Pomegranate (Punica granatum L.) Extract Effects on Inflammaging
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pomegranate and Central Nervous System
3.1.1. Pomegranate in Alzheimer’s Disease
3.1.2. Pomegranate in Parkinson’s Disease
3.2. Pomegranate and Skin
3.2.1. Skin-Inflammaging Mechanism
3.2.2. Anti-Inflammaging Skin Effects of Pomegranate Extract
3.3. Pomegranate in Other Diseases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.A. Pomegranate and Its Many Functional Components as Related to Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef] [PubMed]
- Al-Sadi, A.M.; AL-Fahdi, A.R.; Al-Yahyai, R.A.; Al-Ghaithi, A.G.; Al-Said, F.A.; Soleiman, M.J. Genetic Analysis Suggests a Shared Origin of Punica granatum Cultivars in Oman with Cultivars from the Center of Origin, Iran. Genet. Resour. Crop Evol. 2015, 62, 815–821. [Google Scholar] [CrossRef]
- Mo, Y.; Ma, J.; Gao, W.; Zhang, L.; Li, J.; Li, J.; Zang, J. Pomegranate Peel as a Source of Bioactive Compounds: A Mini Review on Their Physiological Functions. Front. Nutr. 2022, 9, 887113. [Google Scholar] [CrossRef] [PubMed]
- Dhumal, S.S.; Karale, A.; Jadhav, S.B.; Kad, V.P. Recent Advances and the Developments in the Pomegranate Processing and Utilization: A Review. J. Agric. Crop Sci. 2012, 1, 1–17. [Google Scholar]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Compounds as Beneficial Phytochemicals in Pomegranate (Punica granatum L.) Peel: A Review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef]
- El-Hadary, A.E.; Ramadan, M.F. Phenolic Profiles, Antihyperglycemic, Antihyperlipidemic, and Antioxidant Properties of Pomegranate (Punica granatum) Peel Extract. J. Food Biochem. 2019, 43, e12803. [Google Scholar] [CrossRef]
- Elfalleh, W.; Tlili, N.; Nasri, N.; Yahia, Y.; Hannachi, H.; Chaira, N.; Ying, M.; Ferchichi, A. Antioxidant Capacities of Phenolic Compounds and Tocopherols from Tunisian Pomegranate (Punica granatum) Fruits. J. Food Sci. 2011, 76, C707–C713. [Google Scholar] [CrossRef]
- Valero-Mendoza, A.G.; Meléndez-Rentería, N.P.; Chávez-González, M.L.; Flores-Gallegos, A.C.; Wong-Paz, J.E.; Govea-Salas, M.; Zugasti-Cruz, A.; Ascacio-Valdés, J.A. The Whole Pomegranate (Punica granatum. L), Biological Properties and Important Findings: A Review. Food Chem. Adv. 2023, 2, 100153. [Google Scholar] [CrossRef]
- Wu, S.; Tian, L. Diverse Phytochemicals and Bioactivities in the Ancient Fruit and Modern Functional Food Pomegranate (Punica granatum). Molecules 2017, 22, 1606. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Xu, J.; Cao, K.; Liu, X.; Zhao, L.; Feng, Z.; Liu, J. Punicalagin Regulates Signaling Pathways in Inflammation-Associated Chronic Diseases. Antioxidants 2021, 11, 29. [Google Scholar] [CrossRef]
- Li, G.; Ding, K.; Qiao, Y.; Zhang, L.; Zheng, L.; Pan, T.; Zhang, L. Flavonoids Regulate Inflammation and Oxidative Stress in Cancer. Molecules 2020, 25, 5628. [Google Scholar] [CrossRef]
- Vučić, V.; Grabež, M.; Trchounian, A.; Arsić, A. Composition and Potential Health Benefits of Pomegranate: A Review. Curr. Pharm. Des. 2019, 25, 1817–1827. [Google Scholar] [CrossRef] [PubMed]
- Tobin, D.J. Introduction to Skin Aging. J. Tissue Viability 2017, 26, 37–46. [Google Scholar] [CrossRef]
- Robert, L.; Labat-Robert, J.; Robert, A.-M. Physiology of Skin Aging. Pathol. Biol. 2009, 57, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and Extrinsic Factors in Skin Ageing: A Review. Int. J. Cosmet. Sci. 2008, 30, 87–95. [Google Scholar] [CrossRef]
- Franceschi, C. Cell Proliferation, Cell Death and Aging. Aging Clin. Exp. Res. 1989, 1, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Capri, M.; Monti, D.; Giunta, S.; Olivieri, F.; Sevini, F.; Panourgia, M.P.; Invidia, L.; Celani, L.; Scurti, M.; et al. Inflammaging and Anti-Inflammaging: A Systemic Perspective on Aging and Longevity Emerged from Studies in Humans. Mech. Ageing Dev. 2007, 128, 92–105. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-Aging. An Evolutionary Perspective on Immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Salminen, A.; Huuskonen, J.; Ojala, J.; Kauppinen, A.; Kaarniranta, K.; Suuronen, T. Activation of Innate Immunity System during Aging: NF-KB Signaling Is the Molecular Culprit of Inflamm-Aging. Ageing Res. Rev. 2008, 7, 83–105. [Google Scholar] [CrossRef]
- Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Lyga, J. Inflammaging in Skin and Other Tissues—The Roles of Complement System and Macrophage. Inflamm. Allergy Drug Targets 2014, 13, 153–161. [Google Scholar] [CrossRef]
- Haque, A.; Woolery-Lloyd, H. Inflammaging in Dermatology: A New Frontier for Research. J. Drugs Dermatol. 2021, 20, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Cevenini, E.; Monti, D.; Franceschi, C. Inflamm-Ageing. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Maphetu, N.; Unuofin, J.O.; Masuku, N.P.; Olisah, C.; Lebelo, S.L. Medicinal Uses, Pharmacological Activities, Phytochemistry, and the Molecular Mechanisms of Punica granatum L. (Pomegranate) Plant Extracts: A Review. Biomed. Pharmacother. [Biomed. Pharmacother.] 2022, 153, 113256. [Google Scholar] [CrossRef]
- Akaberi, M.; Boghrati, Z.; Sahebkar, A.; Emami, S.A. Therapeutic Potential of Pomegranate in Metabolic Disorders. In Natural Products and Human Diseases; Advances in experimental medicine and biology; Springer International Publishing: Cham, Switzerland, 2021; pp. 421–440. ISBN 9783030732332. [Google Scholar]
- Ghaemi, F.; Emadzadeh, M.; Atkin, S.L.; Jamialahmadi, T.; Zengin, G.; Sahebkar, A. Impact of Pomegranate Juice on Blood Pressure: A Systematic Review and Meta-Analysis. Phytother. Res. 2023, 37, 4429–4441. [Google Scholar] [CrossRef]
- Al-Dujaili, E.A.S.; Casey, C.; Stockton, A. Antioxidant Properties and Beneficial Cardiovascular Effects of a Natural Extract of Pomegranate in Healthy Volunteers: A Randomized Preliminary Single-Blind Controlled Study. Antioxidants 2022, 11, 2124. [Google Scholar] [CrossRef]
- Sharma, P.; McClees, S.; Afaq, F. Pomegranate for Prevention and Treatment of Cancer: An Update. Molecules 2017, 22, 177. [Google Scholar] [CrossRef]
- Wang, L.; Martins-Green, M. Pomegranate and Its Components as Alternative Treatment for Prostate Cancer. Int. J. Mol. Sci. 2014, 15, 14949–14966. [Google Scholar] [CrossRef]
- Eghbali, S.; Askari, S.F.; Avan, R.; Sahebkar, A. Therapeutic Effects of Punica granatum (Pomegranate): An Updated Review of Clinical Trials. J. Nutr. Metab. 2021, 2021, 5297162. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health Benefits of Polyphenols: A Concise Review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- González, R.; Ballester, I.; López-Posadas, R.; Suárez, M.D.; Zarzuelo, A.; Martínez-Augustin, O.; Sánchez de Medina, F. Effects of Flavonoids and Other Polyphenols on Inflammation. Crit. Rev. Food Sci. Nutr. 2011, 51, 331–362. [Google Scholar] [CrossRef]
- Wu, M.; Luo, Q.; Nie, R.; Yang, X.; Tang, Z.; Chen, H. Potential Implications of Polyphenols on Aging Considering Oxidative Stress, Inflammation, Autophagy, and Gut Microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 2175–2193. [Google Scholar] [CrossRef] [PubMed]
- Coronado-Reyes, J.A.; Cortés-Penagos, C.d.J.; González-Hernández, J.C. Chemical Composition and Great Applications to the Fruit of the Pomegranate (Punica granatum): A Review. Food Sci. Technol. 2021, 42, e29420. [Google Scholar] [CrossRef]
- Costantini, E.; D’Angelo, C.; Reale, M. The Role of Immunosenescence in Neurodegenerative Diseases. Mediators Inflamm. 2018, 2018, 6039171. [Google Scholar] [CrossRef]
- Richartz, E.; Stransky, E.; Batra, A.; Simon, P.; Lewczuk, P.; Buchkremer, G.; Bartels, M.; Schott, K. Decline of Immune Responsiveness: A Pathogenetic Factor in Alzheimer’s Disease? J. Psychiatr. Res. 2005, 39, 535–543. [Google Scholar] [CrossRef]
- Emami Kazemabad, M.J.; Asgari Toni, S.; Tizro, N.; Dadkhah, P.A.; Amani, H.; Akhavan Rezayat, S.; Sheikh, Z.; Mohammadi, M.; Alijanzadeh, D.; Alimohammadi, F.; et al. Pharmacotherapeutic Potential of Pomegranate in Age-Related Neurological Disorders. Front. Aging Neurosci. 2022, 14, 955735. [Google Scholar] [CrossRef]
- Mehdi, A.; Lamiae, B.; Samira, B.; Ramchoun, M.; Abdelouahed, K.; Tamas, F.; Hicham, B. Pomegranate (Punica granatum L.) Attenuates Neuroinflammation Involved in Neurodegenerative Diseases. Foods 2022, 11, 2570. [Google Scholar] [CrossRef]
- Khan, S.; Barve, K.H.; Kumar, M.S. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr. Neuropharmacol. 2020, 18, 1106–1125. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics. Int. J. Nanomedicine 2019, 14, 5541–5554. [Google Scholar] [CrossRef] [PubMed]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a Central Mechanism in Alzheimer’s Disease. Alzheimer’s Dement 2018, 4, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Moss, D.E. Improving Anti-Neurodegenerative Benefits of Acetylcholinesterase Inhibitors in Alzheimer’s Disease: Are Irreversible Inhibitors the Future? Int. J. Mol. Sci. 2020, 21, 3438. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, F.; Adam, R.H.I.; Broersen, K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 72, 981–1017. [Google Scholar] [CrossRef]
- George, N.; AbuKhader, M.; Al Balushi, K.; Al Sabahi, B.; Khan, S.A. An Insight into the Neuroprotective Effects and Molecular Targets of Pomegranate (Punica granatum) against Alzheimer’s Disease. Nutr. Neurosci. 2023, 26, 975–996. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, J.-H.; Heo, H.J.; Cho, H.Y.; Kim, H.K.; Kim, C.-J.; Kim, M.O.; Suh, S.H.; Shin, D.-H. Punica granatum Protects against Oxidative Stress in PC12 Cells and Oxidative Stress-Induced Alzheimer’s Symptoms in Mice. J. Med. Food 2011, 14, 695–701. [Google Scholar] [CrossRef]
- Velagapudi, R.; Baco, G.; Khela, S.; Okorji, U.; Olajide, O. Pomegranate Inhibits Neuroinflammation and Amyloidogenesis in IL-1β-stimulated SK-N-SH cells. Eur. J. Nutr. 2016, 55, 1653–1660. [Google Scholar] [CrossRef]
- Essa, M.M.; Subash, S.; Akbar, M.; Al-Adawi, S.; Guillemin, G.J. Long-Term Dietary Supplementation of Pomegranates, Figs and Dates Alleviate Neuroinflammation in a Transgenic Mouse Model of Alzheimer’s Disease. PLoS ONE 2015, 10, e0120964. [Google Scholar] [CrossRef]
- Kumar, S.; Maheshwari, K.; Singh, V. Protective Effects of Punica granatum Seeds Extract against Aging and Scopolamine Induced Cognitive Impairments in Mice. Afr. J. Tradit. Complement. Altern. Med. 2010, 6, 49–56. [Google Scholar] [CrossRef]
- Subash, S.; Essa, M.M.; Al-Asmi, A.; Al-Adawi, S.; Vaishnav, R.; Braidy, N.; Manivasagam, T.; Guillemin, G.J. Pomegranate from Oman Alleviates the Brain Oxidative Damage in Transgenic Mouse Model of Alzheimer’s Disease. J. Tradit. Complement. Med. 2014, 4, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.H.; Subaiea, G.M.; Eid, A.; Li, L.; Seeram, N.P.; Zawia, N.H. Pomegranate Extract Modulates Processing of Amyloid-β Precursor Protein in an Aged Alzheimer’s Disease Animal Model. Curr. Alzheimer Res. 2014, 11, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Braidy, N.; Essa, M.M.; Poljak, A.; Selvaraju, S.; Al-Adawi, S.; Manivasagm, T.; Thenmozhi, A.J.; Ooi, L.; Sachdev, P.; Guillemin, G.J. Consumption of Pomegranates Improves Synaptic Function in a Transgenic Mice Model of Alzheimer’s Disease. Oncotarget 2016, 7, 64589–64604. [Google Scholar] [CrossRef]
- Morzelle, M.C.; Salgado, J.M.; Telles, M.; Mourelle, D.; Bachiega, P.; Buck, H.S.; Viel, T.A. Neuroprotective Effects of Pomegranate Peel Extract after Chronic Infusion with Amyloid-β Peptide in Mice. PLoS ONE 2016, 11, e0166123. [Google Scholar] [CrossRef]
- Almuhayawi, M.S.; Ramadan, W.S.; Harakeh, S.; Al Jaouni, S.K.; Bharali, D.J.; Mousa, S.A.; Almuhayawi, S.M. The Potential Role of Pomegranate and Its Nano-Formulations on Cerebral Neurons in Aluminum Chloride Induced Alzheimer Rat Model. Saudi J. Biol. Sci. 2020, 27, 1710–1716. [Google Scholar] [CrossRef] [PubMed]
- Khokar, R.; Hachani, K.; Hasan, M.; Othmani, F.; Essam, M.; Al Mamari, A.; Um, D.; Khan, S.A. Anti-Alzheimer Potential of a Waste by-Product (Peel) of Omani Pomegranate Fruits: Quantification of Phenolic Compounds, in-Vitro Antioxidant, Anti-Cholinesterase and in-Silico Studies. Biocatal. Agric. Biotechnol. 2021, 38, 102223. [Google Scholar] [CrossRef]
- Karagecili, H.; İzol, E.; Kirecci, E.; Gulcin, İ. Determination of Antioxidant, Anti-Alzheimer, Antidiabetic, Antiglaucoma and Antimicrobial Effects of Zivzik Pomegranate (Punica granatum)-A Chemical Profiling by LC-MS/MS. Life 2023, 13, 735. [Google Scholar] [CrossRef]
- Yousof Ali, M.; Zaib, S.; Jannat, S.; Khan, I. Discovery of Potent and Selective Dual Cholinesterases and β-Secretase Inhibitors in Pomegranate as a Treatment for Alzheimer’s Disease. Bioorg. Chem. 2022, 129, 106137. [Google Scholar] [CrossRef]
- Rojanathammanee, L.; Puig, K.L.; Combs, C.K. Pomegranate Polyphenols and Extract Inhibit Nuclear Factor of Activated. J. Nutr. 2013, 143, 597–605. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, Y.K.; Yuk, D.Y.; Choi, D.Y.; Ban, S.B.; Oh, K.W.; Hong, J.T. Neuro-Inflammation Induced by Lipopolysaccharide Causes Cognitive Impairment through Enhancement of Beta-Amyloid Generation. J. Neuroinflamm. 2008, 5, 37. [Google Scholar] [CrossRef]
- Kim, Y.E.; Hwang, C.J.; Lee, H.P.; Kim, C.S.; Son, D.J.; Ham, Y.W.; Hellström, M.; Han, S.-B.; Kim, H.S.; Park, E.K.; et al. Inhibitory Effect of Punicalagin on Lipopolysaccharide-Induced Neuroinflammation, Oxidative Stress and Memory Impairment via Inhibition of Nuclear Factor-KappaB. Neuropharmacology 2017, 117, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Chen, F.; Lei, J.; Zhou, B. Pomegranate Polyphenol Punicalagin Improves Learning Memory Deficits, Redox Homeostasis, and Neuroinflammation in Aging Mice. Phytother. Res. 2023, 37, 3655–3674. [Google Scholar] [CrossRef]
- Clementi, M.E.; Sampaolese, B.; Lazzarino, G.; Giardina, B. Effect of Punicalagin and Resveratrol on Methionine Sulfoxide Reductase: A Possible Protective Contribution against Alzheimer’s Disease. J. Prev. Alzheimer’s Dis. 2015, 2, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Moskovitz, J.; Du, F.; Bowman, C.F.; Yan, S.S. Methionine Sulfoxide Reductase A Affects β-Amyloid Solubility and Mitochondrial Function in a Mouse Model of Alzheimer’s Disease. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E388–E393. [Google Scholar] [CrossRef]
- Gates, E.J.; Bernath, A.K.; Klegeris, A. Modifying the Diet and Gut Microbiota to Prevent and Manage Neurodegenerative Diseases. Rev. Neurosci. 2022, 33, 767–787. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Abdelwareth, A.; Sallam, I.E.; El Shorbagi, M.; Jehmlich, N.; Fritz-Wallace, K.; Serena Schäpe, S.; Rolle-Kampczyk, U.; Ehrlich, A.; Wessjohann, L.A.; et al. Metabolomics Reveals Impact of Seven Functional Foods on Metabolic Pathways in a Gut Microbiota Model. J. Adv. Res. 2020, 23, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, C.; Malaguti, M.; Prata, C.; Freschi, M.; Barbalace, M.C.; Hrelia, S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants 2022, 12, 94. [Google Scholar] [CrossRef]
- Reddy, V.P.; Aryal, P.; Robinson, S.; Rafiu, R.; Obrenovich, M.; Perry, G. Polyphenols in Alzheimer’s Disease and in the Gut-Brain Axis. Microorganisms 2020, 8, 199. [Google Scholar] [CrossRef]
- Espín, J.C.; González-Barrio, R.; Cerdá, B.; López-Bote, C.; Rey, A.I.; Tomás-Barberán, F.A. Iberian Pig as a Model to Clarify Obscure Points in the Bioavailability and Metabolism of Ellagitannins in Humans. J. Agric. Food Chem. 2007, 55, 10476–10485. [Google Scholar] [CrossRef]
- Yuan, T.; Ma, H.; Liu, W.; Niesen, D.B.; Shah, N.; Crews, R.; Rose, K.N.; Vattem, D.A.; Seeram, N.P. Pomegranate’s Neuroprotective Effects against Alzheimer’s Disease Are Mediated by Urolithins, Its Ellagitannin-Gut Microbial Derived Metabolites. ACS Chem. Neurosci. 2016, 7, 26–33. [Google Scholar] [CrossRef]
- Jayatunga, D.P.W.; Hone, E.; Khaira, H.; Lunelli, T.; Singh, H.; Guillemin, G.J.; Fernando, B.; Garg, M.L.; Verdile, G.; Martins, R.N. Therapeutic Potential of Mitophagy-Inducing Microflora Metabolite, Urolithin A for Alzheimer’s Disease. Nutrients 2021, 13, 3744. [Google Scholar] [CrossRef] [PubMed]
- DaSilva, N.A.; Nahar, P.P.; Ma, H.; Eid, A.; Wei, Z.; Meschwitz, S.; Zawia, N.H.; Slitt, A.L.; Seeram, N.P. Pomegranate Ellagitannin-Gut Microbial-Derived Metabolites, Urolithins, Inhibit Neuroinflammation in Vitro. Nutr. Neurosci. 2019, 22, 185–195. [Google Scholar] [CrossRef]
- Ryu, D.; Mouchiroud, L.; Andreux, P.A.; Katsyuba, E.; Moullan, N.; Nicolet-dit-Félix, A.A.; Williams, E.G.; Jha, P.; Lo Sasso, G.; Huzard, D.; et al. Urolithin A Induces Mitophagy and Prolongs Lifespan in C. Elegans and Increases Muscle Function in Rodents. Nat. Med. 2016, 22, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Perez Ortiz, J.M.; Swerdlow, R.H. Mitochondrial Dysfunction in Alzheimer’s Disease: Role in Pathogenesis and Novel Therapeutic Opportunities. Br. J. Pharmacol. 2019, 176, 3489–3507. [Google Scholar] [CrossRef] [PubMed]
- Jayatunga, D.P.W.; Hone, E.; Bharadwaj, P.; Garg, M.; Verdile, G.; Guillemin, G.J.; Martins, R.N. Targeting Mitophagy in Alzheimer’s Disease. J. Alzheimer’s Dis. 2020, 78, 1273–1297. [Google Scholar] [CrossRef]
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef]
- Marino, B.L.B.; de Souza, L.R.; Sousa, K.P.A.; Ferreira, J.V.; Padilha, E.C.; da Silva, C.H.T.P.; Taft, C.A.; Hage-Melim, L.I.S. Parkinson’s Disease: A Review from Pathophysiology to Treatment. Mini Rev. Med. Chem. 2020, 20, 754–767. [Google Scholar] [CrossRef]
- Beitz, J.M. Parkinson s Disease a Review. Front. Biosci. (Schol. Ed.) 2014, 6, 65–74. [Google Scholar] [CrossRef]
- Braidy, N.; Selvaraju, S.; Essa, M.M.; Vaishnav, R.; Al-Adawi, S.; Al-Asmi, A.; Al-Senawi, H.; Abd Alrahman Alobaidy, A.; Lakhtakia, R.; Guillemin, G.J. Neuroprotective Effects of a Variety of Pomegranate Juice Extracts against MPTP-Induced Cytotoxicity and Oxidative Stress in Human Primary Neurons. Oxid. Med. Cell Longev. 2013, 2013, 685909. [Google Scholar] [CrossRef]
- Tapias, V.; Cannon, J.R.; Greenamyre, J.T. Pomegranate Juice Exacerbates Oxidative Stress and Nigrostriatal Degeneration in Parkinson’s Disease. Neurobiol. Aging 2014, 35, 1162–1176. [Google Scholar] [CrossRef]
- Kujawska, M.; Jourdes, M.; Kurpik, M.; Szulc, M.; Szaefer, H.; Chmielarz, P.; Kreiner, G.; Krajka-Kuźniak, V.; Mikołajczak, P.Ł.; Teissedre, P.-L.; et al. Neuroprotective Effects of Pomegranate Juice against Parkinson’s Disease and Presence of Ellagitannins-Derived Metabolite-Urolithin A-in the Brain. Int. J. Mol. Sci. 2019, 21, 202. [Google Scholar] [CrossRef]
- Kujawska, M.; Jourdes, M.; Witucki, Ł.; Karaźniewicz-Łada, M.; Szulc, M.; Górska, A.; Mikołajczak, P.Ł.; Teissedre, P.-L.; Jodynis-Liebert, J. Pomegranate Juice Ameliorates Dopamine Release and Behavioral Deficits in a Rat Model of Parkinson’s Disease. Brain Sci. 2021, 11, 1127. [Google Scholar] [CrossRef]
- Fathy, S.M.; El-Dash, H.A.; Said, N.I. Neuroprotective Effects of Pomegranate (Punica granatum L.) Juice and Seed Extract in Paraquat-Induced Mouse Model of Parkinson’s Disease. BMC Complement. Med. Ther. 2021, 21, 130. [Google Scholar] [CrossRef] [PubMed]
- Sarkaki, A.; Farbood, Y.; Dolatshahi, M.; Mansouri, S.M.T.; Khodadadi, A. Neuroprotective Effects of Ellagic Acid in a Rat Model of Parkinson’s Disease. Acta Med. Iran. 2016, 54, 494–502. [Google Scholar] [PubMed]
- Baluchnejadmojarad, T.; Rabiee, N.; Zabihnejad, S.; Roghani, M. Ellagic Acid Exerts Protective Effect in Intrastriatal 6-Hydroxydopamine Rat Model of Parkinson’s Disease: Possible Involvement of ERβ/Nrf2/HO-1 Signaling. Brain Res. 2017, 1662, 23–30. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, J.; Qiu, J.; Wang, L.; Zhuo, J.; Wang, B.; Sun, D.; Yu, S.; Lou, H. Urolithin A Protects Dopaminergic Neurons in Experimental Models of Parkinson’s Disease by Promoting Mitochondrial Biogenesis through the SIRT1/PGC-1α Signaling Pathway. Food Funct. 2022, 13, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Koohgoli, R.; Hudson, L.; Naidoo, K.; Wilkinson, S.; Chavan, B.; Birch-Machin, M.A. Bad Air Gets under Your Skin. Exp. Dermatol. 2017, 26, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Rittié, L.; Fisher, G.J. Natural and Sun-Induced Aging of Human Skin. Cold Spring Harb. Perspect. Med. 2015, 5, a015370. [Google Scholar] [CrossRef]
- Quan, T. Molecular Insights of Human Skin Epidermal and Dermal Aging. J. Dermatol. Sci. 2023, 112, 48–53. [Google Scholar] [CrossRef]
- Hu, L.; Mauro, T.M.; Dang, E.; Man, G.; Zhang, J.; Lee, D.; Wang, G.; Feingold, K.R.; Elias, P.M.; Man, M.-Q. Epidermal Dysfunction Leads to an Age-Associated Increase in Levels of Serum Inflammatory Cytokines. J. Investig. Dermatol. 2017, 137, 1277–1285. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Shen, M.; Cai, S.-Q.; Tang, Z.-W. Association between Atopic Dermatitis and Aging: Clinical Observations and Underlying Mechanisms. J. Inflamm. Res. 2024, 17, 3433–3448. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Hu, A.; Bollag, W.B. The Skin and Inflamm-Aging. Biology 2023, 12, 1396. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Weinberger, B.; Arnold, C.R.; Maier, A.B.; Westendorp, R.G.J.; Grubeck-Loebenstein, B. The Effect of Chronological Age on the Inflammatory Response of Human Fibroblasts. Exp. Gerontol. 2012, 47, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Papp, N.; Czégényi, D.; Tóth, M.; Dénes, T.; Bartha, S.G.; Csepregi, R.; Gyergyák, K.; Bukovics, P.; Stranczinger, S.; Varga, E.; et al. Ethnomedicine Survey on Folk Dermatology in Transylvania, Romania. Clin. Dermatol. 2022, 40, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Butnariu, M.; Peana, M.; Sarac, I.; Strus, O.; Smetanina, K.; Chirumbolo, S. Natural Compounds and Products from an Anti-Aging Perspective. Molecules 2022, 27, 7084. [Google Scholar] [CrossRef]
- Hunt, K.J.; Hung, S.K.; Ernst, E. Botanical Extracts as Anti-Aging Preparations for the Skin: A Systematic Review. Drugs Aging 2010, 27, 973–985. [Google Scholar] [CrossRef]
- Sitarek, P.; Kowalczyk, T.; Wieczfinska, J.; Merecz-Sadowska, A.; Górski, K.; Śliwiński, T.; Skała, E. Plant Extracts as a Natural Source of Bioactive Compounds and Potential Remedy for the Treatment of Certain Skin Diseases. Curr. Pharm. Des. 2020, 26, 2859–2875. [Google Scholar] [CrossRef]
- Lin, T.-K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef]
- Watanabe, M.; Natsuga, K.; Nishie, W.; Kobayashi, Y.; Donati, G.; Suzuki, S.; Fujimura, Y.; Tsukiyama, T.; Ujiie, H.; Shinkuma, S.; et al. Type XVII Collagen Coordinates Proliferation in the Interfollicular Epidermis. Elife 2017, 6, e26635. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, Y.; Yang, Y.; Yan, Y.; Kim, A.J.; Guo, C.; Fisher, G.J.; Quan, T. Reduced Expression of Collagen 17A1 in Naturally Aged, Photoaged, And. J. Cell Commun. Signal 2022, 16, 421–432. [Google Scholar] [CrossRef]
- Liu, N.; Matsumura, H.; Kato, T.; Ichinose, S.; Takada, A.; Namiki, T.; Asakawa, K.; Morinaga, H.; Mohri, Y.; De Arcangelis, A.; et al. Stem Cell Competition Orchestrates Skin Homeostasis and Ageing. Nature 2019, 568, 344–350. [Google Scholar] [CrossRef]
- Matsumura, H.; Mohri, Y.; Binh, N.T.; Morinaga, H.; Fukuda, M.; Ito, M.; Kurata, S.; Hoeijmakers, J.; Nishimura, E.K. Hair Follicle Aging Is Driven by Transepidermal Elimination of Stem Cells via COL17A1 Proteolysis. Science 2016, 351, aad4395. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, S.; Tadokoro, Y.; Inomata, K.; Binh, N.T.; Nishie, W.; Yamazaki, S.; Nakauchi, H.; Tanaka, Y.; McMillan, J.R.; Sawamura, D.; et al. Hair Follicle Stem Cells Provide a Functional Niche for Melanocyte Stem Cells. Cell Stem Cell 2011, 8, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chen, D.; Jiang, K.; Song, L.; Qian, N.; Du, Y.; Yang, Y.; Wang, F.; Chen, T. Hair Shaft Miniaturization Causes Stem Cell Depletion through Mechanosensory Signals Mediated by a Piezo1-Calcium-TNF-α Axis. Cell Stem Cell 2022, 29, 70–85.e6. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of Photoaging and Chronological Skin Aging. Arch. Dermatol. 2002, 138, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.J.; Wang, Z.Q.; Datta, S.C.; Varani, J.; Kang, S.; Voorhees, J.J. Pathophysiology of Premature Skin Aging Induced by Ultraviolet Light. N. Engl. J. Med. 1997, 337, 1419–1428. [Google Scholar] [CrossRef]
- Quan, T.; Fisher, G.J. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging: A Mini-Review. Gerontology 2015, 61, 427–434. [Google Scholar] [CrossRef]
- Quan, T.; He, T.; Shao, Y.; Lin, L.; Kang, S.; Voorhees, J.J.; Fisher, G.J. Elevated Cysteine-Rich 61 Mediates Aberrant Collagen Homeostasis in Chronologically Aged and Photoaged Human Skin. Am. J. Pathol. 2006, 169, 482–490. [Google Scholar] [CrossRef]
- Poljšak, B.; Dahmane, R. Free Radicals and Extrinsic Skin Aging. Dermatol. Res. Pract. 2012, 2012, 135206. [Google Scholar] [CrossRef]
- Lorzadeh, E.; Heidary, Z.; Mohammadi, M.; Nadjarzadeh, A.; Ramezani-Jolfaie, N.; Salehi-Abargouei, A. Does Pomegranate Consumption Improve Oxidative Stress? A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Clin. Nutr. ESPEN 2022, 47, 117–127. [Google Scholar] [CrossRef]
- Lawrence, J.N.; Dickson, F.M.; Benford, D.J. Skin Irritant-Induced Cytotoxicity and Prostaglandin E2 Release in Human Skin Keratinocyte Cultures. Toxicol In Vitro 1997, 11, 627–631. [Google Scholar] [CrossRef]
- Yaar, M.; Gilchrest, B.A. Skin Aging. Clin. Geriatr. Med. 2001, 17, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Kimeswenger, S.; Schwarz, A.; Födinger, D.; Müller, S.; Pehamberger, H.; Schwarz, T.; Jantschitsch, C. Infrared A Radiation Promotes Survival of Human Melanocytes Carrying Ultraviolet Radiation-Induced DNA Damage. Exp. Dermatol. 2016, 25, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Bickers, D.R.; Athar, M. Oxidative Stress in the Pathogenesis of Skin Disease. J. Investig. Dermatol. 2006, 126, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Schroeder, P. Role of Mitochondria in Photoaging of Human Skin: The Defective Powerhouse Model. J. Investig. Dermatol. Symp. Proc. 2009, 14, 44–49. [Google Scholar] [CrossRef]
- Kim, A.L.; Labasi, J.M.; Zhu, Y.; Tang, X.; McClure, K.; Gabel, C.A.; Athar, M.; Bickers, D.R. Role of P38 MAPK in UVB-Induced Inflammatory Responses in the Skin of SKH-1 Hairless Mice. J. Investig. Dermatol. 2005, 124, 1318–1325. [Google Scholar] [CrossRef]
- Bachelor, M.A.; Bowden, G.T. UVA-Mediated Activation of Signaling Pathways Involved in Skin Tumor Promotion and Progression. Semin. Cancer Biol. 2004, 14, 131–138. [Google Scholar] [CrossRef]
- Reelfs, O.; Tyrrell, R.M.; Pourzand, C. Ultraviolet a Radiation-Induced Immediate Iron Release Is a Key Modulator of the Activation of NF-KappaB in Human Skin Fibroblasts. J. Investig. Dermatol. 2004, 122, 1440–1447. [Google Scholar] [CrossRef]
- Martens, M.C.; Seebode, C.; Lehmann, J.; Emmert, S. Photocarcinogenesis and Skin Cancer Prevention Strategies: An Update. Anticancer. Res. 2018, 38, 1153–1158. [Google Scholar] [CrossRef]
- Tsatsou, F.; Trakatelli, M.; Patsatsi, A.; Kalokasidis, K.; Sotiriadis, D. Extrinsic Aging: UV-Mediated Skin Carcinogenesis. Dermatoendocrinol 2012, 4, 285–297. [Google Scholar] [CrossRef]
- Pilkington, S.M.; Bulfone-Paus, S.; Griffiths, C.E.M.; Watson, R.E.B. Inflammaging and the Skin. J. Investig. Dermatol. 2021, 141, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [PubMed]
- Campisi, J. Aging, Cellular Senescence, and Cancer. Annu. Rev. Physiol. 2013, 75, 685–705. [Google Scholar] [CrossRef] [PubMed]
- Csekes, E.; Račková, L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int. J. Mol. Sci. 2021, 22, 12641. [Google Scholar] [CrossRef] [PubMed]
- Sohrab, G.; Nasrollahzadeh, J.; Zand, H.; Amiri, Z.; Tohidi, M.; Kimiagar, M. Effects of Pomegranate Juice Consumption on Inflammatory Markers in Patients with Type 2 Diabetes: A Randomized, Placebo-Controlled Trial. J. Res. Med. Sci. 2014, 19, 215–220. [Google Scholar]
- Huang, W.-C.; Liou, C.-J.; Shen, S.-C.; Hu, S.; Chao, J.C.-J.; Huang, C.-H.; Wu, S.-J. Punicalagin from Pomegranate Ameliorates TNF-α/IFN-γ-Induced Inflammatory Responses in HaCaT Cells via Regulation of SIRT1/STAT3 Axis and Nrf2/HO-1 Signaling Pathway. Int. Immunopharmacol. 2024, 130, 111665. [Google Scholar] [CrossRef]
- Rapa, S.F.; Magliocca, G.; Pepe, G.; Amodio, G.; Autore, G.; Campiglia, P.; Marzocco, S. Protective Effect of Pomegranate on Oxidative Stress and Inflammatory Response Induced by 5-Fluorouracil in Human Keratinocytes. Antioxidants 2021, 10, 203. [Google Scholar] [CrossRef]
- Afaq, F.; Malik, A.; Syed, D.; Maes, D.; Matsui, M.S.; Mukhtar, H. Pomegranate Fruit Extract Modulates UV-B-Mediated Phosphorylation of Mitogen-Activated Protein Kinases and Activation of Nuclear Factor Kappa B in Normal Human Epidermal Keratinocytes Paragraph Sign. Photochem. Photobiol. 2005, 81, 38–45. [Google Scholar] [CrossRef]
- Houston, D.M.J.; Bugert, J.; Denyer, S.P.; Heard, C.M. Anti-Inflammatory Activity of Punica granatum L. (Pomegranate) Rind Extracts Applied Topically to Ex Vivo Skin. Eur. J. Pharm. Biopharm. 2017, 112, 30–37. [Google Scholar] [CrossRef]
- Hamouda, A.F.; Felemban, S. Biochemical Pilot Study on Effects of Pomegranate Seed Oil Extract and Cosmetic Cream on Neurologically Mediated Skin Inflammation in Animals and Humans: A Comparative Observational Study. Molecules 2023, 28, 903. [Google Scholar] [CrossRef]
- Khan, N.; Syed, D.N.; Pal, H.C.; Mukhtar, H.; Afaq, F. Pomegranate Fruit Extract Inhibits UVB-Induced Inflammation and Proliferation by Modulating NF-ΚB and MAPK Signaling Pathways in Mouse Skin. Photochem. Photobiol. 2012, 88, 1126–1134. [Google Scholar] [CrossRef]
- BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-Inflammatory Potential of Ellagic Acid, Gallic Acid and Punicalagin A&B Isolated from Punica granatum. BMC Complement. Altern. Med. 2017, 17, 47. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Choi, J.-S.; Kang, S.-W.; Lee, Y.-J.; Park, J.; Kang, Y.-H. Dietary Compound Ellagic Acid Alleviates Skin Wrinkle and Inflammation Induced by UV-B Irradiation. Exp. Dermatol. 2010, 19, e182–e190. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Guo, H.; DaSilva, N.A.; Li, D.; Zhang, K.; Wan, Y.; Gao, X.-H.; Chen, H.-D.; Seeram, N.P.; Ma, H. Pomegranate (Punica granatum) Phenolics Ameliorate Hydrogen Peroxide-Induced Oxidative Stress and Cytotoxicity in Human Keratinocytes. J. Funct. Foods 2019, 54, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Seok, J.K.; Lee, J.-W.; Kim, Y.M.; Boo, Y.C. Punicalagin and (-)-Epigallocatechin-3-Gallate Rescue Cell Viability and Attenuate Inflammatory Responses of Human Epidermal Keratinocytes Exposed to Airborne Particulate Matter PM10. Skin. Pharmacol. Physiol. 2018, 31, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Quiles, J.; Cabrera, M.; Jones, J.; Tsapekos, M.; Caturla, N. In Vitro Determination of the Skin Anti-Aging Potential of Four-Component Plant-Based Ingredient. Molecules 2022, 27, 8101. [Google Scholar] [CrossRef]
- Ghimeray, A.K.; Jung, U.S.; Lee, H.Y.; Kim, Y.H.; Ryu, E.K.; Chang, M.S. In Vitro Antioxidant, Collagenase Inhibition, and in Vivo Anti-Wrinkle Effects of Combined Formulation Containing Punica granatum, Ginkgo Biloba, Ficus Carica, and Morus Alba Fruits Extract. Clin. Cosmet. Investig. Dermatol. 2015, 8, 389–396. [Google Scholar] [CrossRef]
- Chan, L.-P.; Tseng, Y.-P.; Liu, C.; Liang, C.-H. Fermented Pomegranate Extracts Protect against Oxidative Stress and Aging of Skin. J. Cosmet. Dermatol. 2022, 21, 2236–2245. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Alawadh, S.H.; Bouazzaoui, A.; Alhowail, A.H.; Mohammed, H.A. Anthocyanins Rich Pomegranate Cream as a Topical Formulation with Anti-Aging Activity. J. Dermatolog Treat. 2021, 32, 983–990. [Google Scholar] [CrossRef]
- Mariné-Casadó, R.; Teichenné, J.; Tobajas, Y.; Caimari, A.; Villar, A.; Zangara, A.; Mulà, A.; Del Bas, J.M. Pomegranate Natural Extract Pomanox® Positively Modulates Skin Health-Related Parameters in Normal and UV-Induced Photoaging Conditions in Hs68 Human Fibroblast Cells. Int. J. Food Sci. Nutr. 2023, 74, 51–63. [Google Scholar] [CrossRef]
- Park, H.M.; Moon, E.; Kim, A.-J.; Kim, M.H.; Lee, S.; Lee, J.B.; Park, Y.K.; Jung, H.-S.; Kim, Y.-B.; Kim, S.Y. Extract of Punica granatum Inhibits Skin Photoaging Induced by UVB Irradiation. Int. J. Dermatol. 2010, 49, 276–282. [Google Scholar] [CrossRef]
- Abd-Elghany, A.A.; Mohamad, E.A. Chitosan-Coated Niosomes Loaded with Ellagic Acid Present Antiaging Activity in a Skin Cell Line. ACS Omega 2023, 8, 16620–16629. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Palencia, L.A.; Noratto, G.; Hingorani, L.; Talcott, S.T.; Mertens-Talcott, S.U. Protective Effects of Standardized Pomegranate (Punica granatum L.) Polyphenolic Extract in Ultraviolet-Irradiated Human Skin Fibroblasts. J. Agric. Food Chem. 2008, 56, 8434–8441. [Google Scholar] [CrossRef]
- Zaid, M.A.; Afaq, F.; Syed, D.N.; Dreher, M.; Mukhtar, H. Inhibition of UVB-Mediated Oxidative Stress and Markers of Photoaging in Immortalized HaCaT Keratinocytes by Pomegranate Polyphenol Extract POMx. Photochem. Photobiol. 2007, 83, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Baccarin, T.; Mitjans, M.; Ramos, D.; Lemos-Senna, E.; Vinardell, M.P. Photoprotection by Punica granatum Seed Oil Nanoemulsion Entrapping Polyphenol-Rich Ethyl Acetate Fraction against UVB-Induced DNA Damage in Human Keratinocyte (HaCaT) Cell Line. J. Photochem. Photobiol. B 2015, 153, 127–136. [Google Scholar] [CrossRef]
- Kang, S.-J.; Choi, B.-R.; Kim, S.-H.; Yi, H.-Y.; Park, H.-R.; Song, C.-H.; Ku, S.-K.; Lee, Y.-J. Beneficial Effects of Dried Pomegranate Juice Concentrated Powder on Ultraviolet B-Induced Skin Photoaging in Hairless Mice. Exp. Ther. Med. 2017, 14, 1023–1036. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Yang, J.; Lee, R.-P.; Huang, J.; Hsu, M.; Thames, G.; Gilbuena, I.; Long, J.; Xu, Y.; Park, E.H.; et al. Pomegranate Juice and Extract Consumption Increases the Resistance to UVB-Induced Erythema and Changes the Skin Microbiome in Healthy Women: A Randomized Controlled Trial. Sci. Rep. 2019, 9, 14528. [Google Scholar] [CrossRef] [PubMed]
- Murthy, K.N.C.; Reddy, V.K.; Veigas, J.M.; Murthy, U.D. Study on Wound Healing Activity of Punica granatum Peel. J. Med. Food 2004, 7, 256–259. [Google Scholar] [CrossRef]
- Hayouni, E.A.; Miled, K.; Boubaker, S.; Bellasfar, Z.; Abedrabba, M.; Iwaski, H.; Oku, H.; Matsui, T.; Limam, F.; Hamdi, M. Hydroalcoholic Extract Based-Ointment from Punica granatum L. Peels with Enhanced in Vivo Healing Potential on Dermal Wounds. Phytomedicine 2011, 18, 976–984. [Google Scholar] [CrossRef]
- Nayak, S.B.; Rodrigues, V.; Maharaj, S.; Bhogadi, V.S. Wound Healing Activity of the Fruit Skin of Punica granatum. J. Med. Food 2013, 16, 857–861. [Google Scholar] [CrossRef]
- Zekavat, O.; Amanat, A.; Karami, M.; Paydar, S.; Gramizadeh, B.; Zareian-Jahromi, M. Wound Healing Studies Using Punica granatum Peel. Adv. Skin Wound Care 2016, 29, 217–225. [Google Scholar] [CrossRef]
- Nasiri, E.; Hosseinimehr, S.J.; Akbari, J.; Azadbakht, M.; Azizi, S. The Effects of Punica granatum Flower Extract on Skin Injuries Induced by Burn in Rats. Adv. Pharmacol. Sci. 2017, 2017, 3059745. [Google Scholar] [CrossRef] [PubMed]
- Elzayat, E.M.; Auda, S.H.; Alanazi, F.K.; Al-Agamy, M.H. Evaluation of Wound Healing Activity of Henna, Pomegranate and Myrrh Herbal Ointment Blend. Saudi Pharm. J. 2018, 26, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Lukiswanto, B.S.; Miranti, A.; Sudjarwo, S.A.; Primarizky, H.; Yuniarti, W.M. Evaluation of Wound Healing Potential of Pomegranate (Punica granatum) Whole Fruit Extract on Skin Burn Wound in Rats (Rattus norvegicus). J. Adv. Vet. Anim. Res. 2019, 6, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Yuniarti, W.M.; Primarizky, H.; Lukiswanto, B.S. The Activity of Pomegranate Extract Standardized 40% Ellagic Acid during the Healing Process of Incision Wounds in Albino Rats (Rattus norvegicus). Vet. World 2018, 11, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.N.; Lansky, E.P.; Varani, J. Pomegranate as a Cosmeceutical Source: Pomegranate Fractions Promote Proliferation and Procollagen Synthesis and Inhibit Matrix Metalloproteinase-1 Production in Human Skin Cells. J. Ethnopharmacol. 2006, 103, 311–318. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, R.; Hu, Y.; Yang, Y.; Zhang, X.; He, B.; Shen, Z.; Yang, J.; Chen, P. Promoting Effect of Pomegranate Peel Extract on Second-Degree Burn Wound-Healing through VEGF-A and TGF-Β1 Regulation. Burns 2022, 48, 639–648. [Google Scholar] [CrossRef]
- Benedetti, G.; Flori, L.; Spezzini, J.; Miragliotta, V.; Lazzarini, G.; Pirone, A.; Meneguzzo, C.; Tagliavento, L.; Martelli, A.; Antonelli, M.; et al. Improved Cardiovascular Effects of a Novel Pomegranate Byproduct Extract Obtained through Hydrodynamic Cavitation. Nutrients 2024, 16, 506. [Google Scholar] [CrossRef]
- Dos Santos, R.L.; Dellacqua, L.O.; Delgado, N.T.B.; Rouver, W.N.; Podratz, P.L.; Lima, L.C.F.; Piccin, M.P.C.; Meyrelles, S.S.; Mauad, H.; Graceli, J.B.; et al. Pomegranate Peel Extract Attenuates Oxidative Stress by Decreasing Coronary Angiotensin-Converting Enzyme (ACE) Activity in Hypertensive Female Rats. J. Toxicol. Environ. Health A 2016, 79, 998–1007. [Google Scholar] [CrossRef]
- Wang, J.; Rong, X.; Um, I.S.I.; Yamahara, J.; Li, Y. 55-Week Treatment of Mice with the Unani and Ayurvedic Medicine Pomegranate Flower Ameliorates Ageing-Associated Insulin Resistance and Skin Abnormalities. Evid. Based Complement. Alternat Med. 2012, 2012, 350125. [Google Scholar] [CrossRef]
- Alshinnawy, A.S.; El-Sayed, W.M.; Sayed, A.A.; Salem, A.M.; Taha, A.M. Telomerase Activator-65 and Pomegranate Peel Improved the Health Status of the Liver in Aged Rats; Multi-Targets Involved. Iran. J. Basic Med. Sci. 2021, 24, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Alshinnawy, A.S.; El-Sayed, W.M.; Taha, A.M.; Sayed, A.A.; Salem, A.M. Astragalus Membranaceus and Punica granatum Alleviate Infertility and Kidney Dysfunction Induced by Aging in Male Rats. Turk Biyol. Derg. [Turk. J. Biol.] 2020, 44, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, M.K.; Choudhury, S.; Borah, A. An in Silico Investigation on the Inhibitory Potential of the Constituents of Pomegranate Juice on Antioxidant Defense Mechanism: Relevance to Neurodegenerative Diseases. IBRO Rep. 2019, 6, 153–159. [Google Scholar] [CrossRef] [PubMed]
Author | Study Model | Aims | Outcome |
---|---|---|---|
Choi et al. [48] | In vitro (PC12 cells) and in vivo (mice) | To study the antioxidant and neuroprotective effects of pomegranate against oxidative stress-induced cytotoxicity. | Pomegranate ethanolic extracts protected PC12 cells from H2O2-induced oxidative stress. Furthermore, in mouse models, pomegranate inhibited neuronal cell death caused by Aβ-induced oxidative stress and Aβ-induced learning and memory deficits. |
Velagapudi et al. [49] | In vitro (SK-N-SH cells) | To evaluate the effects of freeze-dried pomegranate on PGE2 production in IL-1β-stimulated SK-N-SH cells. | There was a dose-dependent reduction in COX-2-dependent PGE2 production and an inhibitory effect on NF-κB transactivation and BACE-1 expression. |
Essa et al. [50] | In vivo (APPsw/Tg2576 mice) | To investigate the beneficial effects of dietary supplements such as pomegranate, figs, or dates on suppressing inflammatory cytokines. | Supplementation significantly reduced levels of inflammatory cytokines (IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, and TNF-α) and the activity of eotaxin, while also delaying the formation of senile plaques. |
Kumar et al. [51] | In vivo (scopolamine treated mice) | To evaluate the effect of ethanolic extract of pomegranate seeds on the cognitive performance of aged and scopolamine-treated young mice. | Chronic administration of Pomegranate and vitamin C significantly reversed age- or scopolamine-induced retention deficits, reduced the level of lipid peroxidation, and increased the level of antioxidant glutathione in brain tissues. |
Subash et al. [52] | In vivo (APPsw/Tg2576 mice) | To evaluate the antioxidant effects of polyphenols on animal models | Supplementation with 4% pomegranate attenuated oxidative damage by reducing LPO and protein carbonyl levels and by restoring the activity of antioxidant enzymes. |
Ahmed et al. [53] | In vivo (R1.40 transgenic mice) | To demonstrate the anti-AD effects of pomegranate extract | The extract did not demonstrated benefits on cognitive performance but demonstrated an anti-amyloidogenic effect. This benefit may be related to effects on the γ-secretase enzyme. |
Braidy et al. [54] | In vivo (APPsw/Tg2576 mice) | To study the effects of dietary supplementation of 4% pomegranate extract on neuroinflammation and synaptic plasticity | Supplementation for 15 months reduced the loss of synaptic structure proteins (PSD-95, Munc18-1, SNAP25, and synaptophysin), the phosphorylation of p-CaMKIIα/CaMKIIα and pCREB/CREB, and neuroinflammatory activity. Furthermore, enhanced autophagy and activation of the mammalian target of rapamycin signaling pathway were observed. |
Morzelle et al. [55] | In vivo (C57Bl/6 mice) | To demonstrate the effects of pomegranate peel extract on spatial memory, neuroplasticity biomarkers, oxidative stress, and inflammation | Consumption of pomegranate reduced amyloid plaque density, increased the expression of the neurotrophin BDNF, and reduced the activity of the enzyme acetylcholinesterase without side effects. |
Almuhayawi et al. [56] | In vivo (AlCl 3-induced AD rat model) | To evaluate the therapeutic and protective effects of pomegranate extract in standard formulation and in nanoparticles | Pomegranate extract has proven effective in preventing oxidative damage and reducing histopathological signs of AD. Extract-loaded nanoparticles demonstrated greater efficacy. |
Khokar et al. [57] | In vitro | To determine the phenolic content of Omani pomegranate peel extracts and study their antioxidant and anticholinesterase activities. | Butanol extract is rich in phenolic compounds and has excellent antioxidant activity, demonstrating anti-AD effects. |
Karagecili et al. [58] | In vitro | To evaluate the antioxidant effects of polyphenols. | The ethanolic extract of pomegranate was found to be rich in phenolic content, exhibiting antioxidant effects and reducing power and the ability to inhibit AChE, α-glycosidase, α-amylase, and hCA II. |
Ali et al. [59] | In vitro (Aβ42-induced N2a/APP cells) | To evaluate the anti-AD effects of pomegranate extracts and which of these is the most active | Among the various compounds, gallagic acid and castalagin markedly reduced the secretion of Aβ peptides, the production of ROS, and the expression levels of BACE1 and APPsβ. |
Rojanathammanee et al. [60] | In vitro (Primary microglia culture) + in vivo (APP/PS1 transgenic mice) | Evaluation of the effects of pomegranate extract supplementation (6.25 mL/L) over three months in attenuating microgliosis. | The treatment improved the mice’s mnemonic functions, reducing the concentration of TNF-α and the transcriptional activity of NFAT. In vitro studies demonstrated that punicalagin and ellagic acid attenuated NFAT activity and decreased TNF-α secretion. |
Kim et al. [62] | In vitro (astrocytes and microglial BV-2 cells) | To investigate the effects of punicalagin on memory deficiency induced by LPS | Punicalagin demonstrated neuroprotective effects by inhibiting LPS-induced expression of iNOS and Cox-2 and the production of ROS, NO, TNF-α, and IL-1β. It also inhibited LPS-induced NF-κB activation and Aβ1–42 generation. |
Clementi et al. [64] | In vitro (human neuroblastoma IMR-32 cells) | To evaluate the effects of resveratrol and punicalagin on the enzymatic activity of methionine sulfoxide reductase A (MsrA) | Pretreatment with resveratrol and punicalagin increased the expression and enzymatic activity of MsrA, resulting in a lowering of the oxidative potential of the cells and a protective effect on the CNS. |
Chen et al. [63] | In vivo (D-gal-induced brain aging mouse model) | To evaluate the neuroprotective effects of punicalagin in animal models | Punicalagin improved learning and memory deficits by reducing neuroinflammation by inhibiting microglial activity. In mouse models, a reduction in MDA and ROS and an inhibition of the NLRP3 inflammasome were observed. |
Yuan et al. [71] | In vitro + in vivo (Caenorhabditis elegans). | To demonstrate which of the main compounds has the characteristics to pass the blood–brain barrier and determine its anti-AD properties | Among the 21 components studied, only urolithins have been shown to have the full characteristics to pass the blood–brain barrier. Urolithins prevented β-amyloid fibrillation in vitro, and methyl-urolithin B demonstrated a protective effect in animal models. |
DaSilva et al. [73] | In vitro (murine BV-2 microglia, human SH-SY5Y neurons) | To evaluate the effects of urolithins on neuroinflammation and search for biomarkers | Urolithins reduce nitric oxide, IL-6, PGE2, and TNF-α levels in microglia. Urolithins also reduce apoptosis and the release of caspase 3/7 and 9 caused by H2O2-induced oxidative stress. |
Author | Study Model | Aims | Outcome |
---|---|---|---|
Braidy et al. [80] | In vitro (human primary neuronal cells) | To evaluate the neuroprotective effects of pomegranate juice extracts against MPTP-induced neurotoxicity. | Pomegranate juice can reverse the effects of MPTP on antioxidant enzyme activities and attenuate neurotoxicity in a dose-dependent manner. The Helow and Malasi varieties have proven superior to the Qusum and Hamadh. |
Tapias et al. [81] | In vivo (rotenone-induced parkinsonism mouse models) | To evaluate the protective effects against PD of pomegranate juice. | Pomegranate juice did not mitigate the disease, but increased nigrostriatal terminal depletion, loss of dopaminergic neurons, inflammatory response, and caspase activation, thus increasing neurodegeneration. |
Małgorzata Kujawska et al. [82] | In vivo (rotenone-induced parkinsonism mouse models) | To evaluate the protective effects against PD of pomegranate juice | Pomegranate juice improved postural stability and neuronal survival and protected against oxidative damage. Furthermore, supplementation reduced α-synuclein aggregation and increased mitochondrial aldehyde dehydrogenase activity, maintaining the antiapoptotic protein Bcl-xL at the control level. |
Małgorzata Kujawska et al. [83] | In vivo (rotenone-induced parkinsonism mouse models) | To study the ability of pomegranate juice to protect against olfactory, motor, and neurochemical alterations in PD. | Pomegranate juice treatment protected against rotenone-induced depletion of dopaminergic neurons in the midbrain, resulting in improved olfactory function and vertical activity. |
Fathy et al. [84] | In vivo (Paraquat-induced parkinsonism mouse models) | To evaluate the protective effects of pomegranate seed extract and juice against PD. | The treatment led to an increased level of tyrosine hydroxylase, dopamine, and its metabolite in the striatum, also improving oxidative stress and significantly inhibiting the expression of the striatal NF-κB gene. A reduction in apoptosis and a decrease in pro-inflammatory cytokines were observed, with a significant increase in IL-10 levels. |
Sarkaki et al. [85] | In vivo (6-OHDA lesioned mice) | To study the effects of ellagic acid on motor disorders, local pallidal EEG, and its frequency band power, and brain antioxidant content. | Ellagic acid improves motor deficits and electrophysiological performance by increasing brain antioxidant content. |
Baluchnejadmojarad et al. [86] | In vivo (6-OHDA lesioned mice) | To study the effects of ellagic acid. | Ellagic acid attenuated rotational distortion, reduced onset latency and total time in the narrow beam task, decreased striatal MDA levels, ROS, and DNA fragmentation, and enhanced antioxidant expression. |
Liu et al. [87] | In vitro (PC12 cells) + In vivo (6-OHDA lesioned mice) | To understand the mechanisms underlying the role of urolithin A in 6-OHDA-induced neurotoxicity. | Urolithin A was effective in inducing protection against 6-OHDA-induced cytotoxicity and apoptosis in cellular models. Furthermore, administration to mouse models improved both motor deficits and nigral-striatal dopaminergic neurotoxicity, while attenuating mitochondrial dysfunction. |
Authors | Sample | Hazardous Factor | Pomegranate Formulation | Outcome | Activity |
---|---|---|---|---|---|
Huang et al. [127] | In vivo (Human keratinocytes) | Stimulation with TNF-α and IFN-γ | Punicalagin isolated from the peel | Suppression of the NF-κB pathway; stimulation of the Nrf2/HO-1 signaling pathway; reduction in IL-8, MCP-1, CCL5, CCL17, and CCL20; downregulation of COX-2 and iNOS activity. | Anti-inflammatory |
Rapa et al. [128] | In vivo (Human keratinocytes) | Stimulation with 5-FU | Juice extract | Reduction in NF-κB pathway activation and the release of TNF-α, IL-6, and IL-1β; stimulation of Nrf2-related enzymes; reduced apoptosis; reduced ROS generation; improved wound repair. | Anti-inflammatory; Antioxidative stress; Pro-healing |
Afaq et al. [129] | In vivo (Human keratinocytes) | UVB | Whole fruit extract | Reduction in NF-κB and MAPK inflammatory pathway activation and the production of IL-1, IL-6, and IL-8. | Anti-inflammatory; photo-aging protection |
Houston et al. [130] | Ex vivo (Full thickness porcine skin) | None | Rind extract (topical) | Downregulation of COX-2. | Anti-inflammatory |
Hamouda et al. [131] | In vivo (Mice) | Phenobarbital and formaldeyde | Seed oil extract (topical) | Downregulation of COX-2. | Anti-inflammatory |
Khan et al. [132] | In vivo (Mice) | UVB | Whole fruit extract (oral) | Downregulation of COX-2, iNOS, and MMP-2, -3, and -9. | Anti-inflammatory; photo-aging protection |
BenSaad et al. [133] | In vivo (Murine macrophages) | LPS | Ellagic acid, gallic acid, and punicalagin | Reduction in NO, PGE-2, and IL-6 production. | Anti-inflammatory |
Bae et al. [134] | In vivo (Human fibroblasts and keratinocytes) + In vivo (mice) | UVB | Ellagic acid (topical in mice) | Reduction in IL-1b and IL-6 and macrophages infiltration in mouse skin sample; reduction in MMP-1 mRNA expression in human fibroblasts and ICAM-1 expression in human keratinocytes. | Anti-inflammatory |
Liu et al. [135] | In vivo (Human keratinocytes) | H2O2 | Fruit extract, punicalagin, ellagic acid, and urolithin A | Reduction in ROS production and H2O2-stimulated caspase-3 activity. | Antioxidative stress |
Seok et al. [136] | In vivo (Human keratinocytes) | PM10 | Punicalagin and (-)-epigallocatechin-3-gallate | Reduction in ROS production and the expression of NOX-1, NOX-2, TNF-α, IL-1β, IL-6, IL-8, and MMP-1. | Antioxidative stress; anti-inflammatory |
Quiles et al. [137] | In vivo (Human fibroblast) | H2O2 | Pomegranate, Centella asiatica, Citrus aurantium var. sinensis, and Herba Cistanche fruits extract | Reduction of ROS production | Antioxidative stress |
Ghimeray et al. [138] | In vivo (21 female patients) + in vivo (spectrophotometric evaluation) | H2O2; O2−; 1,1-diphenyl-2-picrylhydrazyl (in vivo) | Pomegranate, Ginkgo biloba, Ficus carica, and Morus alba fruit extract (2% topical cream in vivo) | High scavenging activities and dose-dependent inhibition of collagenase (in vivo); reduced wrinkle depth (in vivo). | Antioxidative stress; anti-aging |
Chan et al. [139] | In vivo (80 female patients) + in vivo (spectrophotometric evaluation) | 1,1-diphenyl-2-picrylhydrazyl; NO· | Gallic acid-rich fermented extract (oral) | High scavenging activities (in vivo); improvement in moisture, brightness, elasticity, and collagen density (in vivo). | Antioxidative stress; anti-aging |
Abdellatif et al. [140] | In vivo (12 patients) | None | Anthocyanin from fresh arils extract (topical) | Improvements in skin shape, hydration, wrinkle reduction, and firmness | Anti-aging |
Mariné-Casadó et al. [141] | In vivo (Human fibroblast) | UVB | Natural extract | Reduction in ROS levels; increase in pro-collagen type I, total collagen, and hyaluronic acid levels, along with a decrease in MMP-1 levels | Photo-aging protection |
Park et al. [142] | In vivo (Human fibroblast) | UVB | Whole fruit extract | Reduction in MMP-1 expression and increased pro-collagen type I levels | Photo-aging protection |
Abd-Elghany et al. [143] | In vivo (Human fibroblast) | UVA | Ellagic acid | Increased expression of the Co1A1 gene; downregulation of MMP-3. | Photo-aging protection |
Pacheco-Palencia et al. [144] | In vivo (Human fibroblast) | UVA; UVB | Punicalagins-rich extract | Reduced transcription of NF-κB and ROS production; downregulation of caspase-3. | Anti-inflammatory; antioxidative stress; Photo-aging protection |
Zaid et al. [145] | In vivo (Human keratinocytes) | UVB | Polyphenol-rich fruit extract | Reduced upregulation of MMP-1, -2, -7, and -9, and phosphorylation of MAPKs and c-jun | Anti-inflammatory; Photo-aging protection |
Baccarin et al. [146] | In vivo (Human keratinocytes) | UVB | Seed oil nanoemulsion | Reduced cell DNA damage in a dose-dependent manner | Photo-aging protection |
Kang et al. [147] | In vivo + in vivo + ex vivo (mice) | UVB | Juice concentrated powder (oral) | Reduction in skin wrinkles, improvement of skin water contents, collagen type I, and hyaluronan contents (in vivo); reduced IL-1β levels and MPO activity; increased IL-10 levels; reduced skin MMP-1, -9, and -13, and Nox2 mRNA expression (in vivo); dose-dependent decreases in dermis sclerosis and inflammation (ex vivo). | Anti-inflammatory; Photo-aging protection; Anti-aging |
Henning et al. [148] | In vivo (74 female patiens) | UVB | Whole fruit extract and juice extract | No significant changes in the skin microbiota composition; increased of minimum erythema dose | Photo-aging protection |
Murthy et al. [149] | In vivo + ex vivo (mice) | Wound | Peel extract (topical) | Reduction of wound healing (in vivo); increased hydroxyproline content (ex vivo). | Pro-healing |
Hayouni et al. [150] | In vivo (pigs) | Wound | Peel extract (topical) | Increased wound contraction and decreased period of epithelialization, collagen, DNA, and proteins synthesis. | Pro-healing |
Nayak et al. [151] | In vivo + ex vivo (mice) | Wound | Peel extract (topical) | Increased wound contraction, decreased period of epithelialization (in vivo); increased hydroxyproline content (ex vivo). | Pro-healing |
Zekavat et al. [152] | In vivo (mice) | Wound | Peel extract (topical) | Reduced wound healing time. | Pro-healing |
Nasiri et al. [153] | In vivo (mice) | Wound | Flower extract (topical) | Increased wound contraction. | Pro-healing |
Elzayat et al. [154] | In vivo (mice) | Wound | Pomegranate, henna, and myrrh extract (topical) | Increased wound contraction and decreased period of epithelialization. | Pro-healing |
Lukiswanto et al. [155] | Ex vivo (mice) | Wound | Ellagic acid rich-whole fruit extract | Decreased period of epithelialization; increased density of collagen and angiogenesis; reduced number of inflammatory cells (PMNs) | Pro-healing; anti-inflammatory |
Yuniarti et al. [156] | Ex vivo (mice) | Wound | Ellagic acid rich-whole fruit extract | Increased density of collagen and angiogenesis; reduced number of inflammatory cells (PMNs). | Pro-healing; anti-inflammatory |
Aslam et al. [157] | In vivo (Human keratinocytes and fibroblasts) | None | Peel, juice, and seed extract | Stimulation of keratinocytes proliferation (seed oil); increased type I procollagen synthesis and inhibition of MMP-1 production (peel extract). | Pro-healing; anti-inflammatory |
Zhang et al. [158] | In vivo + ex vivo (pigs) | Wound | Peel extract | Reduction in epithelialization and fur growing time (in vivo); early VEGF-A and TGF-β1 mRNA expression. | Pro-healing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordiano, R.; Gammeri, L.; Di Salvo, E.; Gangemi, S.; Minciullo, P.L. Pomegranate (Punica granatum L.) Extract Effects on Inflammaging. Molecules 2024, 29, 4174. https://doi.org/10.3390/molecules29174174
Cordiano R, Gammeri L, Di Salvo E, Gangemi S, Minciullo PL. Pomegranate (Punica granatum L.) Extract Effects on Inflammaging. Molecules. 2024; 29(17):4174. https://doi.org/10.3390/molecules29174174
Chicago/Turabian StyleCordiano, Raffaele, Luca Gammeri, Eleonora Di Salvo, Sebastiano Gangemi, and Paola Lucia Minciullo. 2024. "Pomegranate (Punica granatum L.) Extract Effects on Inflammaging" Molecules 29, no. 17: 4174. https://doi.org/10.3390/molecules29174174
APA StyleCordiano, R., Gammeri, L., Di Salvo, E., Gangemi, S., & Minciullo, P. L. (2024). Pomegranate (Punica granatum L.) Extract Effects on Inflammaging. Molecules, 29(17), 4174. https://doi.org/10.3390/molecules29174174