatoxigenic Properties of Essential Oil Derived from Turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem. 2017, 220, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Maliuvanchuk, S.; Grytsyk, A.; Melnyk, M.; Kutsyk, R.; Yurkiv, K.; Raal, A.; Koshovyi, O. Sorbus Aucuparia L. Fruit Extract and Its Cosmetics—As Promising Agents for Prophylactic and Treatment of Pyodermitis: Phytochemical and Microbiological Research. Open Agric. J. 2023, 17, e18743315268063. [Google Scholar] [CrossRef]
- Shi, W.; Tan, Y.; Wang, S.; Gardiner, D.M.; De Saeger, S.; Liao, Y.; Wang, C.; Fan, Y.; Wang, Z.; Wu, A. Mycotoxigenic Potentials of Fusarium Species in Various Culture Matrices Revealed by Mycotoxin Profiling. Toxins 2017, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- El Chami, J.; El Chami, E.; Tarnawa, Á.; Kassai, K.M.; Kende, Z.; Jolánkai, M. Effect of Fusarium Infection on Wheat Quality Parameters. Cereal Res. Commun. 2023, 51, 179–187. [Google Scholar] [CrossRef]
- Tava, V.; Prigitano, A.; Cortesi, P.; Esposto, M.C.; Pasquali, M. Fusarium Musae from Diseased Bananas and Human Patients: Susceptibility to Fungicides Used in Clinical and Agricultural Settings. J. Fungi 2021, 7, 784. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef]
- Bottalico, A.; Perrone, G. Toxigenic Fusarium Species and Mycotoxins Associated with Head Blight in Small-Grain Cereals in Europe. Eur. J. Plant Pathol. 2002, 108, 611–624. [Google Scholar] [CrossRef]
- Saadullah, A.A.M. Studies on Teratogenic and Maternal Effects of Trichothecene (TCT) Extracted from Fusarium and trichoderma Culture on Pregnant Albino Mice. Bionatura 2023, 8, 1–4. [Google Scholar] [CrossRef]
- Dabas, Y.; Bakhshi, S.; Xess, I. Fatal Cases of Bloodstream Infection by Fusarium solani and Review of Published Literature. Mycopathologia 2016, 181, 291–296. [Google Scholar] [CrossRef]
- Al-Hatmi, A.M.S.; Bonifaz, A.; Ranque, S.; de Hoog, G.S.; Verweij, P.E.; Meis, J.F. Current Antifungal Treatment of Fusariosis. Int. J. Antimicrob. Agents 2018, 51, 326–332. [Google Scholar] [CrossRef]
- Ribas e Ribas, A.D.; Spolti, P.; Del Ponte, E.M.; Donato, K.Z.; Schrekker, H.; Fuentefria, A.M. Is the Emergence of Fungal Resistance to Medical Triazoles Related to Their Use in the Agroecosystems? A Mini Review. Braz. J. Microbiol. 2016, 47, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Batista, B.G.; de Chaves, M.A.; Reginatto, P.; Saraiva, O.J.; Fuentefria, A.M. Human Fusariosis: An Emerging Infection That Is Difficult to Treat. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200013. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef] [PubMed]
- Uwineza, P.A.; Urbaniak, M.; Stępień, Ł.; Gramza-Michałowska, A.; Waśkiewicz, A. Lamium album Flower Extracts: A Novel Approach for Controlling Fusarium Growth and Mycotoxin Biosynthesis. Toxins 2023, 15, 651. [Google Scholar] [CrossRef]
- Reverchon, E.; De Marco, I. Supercritical Fluid Extraction and Fractionation of Natural Matter. J. Supercrit. Fluids 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Vairinhos, J.; Miguel, M.G. Essential Oils of Spontaneous Species of the Genus Lavandula from Portugal: A Brief Review. Z. Naturforsch. C 2020, 75, 233–245. [Google Scholar] [CrossRef]
- Rodrigues, V.M.; Rosa, P.T.V.; Marques, M.O.M.; Petenate, A.J.; Meireles, M.A.A. Supercritical Extraction of Essential Oil from Aniseed (Pimpinella anisum L.) Using CO2: Solubility, Kinetics, and Composition Data. J. Agric. Food Chem. 2003, 51, 1518–1523. [Google Scholar] [CrossRef]
- Ye, Q.; Jin, X.; Wei, S.; Zheng, G.; Li, X. Effect of Subcritical Fluid Extraction on the High Quality of Headspace Oil from Jasminum sambac (L.) Aiton. J. AOAC Int. 2016, 99, 725–729. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Kraujalis, P.; Tamkutė, L.; Urbonavičienė, D.; Viškelis, P.; Venskutonis, P.R. Recovery of Bioactive Substances from Rowanberry Pomace by Consecutive Extraction with Supercritical Carbon Dioxide and Pressurized Solvents. J. Ind. Eng. Chem. 2020, 85, 152–160. [Google Scholar] [CrossRef]
- Al-Hamimi, S.; Turner, C. A Fast and Green Extraction Method for Berry Seed Lipid Extraction Using CO2 Expanded Ethanol Combined with Sonication. Eur. J. Lipid Sci. Technol. 2020, 122, 1900283. [Google Scholar] [CrossRef]
- Ivakhnov, A.D.; Sadkova, K.S.; Sobashnikova, A.S.; Skrebets, T.E. Optimization of Oil Extraction from Rowanberry Waste in Alcoholic Beverage Production. Russ. J. Phys. Chem. B 2019, 13, 1135–1138. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Grootaert, C.; Van Camp, J.; Šarkinas, A.; Liaudanskas, M.; Žvikas, V.; Viškelis, P.; Rimantas Venskutonis, P. Chemical Composition, Antioxidant, Antimicrobial and Antiproliferative Activities of the Extracts Isolated from the Pomace of Rowanberry (Sorbus aucuparia L.). Food Res. Int. 2020, 136, 109310. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Rutkowska, M.; Kolodziejczyk-Czepas, J.; Owczarek, A.; Zakrzewska, A.; Magiera, A.; Olszewska, M.A. Novel Insight into Biological Activity and Phytochemical Composition of Sorbus aucuparia L. Fruits: Fractionated Extracts as Inhibitors of Protein Glycation and Oxidative/Nitrative Damage of Human Plasma Components. Food Res. Int. 2021, 147, 110526. [Google Scholar] [CrossRef]
- Sarv, V.; Venskutonis, P.R.; Rätsep, R.; Aluvee, A.; Kazernavičiūtė, R.; Bhat, R. Antioxidants Characterization of the Fruit, Juice, and Pomace of Sweet Rowanberry (Sorbus aucuparia L.) Cultivated in Estonia. Antioxidants 2021, 10, 1779. [Google Scholar] [CrossRef] [PubMed]
- Mlcek, J.; Rop, O.; Jurikova, T.; Sochor, J.; Fisera, M.; Balla, S.; Baron, M.; Hrabe, J. Bioactive Compounds in Sweet Rowanberry Fruits of Interspecific Rowan Crosses. Cent. Eur. J. Biol. 2014, 9, 1078–1086. [Google Scholar] [CrossRef]
- Wolf, J.; Göttingerová, M.; Kaplan, J.; Kiss, T.; Venuta, R.; Nečas, T. Determination of the Pomological and Nutritional Properties of Selected Plum Cultivars and Minor Fruit Species. Hortic. Sci. 2020, 47, 181–193. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Wei, J.; Shi, J.; Gao, J.; Zhou, Z.; Fan, J. Biological Activities of Extract Prepared from Sorbus sibirica Fruit. J. Chem. Pharm. Res. 2014, 6, 1369–1372. [Google Scholar]
- Ferrochio, L.; Cendoya, E.; Farnochi, M.C.; Massad, W.; Ramirez, M.L. Evaluation of Ability of Ferulic Acid to Control Growth and Fumonisin Production of Fusarium verticillioides and Fusarium proliferatum on Maize Based Media. Int. J. Food Microbiol. 2013, 167, 215–220. [Google Scholar] [CrossRef]
- Bodoira, R.; Velez, A.; Maestri, D.; Herrera, J. Bioactive Compounds Obtained from Oilseed By-Products with Subcritical Fluids: Effects on Fusarium verticillioides Growth. Waste Biomass Valorization 2020, 11, 5913–5924. [Google Scholar] [CrossRef]
- Reynoso, M.M.; Torres, A.M.; Ramirez, M.L.; Rodríguez, M.I.; Chulze, S.N.; Magan, N. Efficacy of Antioxidant Mixtures on Growth, Fumonisin Production and Hydrolytic Enzyme Production by Fusarium verticillioides and F. proliferatum in Vitro on Maize-Based Media. Mycol. Res. 2002, 106, 1093–1099. [Google Scholar] [CrossRef]
- Reynoso, M.M.; Torres, A.M.; Chulze, S.N. Fusaproliferin, Beauvericin and Fumonisin Production by Different Mating Populations among the Gibberella Fujikuroi Complex Isolated from Maize. Mycol. Res. 2004, 108, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Perincherry, L.; Lalak-Kańczugowska, J.; Stępień, Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins 2019, 11, 664. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Urbaniak, M.; Bryła, M.; Stepien, Ł.; Modrzewska, M.; Waśkiewicz, A. In Vitro Effects of Lemon Balm Extracts in Reducing the Growth and Mycotoxins Biosynthesis of Fusarium culmorum and F. proliferatum. Toxins 2022, 14, 355. [Google Scholar] [CrossRef]
- Perincherry, L.; Urbaniak, M.; Pawłowicz, I.; Kotowska, K.; Waśkiewicz, A.; Stępień, Ł. Dynamics of Fusarium Mycotoxins and Lytic Enzymes during Pea Plants’ Infection. Int. J. Mol. Sci. 2021, 22, 9888. [Google Scholar] [CrossRef]
- Kupina, S.; Fields, C.; Roman, M.C.; Brunelle, S.L. Determination of Total Phenolic Content Using the Folin-C Assay: Single-Laboratory Validation. J. AOAC Int. 2019, 102, 320–321. [Google Scholar] [CrossRef]
Extract Variant | Extraction Conditions | Extraction Yield [%] |
---|---|---|
E1 | 40 °C, 300 bar | 17.71 ± 0.10 b |
E2 | 40 °C, 200 bar | 16.93 ± 0.10 c |
E3 | 70 °C, 300 bar | 18.05 ± 0.06 a |
E4 | 70 °C, 200 bar | 16.99 ± 0.08 c |
Extract Variant | ERG Content Reduction [%] | |
---|---|---|
Fusarium proliferatum | Fusarium culmorum | |
E1 | 12.41 ± 14.07 c | 8.01 ± 11.41 b |
E2 | 27.30 ± 10.29 bc | 7.70 ± 5.62 b |
E3 | 60.67 ± 5.89 a | 41.62 ± 11.48 a |
E4 | 37.85 ± 1.92 ab | 22.42 ± 4.03 ab |
Extract Variant | Variation of Mycotoxin Content [%] | |||
---|---|---|---|---|
Increase | Decrease | |||
FB1 | FB2 | FB3 | BEA | |
E1 | 242.9 ± 41.4 a | 180.5 ± 72.4 a | 216.3 ± 93.8 a | 82.5 ± 11.3 a |
E2 | 354.2 ± 54.4 a | 208.5 ± 61.3 a | 286.5 ± 105.5 a | 90.4 ± 4.9 a |
E3 | 1017.9 ± 481.1 b | 123.1 ± 65.6 a | 716.1 ± 216.1 b | 92.1 ± 5.6 a |
E4 | 704.1 ± 75.6 ab | 126.2 ± 63.0 a | 344.5 ± 142.1 ab | 80.6 ± 8.8 a |
Extract Variant | Mycotoxin Content Reduction [%] | ||||
---|---|---|---|---|---|
DON | 3- and 15- AcDON | ZEN | ZEN-14S | α-ZOL | |
E1 | 66.1 ± 3.1 b | 33.8 ± 10.3 b | 83.2 ± 1.2 a | 82.5 ± 3.2 a | 79.0 ± 18.9 ab |
E2 | 86.8 ± 6.1 a | 60.0 ± 12.6 ab | 89.1 ± 10.1 a | 82.3 ± 12.1 a | 89.2 ± 18.7 a |
E3 | 86.6 ± 2.3 a | 59.0 ± 11.6 ab | 43.6 ± 12.4 b | 79.8 ± 2.3 a | 32.7 ± 9.3 b |
E4 | 95.1 ± 2.3 a | 85.5 ± 9.2 a | 74.7 ± 12.8 a | 78.1 ± 4.1 a | 69.2 ± 26.6 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryszczyńska, S.; Gumulak-Wołoszyn, N.; Urbaniak, M.; Stępień, Ł.; Bryła, M.; Twarużek, M.; Waśkiewicz, A. Inhibitory Effect of Sorbus aucuparia Extracts on the Fusarium proliferatum and F. culmorum Growth and Mycotoxin Biosynthesis. Molecules 2024, 29, 4257. https://doi.org/10.3390/molecules29174257
Ryszczyńska S, Gumulak-Wołoszyn N, Urbaniak M, Stępień Ł, Bryła M, Twarużek M, Waśkiewicz A. Inhibitory Effect of Sorbus aucuparia Extracts on the Fusarium proliferatum and F. culmorum Growth and Mycotoxin Biosynthesis. Molecules. 2024; 29(17):4257. https://doi.org/10.3390/molecules29174257
Chicago/Turabian StyleRyszczyńska, Sylwia, Natalia Gumulak-Wołoszyn, Monika Urbaniak, Łukasz Stępień, Marcin Bryła, Magdalena Twarużek, and Agnieszka Waśkiewicz. 2024. "Inhibitory Effect of Sorbus aucuparia Extracts on the Fusarium proliferatum and F. culmorum Growth and Mycotoxin Biosynthesis" Molecules 29, no. 17: 4257. https://doi.org/10.3390/molecules29174257
APA StyleRyszczyńska, S., Gumulak-Wołoszyn, N., Urbaniak, M., Stępień, Ł., Bryła, M., Twarużek, M., & Waśkiewicz, A. (2024). Inhibitory Effect of Sorbus aucuparia Extracts on the Fusarium proliferatum and F. culmorum Growth and Mycotoxin Biosynthesis. Molecules, 29(17), 4257. https://doi.org/10.3390/molecules29174257