Towards High-Performance Inverted Mesoporous Perovskite Solar Cell by Using Bathocuproine (BCP)
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kannan, N.; Vakeesan, D. Solar energy for future world—A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Jia, Q.; Ball, R.J.; Zhu, Y.; Xia, Y. Emerging applications of metal-organic frameworks and derivatives in solar cells: Recent advances and challenges. Mater. Sci. Eng. R Rep. 2023, 152, 100714. [Google Scholar] [CrossRef]
- Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Ehrler, B.; Alarcón-Lladó, E.; Tabernig, S.W.; Veeken, T.; Garnett, E.; Polman, A. Photovoltaics Reaching for the Shockley–Queisser Limit. ACS Energy Lett. 2020, 5, 3029–3033. [Google Scholar] [CrossRef]
- Xu, Y.; Xiong, S.; Jiang, S.; Yang, J.; Li, D.; Wu, H.; You, X.; Zhang, Y.; Ma, Z.; Xu, J.; et al. Synchronous modulation of defects and buried interfaces for highly efficient inverted perovskite solar cells. Adv. Energy Mater. 2023, 13, 2203505. [Google Scholar] [CrossRef]
- Chen, H.; Liu, C.; Xu, J.; Maxwell, A.; Zhou, W.; Yang, Y.; Zhou, Q.; Bati, A.S.; Wan, H.; Wang, Z.; et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 2024, 384, 189–193. [Google Scholar] [CrossRef]
- Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J.T.-W.; et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250. [Google Scholar] [CrossRef]
- Tan, S.; Huang, T.; Yavuz, I.; Wang, R.; Yoon, T.W.; Xu, M.; Xing, Q.; Park, K.; Lee, D.-K.; Chen, C.-H. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 2022, 605, 268–273. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Zhang, P.; Liu, D.; Zhang, T.; Ji, L.; Gu, X.; Chen, Z.D.; Li, S. Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy 2017, 39, 616–625. [Google Scholar] [CrossRef]
- Yoon, S.; Ha, M.-W.; Kang, D.-W. PCBM-blended chlorobenzene hybrid anti-solvent engineering for efficient planar perovskite solar cells. J. Mater. Chem. C 2017, 5, 10143–10151. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Duong, T.; Yin, Y.; Pham, H.T.; Walter, D.; Peng, J.; Wu, Y.; Li, L.; Shen, H.; Wu, N. Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells. Adv. Funct. Mater. 2020, 30, 1907962. [Google Scholar] [CrossRef]
- Zuo, X.; Kim, B.; Liu, B.; He, D.; Bai, L.; Wang, W.; Xu, C.; Song, Q.; Jia, C.; Zang, Z.; et al. Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells. Chem. Eng. J. 2022, 431, 133209. [Google Scholar] [CrossRef]
- Yang, X.; Luo, D.; Xiang, Y.; Zhao, L.; Anaya, M.; Shen, Y.; Wu, J.; Yang, W.; Chiang, Y.H.; Tu, Y.; et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 2021, 33, 2006435. [Google Scholar] [CrossRef]
- Luo, C.; Zheng, G.; Gao, F.; Wang, X.; Zhan, C.; Gao, X.; Zhao, Q. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photonics 2023, 17, 856–864. [Google Scholar] [CrossRef]
- Zhang, B.; Oh, J.; Sun, Z.; Cho, Y.; Jeong, S.; Chen, X.; Sun, K.; Li, F.; Yang, C.; Chen, S. Buried guanidinium passivator with favorable binding energy for perovskite solar cells. ACS Energy Lett. 2023, 8, 1848–1856. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Q.; Liu, G.; Chen, Y.; Guo, Z.; Li, N.; Niu, X.; Qiu, Z.; Zhou, W.; Huang, Z.; et al. Improved fatigue behaviour of perovskite solar cells with an interfacial starch–polyiodide buffer layer. Nat. Photonics 2023, 17, 1066–1073. [Google Scholar] [CrossRef]
- Chen, S.; Dai, X.; Xu, S.; Jiao, H.; Zhao, L.; Huang, J. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373, 902–907. [Google Scholar] [CrossRef]
- Fei, C.; Li, N.; Wang, M.; Wang, X.; Gu, H.; Chen, B.; Zhang, Z.; Ni, Z.; Jiao, H.; Xu, W.; et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 2023, 380, 823–829. [Google Scholar] [CrossRef]
- Li, W.; Zheng, H.; Ye, C.; Wu, T.; Fan, M.; Feng, J. Effect of the intermolecular hydrogen bond between carbazole and N, N-dimethylformamide/isopropanolamine on the solubility of carbazole. Energy Fuels 2012, 26, 6316–6322. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Stoumpos, C.C.; Ren, J.; Hou, Q.; Li, X.; Li, J.; He, H.; Lin, H.; Wang, J.; et al. Thiazole-induced surface passivation and recrystallization of CH3NH3PbI3 films for perovskite solar cells with ultrahigh fill factors. ACS Appl. Mater. Interfaces 2018, 10, 42436–42443. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wei, T.; Shai, X.; Song, Q.; Zeng, C.; He, D.; Zhang, H.; Chen, J. Improving Photovoltaic Performance and Stability of Perovskite Solar Cells via Molecular Bridge Strategy. Adv. Opt. Mater. 2023, 11, 2300684. [Google Scholar] [CrossRef]
- Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852. [Google Scholar] [CrossRef]
- Peng, W.; Mao, K.; Cai, F.; Meng, H.; Zhu, Z.; Li, T.; Yuan, S.; Xu, Z.; Feng, X.; Xu, J.; et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 2023, 379, 683–690. [Google Scholar] [CrossRef]
- Jiang, Q.; Tong, J.; Xian, Y.; Kerner, R.A.; Dunfield, S.P.; Xiao, C.; Scheidt, R.A.; Kuciauskas, D.; Wang, X.; Hautzinger, M.P.; et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 2022, 611, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-M.; Hua, Y.-I.; Wang, Z.-Q. Study on chromaticity improvement of white OLED with BCP hole-blocking layer. J. Optoelectron. Laser 2006, 17, 1177. [Google Scholar]
- Kim, D.-E.; Kim, W.-S.; Kim, B.-S.; Lee, B.-J.; Kwon, Y.-S. Characteristics of white OLED using Zn (phen) as a yellowish green emitting layer and BCP as a hole blocking layer. Colloids Surf. A Physicochem. Eng. Asp. 2008, 313, 320–323. [Google Scholar] [CrossRef]
- Snaith, H.J.; Abate, A.; Ball, J.M.; Eperon, G.E.; Leijtens, T.; Noel, N.K.; Stranks, S.D.; Wang, J.T.-W.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. The J. Phys. Chem. Lett. 2014, 5, 1511–1515. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.-X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef]
- Im, S.; Heo, J.; Han, H.; Kim, D.; Ahn, T. 18.1% hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells. Energy Environ. Sci. 2015, 8, 1602–1608. [Google Scholar]
- Yu, B.; Tang, F.; Yang, Y.; Huang, J.; Wu, S.; Lu, F.; Duan, W.; Lambertz, A.; Ding, K.; Mai, Y. Impermeable Atomic Layer Deposition for Sputtering Buffer Layer in Efficient Semi-Transparent and Tandem Solar Cells via Activating Unreactive Substrate. Adv. Mater. 2023, 35, 2202447. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Jiao, N.; Guo, Y. Trap-state passivation by nonvolatile small molecules with carboxylic acid groups for efficient planar perovskite solar cells. J. Phys. Chem. C 2019, 123, 14223–14228. [Google Scholar] [CrossRef]
- Yi, J.; Zhuang, J.; Ma, Z.; Guo, Z.; Zhou, W.; Zhao, S.; Zhang, H.; Luo, X.; Li, H. Regulated perovskite crystallinity via green mixed antisolvent for efficient perovskite solar cells. Org. Electron. 2019, 69, 69–76. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, S.; Lei, L.; Cao, Q.; Shao, J.; Zhang, S.; Liu, Y. Ultrasmooth perovskite film via mixed anti-solvent strategy with improved efficiency. ACS Appl. Mater. Interfaces 2017, 9, 3667–3676. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Xu, W.; Tang, F.; Yu, B.; Zhang, C.; Ma, N.; Lu, F.; Yang, Y.; Shen, K.; Duan, W.; et al. Minimizing the Ohmic Resistance of Wide-Bandgap Perovskite for Semitransparent and Tandem Solar Cells. Solar RRL 2023, 7, 2200877. [Google Scholar] [CrossRef]
- Liu, C.; Huang, L.; Zhou, X.; Wang, X.; Yao, J.; Liu, Z.; Liu, S.F.; Ma, W.; Xu, B. An in-situ defect passivation through a green anti-solvent approach for high-efficiency and stable perovskite solar cells. Sci. Bull. 2021, 66, 1419–1428. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Liu, X.; Tang, D.; Li, X.; Yuan, X. Ethyl acetate green antisolvent process for high-performance planar low-temperature SnO2-based perovskite solar cells made in ambient air. Chem. Eng. J. 2020, 379, 122298. [Google Scholar] [CrossRef]
- Wang, M.; Fu, Q.; Yan, L.; Guo, P.; Zhou, L.; Wang, G.; Zheng, Z.; Luo, W. Improving the performance and reproducibility of inverted planar perovskite solar cells using tetraethyl orthosilicate as the antisolvent. ACS Appl. Mater. Interfaces 2019, 11, 3909–3916. [Google Scholar] [CrossRef]
- Lee, H.B.; Jeon, M.K.; Kumar, N.; Tyagi, B.; Kang, J.W. Boosting the efficiency of SnO2-triple cation perovskite system beyond 20% using nonhalogenated antisolvent. Adv. Funct. Mater. 2019, 29, 1903213. [Google Scholar] [CrossRef]
BCP Doping Ration | JSC (mA cm−2) | VOC (V) | FF | PCE (%) | |
---|---|---|---|---|---|
0 | Average | 21.22 ± 0.10 | 1.14 ± 0.00 | 0.74 ± 0.00 | 16.93 ± 0.48 |
Best cell | 21.86 | 1.15 | 0.755 | 18.03 | |
0.75% | Average | 21.41 ± 0.10 | 1.14 ± 0.00 | 0.74 ± 0.00 | 17.34 ± 0.47 |
Best cell | 21.94 | 1.16 | 0.758 | 18.85 | |
1% | Average | 21.57 ± 0.19 | 1.15 ± 0.00 | 0.75 ± 0.00 | 17.96 ± 0.54 |
Best cell | 22.27 | 1.17 | 0.763 | 19.61 | |
1.25% | Average | 22.06 ± 0.11 | 1.16 ± 0.00 | 0.76 ± 0.00 | 19.33 ± 0.48 |
Best cell | 22.72 | 1.18 | 0.80 | 20.78 | |
1.5% | Average | 21.46 ± 0.06 | 1.14 ± 0.00 | 0.73 ± 0.00 | 17.82 ± 0.16 |
Best cell | 21.89 | 1.16 | 0.75 | 18.61 | |
1.75% | Average | 21.35 ± 0.09 | 1.14 ± 0.00 | 0.70 ± 0.00 | 16.63 ± 0.43 |
Best cell | 21.77 | 1.16 | 0.74 | 17.88 |
Sample | Scan Direction | JSC (mA cm−2) | VOC (V) | FF | PCE (%) | Hysteresis Index (%) |
---|---|---|---|---|---|---|
With 1.25% BCP | Reverse | 22.23 | 1.17 | 0.80 | 20.78 | 1.6 |
Forward | 22.30 | 1.17 | 0.78 | 20.45 | ||
Control | Reverse | 20.80 | 1.12 | 0.77 | 17.57 | 5.5 |
Forward | 21.03 | 1.11 | 0.73 | 16.61 |
Sample | A1 | τ1 (ns) | A2 | τ2 (ns) | τave (ns) |
---|---|---|---|---|---|
With 1.25% BCP | 1.9 | 52.9 | 0.2 | 367.8 | 178 |
Control | 3.5 | 29.1 | 0.1 | 257.2 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Lu, F.; Ai, X.; Lei, J.; Bai, Y.; Wei, Z.; Chen, Z. Towards High-Performance Inverted Mesoporous Perovskite Solar Cell by Using Bathocuproine (BCP). Molecules 2024, 29, 4009. https://doi.org/10.3390/molecules29174009
Wei Y, Lu F, Ai X, Lei J, Bai Y, Wei Z, Chen Z. Towards High-Performance Inverted Mesoporous Perovskite Solar Cell by Using Bathocuproine (BCP). Molecules. 2024; 29(17):4009. https://doi.org/10.3390/molecules29174009
Chicago/Turabian StyleWei, Yongjun, Feiping Lu, Xinqi Ai, Ju Lei, Yong Bai, Zhiang Wei, and Ziyin Chen. 2024. "Towards High-Performance Inverted Mesoporous Perovskite Solar Cell by Using Bathocuproine (BCP)" Molecules 29, no. 17: 4009. https://doi.org/10.3390/molecules29174009
APA StyleWei, Y., Lu, F., Ai, X., Lei, J., Bai, Y., Wei, Z., & Chen, Z. (2024). Towards High-Performance Inverted Mesoporous Perovskite Solar Cell by Using Bathocuproine (BCP). Molecules, 29(17), 4009. https://doi.org/10.3390/molecules29174009