Cytotoxic Activity of Lepidium virginicum L. Methanolic Extract on Human Colorectal Cancer Cells, Caco-2, through p53-Mediated Apoptosis
Abstract
:1. Introduction
2. Results
2.1. Liquid Chromatography-Mass Spectrometry Analysis of L. virginicum
2.2. The Methanolic Extract of L. virginicum Significantly Reduced the Cellular Metabolic Activity of Caco-2 but Not of Detroit 548 Cells
2.3. ELv Increased Lactate Dehydrogenase (LDH) Release in Caco-2 and Detroit 548 Cells after 48 h of Incubation with the Highest Concentration Tested
2.4. ELv-Induced Caco-2 Cell Death via Apoptosis
2.5. Real-Time PCR Analysis of Expression of Genes That Regulate Apoptosis
3. Discussion
4. Materials and Methods
4.1. Collection of Plant Material
4.2. Sample Preparation for Phytochemical Analysis and LC-MS/MS Conditions
4.3. Preparation of ELv for Biological Assay
4.4. Evaluation of Metabolic Activity by MTT Assay
4.5. Lactate Dehydrogenase (LDH) Release Assay
4.6. DNA Fragmentation Analysis
4.7. RNA Isolation and Real-Time PCR
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ciardiello, F.; Ciardiello, D.; Martini, G.; Napolitano, S.; Tabernero, J.; Cervantes, A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J. Clin. 2022, 72, 372–401. [Google Scholar] [CrossRef] [PubMed]
- Riedesser, J.E.; Ebert, M.P.; Betge, J. Precision Medicine for Metastatic Colorectal Cancer in Clinical Practice. Ther. Adv. Med. Oncol. 2022, 14, 17588359211072703. [Google Scholar] [CrossRef] [PubMed]
- Modest, D.P.; Pant, S.; Sartore-Bianchi, A. Treatment sequencing in metastatic colorectal cancer. Eur. J. Cancer 2019, 109, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Abir, M.H.; Siddiquee, M.F.; Ahmed, H.; Rahman, N.; Nainu, F.; Wahyudin, E.; et al. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol. 2022, 12, 891652. [Google Scholar] [CrossRef] [PubMed]
- Ocran Mattila, P.; Ahmad, R.; Hasan, S.S.; Babar, Z.U. Availability, affordability, access, and pricing of anti-cancer medicines in low- and middle-income countries: A systematic review of literature. Front. Public Health 2021, 9, 628744. [Google Scholar] [CrossRef] [PubMed]
- Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-derived anti-cancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 2021, 26, 1109. [Google Scholar] [CrossRef] [PubMed]
- Peña, M.; Guzmán, A.; Martínez, R.; Mesas, C.; Prados, J.; Porres, J.M.; Melguizo, C. Preventive effects of Brassicaceae family for colon cancer prevention: A focus on in vitro studies. Biomed. Pharmacother. 2022, 151, 113145. [Google Scholar] [CrossRef]
- Ryan, G. Medical ethnobiology of the highland Maya of Chiapas, Mexico: The gastrointestinal diseases. Am. J. Hum. Biol. 1998, 10, 271–273. [Google Scholar] [CrossRef]
- Calzada, F.; Barbosa, E.; Cedillo-Rivera, R. Antiamoebic activity of benzyl glucosinolate from Lepidium virginicum. Phytother. Res. 2003, 17, 618–619. [Google Scholar] [CrossRef]
- Osuna, L.; Tapia-Pérez, M.E.; Figueroa, O.; Jiménez-Ferrer, E.; Garduño-Ramírez, M.L.; González-Garza, M.T.; Carranza-Rosales, P.; Cruz-Vega, D.E. Micropropagation of Lepidium virginicum (Brassicaceae), a plant with antiprotozoal activity. In Vitro Cell. Dev. Biol. -Plant 2006, 42, 596–600. [Google Scholar] [CrossRef]
- Pacheco-Hernández, Y.; Santamaría-Juárez, J.D.; Hernández-Silva, N.; Cruz-Durán, R.; Mosso-González, C.; Villa-Ruano, N. Essential oil of Lepidium virginicum: Protective activity on anthracnose disease and preservation effect on the nutraceutical content of tamarillo fruit (Solanum betaceum). Chem. Biodivers. 2021, 18, e2000941. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.H.; Shin, D.Y.; Park, C.; Lee, Y.T.; Moon, S.G.; Choi, Y.H. Induction of apoptosis in human colon carcinoma HCT116 cells using a water extract of Lepidium virginicum L. J. Korean Soc. Food Sci. Nutr. 2011, 40, 649–659. [Google Scholar] [CrossRef]
- Cruz-Muñoz, J.R.; Barrios-García, T.; Valdez-Morales, E.E.; Durán-Vazquez, M.F.; Méndez-Rodríguez, K.B.; Barajas-Espinosa, A.; Ochoa-Cortes, F.; Martínez-Saldaña, M.C.; Gómez-Aguirre, Y.A.; Alba, R.G. Ethanolic extract from Lepidium virginicum L. ameliorates DNBS-induced colitis in rats. J. Ethnopharmacol. 2022, 289, 115056. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Martín Gordo, D.A. Los compuestos fenólicos, un acercamiento a su biosíntesis, síntesis y actividad biológica. RIAA 2018, 9, 81–104. [Google Scholar] [CrossRef]
- Yábar, E.; Chirinos, R.; Campos, D. Compuestos fenólicos y capacidad antioxidante en tres ecotipos de Maca (Lepidium meyenii Walp.) durante la pre-cosecha, cosecha y secado natural post-cosecha. Sci. Agropecu. 2019, 10, 85–97. [Google Scholar] [CrossRef]
- Ohishi, T.; Kaneko, M.K.; Yoshida, Y.; Takashima, A.; Kato, Y.; Kawada, M. Current targeted therapy for metastatic colorectal cancer. Int. J. Mol. Sci. 2023, 24, 1702. [Google Scholar] [CrossRef] [PubMed]
- Rumpold, H.; Niedersüß-Beke, D.; Heiler, C.; Falch, D.; Wundsam, H.V.; Metz-Gercek, S.; Piringer, G.; Thaler, J. Prediction of mortality in metastatic colorectal cancer in a real-life population: A multicenter explorative analysis. BMC Cancer 2020, 20, 1149. [Google Scholar] [CrossRef]
- Shen, L.; Li, Q.; Wang, W.; Zhu, L.; Zhao, Q.; Nie, Y.; Zhu, B.; Ma, D.; Lin, X.; Cai, X.; et al. Treatment patterns and direct medical costs of metastatic colorectal cancer patients: A retrospective study of electronic medical records from urban China. J. Med. Econ. 2020, 23, 456–463. [Google Scholar] [CrossRef]
- Sougklakos, I.; Athanasiadis, E.; Boukovinas, I.; Karamouzis, M.; Koutras, A.; Papakotoulas, P.; Latsou, D.; Hatzikou, M.; Stamuli, E.; Balasopoulos, A.; et al. Treatment pathways and associated costs of metastatic colorectal cancer in Greece. cost effectiveness and resource allocation. Cost Eff. Resour. Alloc. 2020, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anti-cancer drugs: Indexing natural products for their anti-cancer bioactivity. PLoS ONE 2017, 12, e0187925. [Google Scholar] [CrossRef] [PubMed]
- Çetinkaya, S.; Çınar Ayan, İ.; Süntar, İ.; Dursun, H.G. The phytochemical profile and biological activity of liquidambar orientalis Mill. var. orientalis via NF-κB and Apoptotic Pathways in Human Colorectal Cancer. Nutr. Cancer 2022, 74, 1457–1473. [Google Scholar] [CrossRef] [PubMed]
- Islam, B.U.; Suhail, M.; Khan, M.K.; Zughaibi, T.A.; Alserihi, R.F.; Zaidi, S.K.; Tabrez, S. Polyphenols as anti-cancer agents: Toxicological concern to healthy cells. Phytother. Res. 2021, 35, 6063–6079. [Google Scholar] [CrossRef] [PubMed]
- Almatroodi, S.A.; Alsahli, M.A.; Almatroudi, A.; Verma, A.K.; Aloliqi, A.; Allemailem, K.S.; Khan, A.A.; Rahmani, A.H. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules 2021, 26, 1315. [Google Scholar] [CrossRef]
- Shabir, I.; Kumar Pandey, V.; Shams, R.; Dar, A.H.; Dash, K.K.; Khan, S.A.; Bashir, I.; Jeevarathinam, G.; Rusu, A.V.; Esatbeyoglu, T.; et al. Promising bioactive properties of quercetin for potential food applications and health benefits: A review. Front. Nutr. 2022, 9, 999752. [Google Scholar] [CrossRef] [PubMed]
- Nile, A.; Nile, S.H.; Shin, J.; Park, G.; Oh, J.W. Quercetin-3-glucoside extracted from apple pomace induces cell cycle arrest and apoptosis by increasing intracellular ROS levels. Int. J. Mol. Sci. 2021, 22, 10749. [Google Scholar] [CrossRef] [PubMed]
- Ackland, M.L.; van de Waarsenburg, S.; Jones, R. Synergistic antiproliferative action of the flavonols quercetin and kaempferol in cultured human cancer cell lines. In Vivo 2005, 19, 69–76. [Google Scholar] [PubMed]
- Zhao, Z.; Jin, G.; Ge, Y.; Guo, Z. Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology 2019, 27, 1021–1036. [Google Scholar] [CrossRef]
- Arul, D.; Subramanian, P. Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol. Oncol. Res. 2013, 19, 763–770. [Google Scholar] [CrossRef]
- Lim, W.; Park, S.; Bazer, F.W.; Song, G. Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J. Cell. Biochem. 2017, 118, 1118–1131. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Jin, C.Y.; Lee, B.K.; Kim, G.Y.; Choi, Y.H.; Jeong, Y.K. Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. Food Chem. Toxicol. 2008, 46, 3684–3690. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.D.S.; Jordão, N.A.; Da Costa Pereira Soares, N.; DeMesquita, J.F.; Monteiro, M.; Teodoro, A.J. Pharmacokinetic, antiproliferative and apoptotic effects of phenolic acids in human colon adenocarcinoma cells using in vitro and in silico approaches. Molecules 2018, 23, 2569. [Google Scholar] [CrossRef] [PubMed]
- Shrihastini, V.; Muthuramalingam, P.; Adarshan, S.; Sujitha, M.; Chen, J.T.; Shin, H.; Ramesh, M. Plant derived bioactive compounds, their anti-cancer effects and in silico approaches as an alternative target treatment strategy for breast cancer: An updated overview. Cancers 2021, 13, 6222. [Google Scholar] [CrossRef] [PubMed]
- Kar, N.; Gupta, D.; Bellare, J. Ethanol affects fibroblast behavior differentially at low and high doses: A comprehensive, dose-response evaluation. Toxicol. Rep. 2021, 8, 1054–1066. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, A.; Yildiz, M.; Senol, F.S.; Şimay, Y.D.; Ibişoglu, B.; Gokbulut, A.; Orhan, I.E.; Ark, M. Promising anticancer activity of Cyclotrichium niveum L. extracts through induction of both apoptosis and necrosis. Food Chem. Toxicol. 2017, 109 Pt 2, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Laila, F.; Fardiaz, D.; Yuliana, N.D.; Damanik, M.R.M.; Nur Annisa Dewi, F. Methanol extract of Coleus amboinicus (Lour) exhibited antiproliferative activity and induced programmed cell death in colon cancer cell WiDr. Int. J. Food Sci. 2020, 2020, 9068326. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.L.; Strandberg, K.R.; Croley, C.R.; Fraser, S.E.; Nagulapalli Venkata, K.C.; Fimognari, C.; Sethi, G.; Bishayee, A. Pomegranate bioactive constituents target multiple oncogenic and oncosuppressive signaling for cancer prevention and intervention. Semin. Cancer Biol. 2021, 73, 265–293. [Google Scholar] [CrossRef] [PubMed]
- Srivastavaa, N.; Saxena, A.K. Caspase-3 activators as anti-cancer agents. Curr. Protein Pept. Sci. 2023, 24, 783–804. [Google Scholar] [CrossRef]
- Kashaw, S.K.; Agarwal, S.; Mishra, M.; Sau, S.; Iyer, A.K. Molecular docking analysis of caspase-3 activators as potential anti-cancer agents. Curr. Comput. Aided Drug Des. 2019, 15, 55–66. [Google Scholar] [CrossRef]
- Ozaki, T.; Nakagawara, A. Role of p53 in cell death and human cancers. Cancers 2011, 3, 994–1013. [Google Scholar] [CrossRef] [PubMed]
- Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018, 25, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Zhou, J.; Chen, Z.R.; Chng, W.J. P53 mutations in colorectal cancer—Molecular pathogenesis and pharmacological reactivation. World J. Gastroenterol. 2015, 21, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Chaudhry, G.E. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 2019, 9, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Moldoveanu, T. Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. BioEssays 2023, 45, e2200221. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Milner, J. Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev. 2003, 17, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.G.; Abu-Serie, M.M.; Abd El-Aziz, N.M.; El-Sohaimy, S.A. Nutritional, phytochemical, and in vitro anti-cancer potential of sugar apple (Annona squamosa) fruits. Sci. Rep. 2021, 11, 6224. [Google Scholar] [CrossRef] [PubMed]
- Vu, D.C.; Alvarez, S. Phenolic, carotenoid and saccharide compositions of vietnamese Camellia sinensis teas and herbal teas. Molecules 2021, 26, 6496. [Google Scholar] [CrossRef]
- Borner, M.M.; Schneider, E.; Pirnia, F.; Sartor, O.; Trepel, J.B.; Myers, C.E. The detergent Triton X-100 induces a death pattern in human carcinoma cell lines that resembles cytotoxic lymphocyte-induced apoptosis. FEBS Lett. 1994, 353, 129–132. [Google Scholar] [CrossRef]
Flavonoids | Concentration (ng/g) |
---|---|
Quercetin-3-galactoside | 1965.71 |
Quercetin-3-glucoside | 379.48 |
Kaempferol | 86.22 |
Quercetin | 52.31 |
Naringenin + Naringenin chalcone | 4.93 |
Phenolic Acids | Concentration (ng/g) |
---|---|
Cinnamic acid | 3466.98 |
p-Coumaric acid | 2299.60 |
Ferulic acid | 1215.49 |
Vanillic acid | 941.68 |
Caffeic acid | 629.79 |
Chlorogenic acid | 297.63 |
Syringic acid | 292.42 |
Gallic acid | 6.37 |
Gene Accession Number | Sequence (5′-3′) | bp | Annealing Tm (°C) |
---|---|---|---|
Caspase 3 (NM_032991) | Fw: CAATGGACTCTGGATATCC Rv: GCTGCATCGACATCTGTAC | 139 | 55 |
Bcl-2 (NM_000633.3) | Fw: GACTGAGTACCTGAACCGGC Rv: GCAGAGTCTTCAGAGACAGC | 131 | 55 |
p53 (NM_001407269.1) | Fw: CGACATAGTGTGGTGGTGCC Rv: CCATGCAGGAACTGTTACAC | 94 | 55 |
GAPDH (NM 001289726.1) | Fw: AGTCTACTGGCGTCTTCACC Rv: CCACGATGCCAAAGTTGTCA | 225 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallegos-Saucedo, R.; Barrios-García, T.; Valdez-Morales, E.E.; Cabañas-García, E.; Barajas-Espinosa, A.; Gómez-Aguirre, Y.A.; Guerrero-Alba, R. Cytotoxic Activity of Lepidium virginicum L. Methanolic Extract on Human Colorectal Cancer Cells, Caco-2, through p53-Mediated Apoptosis. Molecules 2024, 29, 3920. https://doi.org/10.3390/molecules29163920
Gallegos-Saucedo R, Barrios-García T, Valdez-Morales EE, Cabañas-García E, Barajas-Espinosa A, Gómez-Aguirre YA, Guerrero-Alba R. Cytotoxic Activity of Lepidium virginicum L. Methanolic Extract on Human Colorectal Cancer Cells, Caco-2, through p53-Mediated Apoptosis. Molecules. 2024; 29(16):3920. https://doi.org/10.3390/molecules29163920
Chicago/Turabian StyleGallegos-Saucedo, Renata, Tonatiuh Barrios-García, Eduardo E. Valdez-Morales, Emmanuel Cabañas-García, Alma Barajas-Espinosa, Yenny Adriana Gómez-Aguirre, and Raquel Guerrero-Alba. 2024. "Cytotoxic Activity of Lepidium virginicum L. Methanolic Extract on Human Colorectal Cancer Cells, Caco-2, through p53-Mediated Apoptosis" Molecules 29, no. 16: 3920. https://doi.org/10.3390/molecules29163920
APA StyleGallegos-Saucedo, R., Barrios-García, T., Valdez-Morales, E. E., Cabañas-García, E., Barajas-Espinosa, A., Gómez-Aguirre, Y. A., & Guerrero-Alba, R. (2024). Cytotoxic Activity of Lepidium virginicum L. Methanolic Extract on Human Colorectal Cancer Cells, Caco-2, through p53-Mediated Apoptosis. Molecules, 29(16), 3920. https://doi.org/10.3390/molecules29163920