Characterization and Cytotoxic Assessment of Bis(2-hydroxy-3-carboxyphenyl)methane and Its Nickel(II) Complex
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology (SEM and TEM)
2.2. Powder XRD
2.3. Optical Properties
2.4. Cytotoxic Impact
2.4.1. Against Human Lung Cancer Cells (A-549)
2.4.2. Against Human Lung Noncancerous Cells
2.5. Molecular Docking Simulation
3. Experimental
3.1. Materials and Techniques
3.2. Syntheses (BHCM and Ni–BHCM)
3.3. Cell Viability Assay
3.3.1. Human Lung Carcinoma Cells (A-549)
3.3.2. Human Lung Fibroblast Normal Cells (WI-38)
3.3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aglan, H.A.; Ahmed, H.H.; El-Toumy, S.A.; Mahmoud, N.S. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study. Tumor Biol. 2017, 39, 1010428317699127. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qiu, Y.; Zhang, Y. Research progress on therapeutic targeting of cancer-associated fibroblasts to tackle treatment-resistant NSCLC. Pharmaceuticals 2022, 15, 1411. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, G.; Wang, X.; Yang, Y.; Niu, X. Structure-Activity relationship of MDSA and its derivatives against Staphylococcus aureus Ser/Thr phosphatase Stp1. Comput. Biol. Chem. 2020, 85, 107230. [Google Scholar] [CrossRef] [PubMed]
- Takashi, H.; Takaaki, H.; Hyozo, S.; Alan, P.M.; Kaipenchery, A.K.; Simon, G.B.; Kata, M.M.; Tatjana, S.; Nazar, S.A.E.; Hong-Sik, H.; et al. Molecular design of lipophilic disalicylic acid compounds with varying spacers for selective lead(II) extraction. Talanta 2000, 52, 385–396. [Google Scholar]
- Shrestha, S.; Bhattarai, B.R.; Chang, K.J.; Leea, K.-H.; Cho, H. Methylenedisalicylic acid derivatives: New PTP1B inhibitors that confer resistance to diet-induced obesity. Bioorganic Med. Chem. Lett. 2007, 17, 2760–2764. [Google Scholar] [CrossRef]
- Trevin, S.; Bedioui, F.; Gomez, M.G.; Charreton, C.B. Electro polymerized nickel Micro cyclic complex-base films design and elctro-catalytic application. J. Mater. Chem. 1997, 7, 923–928. [Google Scholar] [CrossRef]
- Parulerkar, M.H.; Bhatt, H.A.; Potnis, S.P. New intermediates for plastics and coatings: 1. preparation and characterization of methylene-di-salicylic-acid. J. Ind. Chem. Soc. 1972, 49, 1201–1207. [Google Scholar]
- Clemmensen, E.; Heitman, A.H.C. Methylenedisalicylic acid and its reaction with bromine and iodine. J. Am. Chem. Soc. 1911, 33, 733–745. [Google Scholar] [CrossRef]
- Sivapullaiah, P.V.; Soundararajan, S. Methylene di salicylates of rare-earths. J. Indian Inst. Sci. 1976, 58, 289–293. [Google Scholar]
- Patel, R.P.; Karampurwala, A.M.; Shah, J.R. Physicochemical studies on square planar Co2+, Ni2+ and Cu2+ chelate polymers. Die Angew. Makromol. Chem. Appl. Macromol. Chem. Phys. 1980, 87, 87–94. [Google Scholar]
- Du, M.; Zhang, Z.H.; Guo, W.; Fu, X.J. Multi-Component Hydrogen-Bonding Assembly of a Pharmaceutical Agent Pamoic Acid with Piperazine or 4,4′-Bipyridyl: A Channel Hydrated Salt with Multiple-Helical Motifs vs a Bimolecular Cocrystal. Cryst. Growth Des. 2009, 9, 1655–1657. [Google Scholar] [CrossRef]
- Wang, S.; Yun, R.; Peng, Y.; Zhang, Q.; Lu, J.; Dou, J.; Bai, J.; Li, D.; Wang, D. A Series of Four-Connected Entangled Metal–Organic Frameworks Assembled from Pamoic Acid and Pyridine-Containing Ligands: Interpenetrating, Self-Penetrating, and Supramolecular Isomerism. Cryst. Growth Des. 2012, 12, 79–92. [Google Scholar] [CrossRef]
- Wahl, H.; Haynes, D.A.; le Roex, T. Porous salts based on the pamoate ion. Chem. Commun. 2012, 48, 1775–1777. [Google Scholar] [CrossRef]
- Wahl, H.; Haynes, D.A.; le Roex, T. Solvate formation in lutidinium pamoate salts: A systematic study. CrystEngComm 2011, 13, 2227–2236. [Google Scholar] [CrossRef]
- Du, M.; Li, C.P.; Zhao, X.J.; Yu, Q. Interplay of coordinative and supramolecular interactions in engineering unusual crystalline architectures of low-dimensional metal–pamoate complexes under co-ligand intervention. CrystEngComm 2007, 9, 1011–1028. [Google Scholar] [CrossRef]
- Shi, X.M.; Li, M.X.; He, X.; Liu, H.-J.; Shao, M. Crystal structures and properties of four coordination polymers constructed from flexible pamoic acid. Polyhedron 2010, 29, 2075–2080. [Google Scholar] [CrossRef]
- Zhang, L.N.; Sun, X.L.; Du, C.X.; Hou, H.W. Structural diversity and fluorescent properties of new metal–organic frameworks constructed from pamoic acid and different N-donor ligands. Polyhedron 2014, 72, 90–95. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Xiong, J.B.; Tan, Y.H.; Wang, Y.; Deng, Y.P.; Xu, Q.; Wen, H.R. Solvothermal syntheses, crystal structures and photoluminescent properties of four coordination polymers with pamoic acid and pyridine mixed ligands. Inorganica Chim. Acta 2014, 410, 82–87. [Google Scholar] [CrossRef]
- Rocha, L.D.; Monteiro, M.C.; Anderson, J.T. Anticancer properties of hydroxycinnamic acids—A Review. Cancer Clin. Oncol. 2012, 1, 109–121. [Google Scholar] [CrossRef]
- Tanaka, T.; Tanaka, M. Potential cancer chemopreventive activity of protocatechuic acid. J. Exp. Clin. Med. 2011, 3, 27–33. [Google Scholar] [CrossRef]
- Gomes, C.A.; Cruz, T.G.; Andrade, J.L.; Milhazes, N.; Borges, F.; Marques, M.P.M. Anticancer activity of phenolic acids of natural or synthetic origin: A structure–activity study. J. Med. Chem. 2003, 46, 5395–5401. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Jaafar, H.; Karimi, E.; Ghasemzadeh, A.; Jaafar, H.Z.E.; Karimi, E. Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties. Int. J. Mol. Sci. 2012, 13, 14828–14844. [Google Scholar] [CrossRef] [PubMed]
- Bonta, R.K. Dietary phenolic acids and flavonoids as potential anti-cancer agents: Current state of the art and future perspectives. Anti-Cancer Agents Med. Chem. 2020, 20, 29–48. [Google Scholar] [CrossRef]
- Calderón-Jiménez, B.; Montoro-Bustos, A.R.; Pereira-Reyes, R.; Paniagua, S.A.; Vega-Baudrit, J.R. Novel pathway for the sonochemical synthesis of silver nanoparticles with near-spherical shape and high stability in aqueous media. Sci. Rep. 2022, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Joseyphus, R.S.; Nair, M.S. Synthesis, characterization and biological studies of some Co(II), Ni(II) and Cu(II) complexes derived from indole-3-carboxaldehyde and glycylglycine, as Schiff base ligand. Arab. J. Chem. 2010, 3, 195–204. [Google Scholar] [CrossRef]
- Rashad, M.M.; Hassan, A.M.; Nassar, A.M.; Ibrahim, N.M.; Mourtada, A. Anew nano-structured Ni(II) Schiff base complex: Synthesis, characterization, optical band gaps and biological activity. Appl. Phys. A 2014, 117, 877–890. [Google Scholar] [CrossRef]
- Patterson, A. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Sivagami, M.; Asharani, I.V. Phyto-mediated Ni/NiO NPs and their catalytic applications-a short review. Inorg. Chem. Commun. 2022, 145, 110054. [Google Scholar] [CrossRef]
- Kaya, Y.; Gençkal, H.M.; Irez, G. Uv-Vis Spectra and Fluorescence Properties of Two Iminooxime Ligands and Their Metal Complexes: Optical Band Gaps. Gazi Univ. J. Sci. 2010, 23, 13–18. [Google Scholar]
- Kaya, I.; Koyuncu, S.; Şenol, D. Conductivity and band gap of oligo-2-[(4-chlorophenyl) imino methylene] phenol and its oligomer–metal complexes. Mater. Lett. 2006, 60, 1922–1926. [Google Scholar] [CrossRef]
- Karipcin, F.; Dede, B.; Caglar, Y.; Hur, D.; Ilican, S.; Caglar, M.; Sahin, Y. A new dioxime ligand and its trinuclear copper(II) complex: Synthesis, characterization and optical properties. Opt. Commun. 2007, 272, 131–137. [Google Scholar] [CrossRef]
- Turan, N.; Gündüz, B.; Körkoca, H.; Adigüzel, R.; Çolak, N.; Buldurun, K. Study of structure and spectral characteristics of the zinc(II) and copper(II) complexes with 5,5-dimethyl-2-(2-(3-nitrophenyl)hydrazono)cyclohexane-1,3-dione and their effects on optical properties and the developing of the energy band gap and investigation of antibacterial activity. J. Mex. Chem. Soc. 2014, 58, 65–75. [Google Scholar]
- Gittleman, J.I.; Sichel, E.K.; Arie, Y. Composite semiconductors: Selective absorbers of solar energy. Sol. Energy Mater. 1979, 1, 93–104. [Google Scholar] [CrossRef]
- Belmokhtar, A.; Yahiaoui, A.; Hachemaoui, A.I.; Abdelghani, B.; Sahli, N.; Belbachir, M. A NovelPoly{(2,5-diylfuran)(benzylidene)}:Anew synthetic approach and electronic properties. Int. Sch. Res. Not. 2011, 2012, 781879. [Google Scholar]
- Yakuphanoglu, F.; Erten, H. Refractive index dispersion and analysis of the optical constants of an ionomer thin film. Opt. Appl. 2005, 35, 969–976. [Google Scholar]
- Paul, T.C.; Podder, J. Synthesis and characterization of Zn-incorporated TiO2 thin flms: Impact of crystallite size on X-ray line broadening and bandgap tuning. Appl. Phys. A 2019, 125, 818. [Google Scholar] [CrossRef]
- Ahmed, A.H. N,N′-bis[2-hydroxynaphthylidene]/[2-methoxybenzylidene]amino]oxamides and their divalent manganese complexes: Isolation, spectral characterization, morphology, antibacterial and cytotoxicity against leukemia cells. Open Chem. 2020, 18, 426–437. [Google Scholar] [CrossRef]
- Kavitha, P.; Reddy, K.L. Synthesis, spectral characterization, morphology, biological activity and DNA cleavage studies of metal complexes with chromone Schiff base. Arab. J. Chem. 2016, 9, 596–605. [Google Scholar] [CrossRef]
- Baxter, G.J.; Graham, A.B.; Lawrence, J.R.; Wiles, D.; Paterson, J.R. Salicylic acid in soups prepared from organically and non-organically grown vegetables. Eur. J. Nutr. 2001, 40, 289–292. [Google Scholar] [CrossRef]
- Wang, W.; Hong, L.; Shen, Z.; Zheng, M.; Meng, H.; Ye, T.; Lin, Z.; Chen, L.; Guo, Y.; He, E. Molecular insights into the anti-spoilage effect of salicylic acid in Favorita potato processing. Food Chem. 2024, 461, 140823. [Google Scholar] [CrossRef]
- Das, A.P.; Mathur, P.; Agarwal, S.M. Machine learning, molecular docking and dynamics-based computational identification of potential inhibitors against lung cancer. ACS Omega 2024, 9, 4528–4539. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Wang, X.; Tian, B.; Zhang, S.; Wang, T.; Ma, Y.; Fan, Y. Design, synthesis and biological evaluation of potent epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors against resistance mutation for lung cancer treatment. Bioorganic Chem. 2014, 143, 107004. [Google Scholar] [CrossRef]
- Jain, A.N. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem. 2003, 46, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.H.; Thabet, M.S. Metallo-hydrazone complexes immobilized in zeoliteY: Synthesis, identification and acid violet-1 degredation. J. Mol. Struct. 2011, 1006, 527–535. [Google Scholar] [CrossRef]
- Drago, R.S. Physical Methods in Inorganic Chemistry PB, 1st ed.; Affiliated East-West Press Pvt. Ltd.: New Delhi, India, 2012. [Google Scholar]
- Lewetegn, K.; Birhanu, H.; Liu, Y.; Taddesse, P. Synthesis of Zn0.87(Fe, Al)0.065O—MO (MO = NiO, Fe2O3, CuO, and CoO) nanocomposites: Structural, vibrational, optical and antibacterial studies. J. Mol. Struct. 2025, 1319, 139401. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Hassan, A.M.; Gumaa, H.A.; Mohamed, B.H.; Eraky, A.M. Physicochemical studies on some selected oxaloyldihydrazones and their novel palladium(II) complexes along with using oxaloyldihydrazones as corrosion resistants. Inorg. Nano-Met. Chem. 2017, 47, 1652–1663. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Hassan, A.M.; Gumaa, H.A.; Mohamed, B.H.; Eraky, A.M.; Omran, A.A. Copper(II)-oxaloyldihydrazone complexes: Physico-chemicalstudies; energy band gap and inhibition evaluation of free oxaloyldihydrazones toward the corrosion of copper metal in acidic medium. Arab. J. Chem. 2019, 12, 4287–4302. [Google Scholar] [CrossRef]
- Haque, R.A.; Iqbal, M.A.; Khadeer, M.B. Design, synthesis and structural studies of meta-xylyl linked bis-benzimidazolium salts: Potential anticancer agents against human colon cancer. Chem. Cent. J. 2012, 6, 68. [Google Scholar] [CrossRef]
- Lal, R.A.; Basumatary, D.; Arjun, K.D.; Kumar, A. Synthesis and spectral characterization of zinc(II), copper(II), nickel(II) and manganese(II) complexes derived from bis(2-hydroxy-1-naphthaldehyde) malonoyldihydrazone. Transit. Met. Chem. 2007, 32, 481–493. [Google Scholar] [CrossRef]
- Ferraro, J.R. Low Frequency Vibration of Inorganic and Coordination Compounds; Plenum: New York, NY, USA, 1971. [Google Scholar]
- Nicholls, D. Complexes and First-Row Transition Elements, London and Basingstoke; Macmillan Press LTD.: London, UK, 1974. [Google Scholar]
- Ahmed, A.H.; Moustafa, M.G. Spectroscopic, morphology and electrical conductivity studies on Co(II), Ni(II), Cu(II) and Mn(II)- oxaloyldihydrazone complexes. J. Saudi Chem. Soc. 2020, 24, 381–392. [Google Scholar] [CrossRef]
- Lee, J.D. Consize Inorganic Chemistry, 5th ed.; Blackwell Science Ltd.: Chichester, UK, 1996; p. 669. [Google Scholar]
- Abo-Ashour, M.F.; Eldehna, W.M.; Nocentini, A.; Bonardi, A.; Bua, S.; Ibrahim, H.S.; Elaasser, M.M.; Kryštof, V.; Jorda, R.; Gratteri, P.; et al. 3-Hydrazinoisatin-based benzenesulfonamides as novel carbonic anhydrase inhibitors endowed with anticancer activity: Synthesis, in vitro biological evaluation and in silico insights. Eur. J. Med. Chem. 2019, 184, 111768. [Google Scholar] [CrossRef] [PubMed]
- Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A.; Elaasser, M.M. Synthesis and anticancer activities of thiazoles, 1,3-thiazines, and thiazolidine using chitosan-grafted-poly(vinylpyridine) as basic catalyst. Heterocycles 2015, 91, 1227–1243. [Google Scholar]
- Albqmi, M.; Elkanzi, N.A.A.; Ali, A.M.; Abdou, A. Design, Characterization, and DFT exploration of new mononuclear Fe(III) and Co(II) complexes based on Isatin-hydrazone derivative: Anti-inflammatory profiling and molecular docking insights. J. Mol. Struct. 2025, 1319, 139494. [Google Scholar] [CrossRef]
- Mert, S.; Demir, Y.; Sert, Y.; Kasımoğulları, R.; Gülçin, İ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. J. Mol. Struct. 2025, 1319, 139472. [Google Scholar] [CrossRef]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Chem. Biol. Methods Protoc. 2015, 1263, 243–250. [Google Scholar]
- Coumar, M.S. Molecular Docking for Computer-Aided Drug Design: Fundamentals, Techniques, Resources and Applications, 1st ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 463–477. [Google Scholar]
- Zhang, Y.; Zhao, Z.; Li, W.; Tang, Y.; Wang, S. Mechanism of Taxanes in the Treatment of Lung Cancer Based on Network Pharmacology and Molecular Docking. Curr. Issues Mol. Biol. 2023, 45, 6564–6582. [Google Scholar] [CrossRef]
Compound | Receptor | Binding Affinity (kcal/mol) | Interacting Amino Acids |
---|---|---|---|
L: Bis(2-hydroxy-3-carboxyphenyl)methane (BHCM) | 6CAO (implicated in the pathophysiology of lung cancer) | −7.8 | Phe-997 and Asp-1012 |
Complex: (Ni–BHCM) | −10.3 | Glu-1015, Lys-846 and Asp-1014 |
Compound | BHCM | Ni–BHCM | ||||
---|---|---|---|---|---|---|
x | y | z | x | y | z | |
Center coordinates of the grid box | −60.3605 | −7.1502 | −22.3618 | −60.3605 | −7.1502 | −25.2943 |
Dimensions of the grid box (Ǻ) | 51.453 | 65.0735 | 67.1262 | 51.4252 | 65.0735 | 61.2672 |
Exhaustiveness | 20 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.H.; Althobaiti, I.O.; Alenezy, E.K.; Asiri, Y.M.; Ghalab, S.; Hussein, O.A. Characterization and Cytotoxic Assessment of Bis(2-hydroxy-3-carboxyphenyl)methane and Its Nickel(II) Complex. Molecules 2024, 29, 4239. https://doi.org/10.3390/molecules29174239
Ahmed AH, Althobaiti IO, Alenezy EK, Asiri YM, Ghalab S, Hussein OA. Characterization and Cytotoxic Assessment of Bis(2-hydroxy-3-carboxyphenyl)methane and Its Nickel(II) Complex. Molecules. 2024; 29(17):4239. https://doi.org/10.3390/molecules29174239
Chicago/Turabian StyleAhmed, Ayman H., Ibrahim O. Althobaiti, Ebtsam K. Alenezy, Yazeed M. Asiri, Sobhy Ghalab, and Omar A. Hussein. 2024. "Characterization and Cytotoxic Assessment of Bis(2-hydroxy-3-carboxyphenyl)methane and Its Nickel(II) Complex" Molecules 29, no. 17: 4239. https://doi.org/10.3390/molecules29174239
APA StyleAhmed, A. H., Althobaiti, I. O., Alenezy, E. K., Asiri, Y. M., Ghalab, S., & Hussein, O. A. (2024). Characterization and Cytotoxic Assessment of Bis(2-hydroxy-3-carboxyphenyl)methane and Its Nickel(II) Complex. Molecules, 29(17), 4239. https://doi.org/10.3390/molecules29174239