Gold Nanoparticle Mesoporous Carbon Composite as Catalyst for Hydrogen Evolution Reaction
Abstract
:1. Introduction
2. Results/Discussions
2.1. Catalyst Characterization
2.2. Catalytic Tests
2.3. Catalytic Reusability Tests
3. Experimental Section
3.1. Synthesis
3.2. Characterization
3.3. Catalytic Tests
3.4. Catalyst Reusability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J.; et al. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Yu, X.; Li, G.; Du, Y.; Guo, Z.; Shang, Z.; He, F.; Shen, Q.; Li, D.; Li, Y.A. comparative study on effects of homogeneous or stratified hydrogen on combustion and emissions of a gasoline/hydrogen SI engine. Int. J. Hydrog. Energy 2019, 44, 25974–25984. [Google Scholar] [CrossRef]
- Schlesinger, H.I.; Brown, H.C.; Finholt, A.E.; Gilbreath, J.R.; Hoekstra, H.R.; Hyde, E.K. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J. Am. Chem. Soc. 1953, 75, 215–219. [Google Scholar] [CrossRef]
- Quach, Q.; Biehler, E.; Elzamzami, A.; Huff, C.; Long, J.M.; Abdel-Fattah, T.M. Catalytic activity of beta-cyclodextrin-gold nanoparticles network in hydrogen evolution reaction. Catalysts 2021, 11, 118. [Google Scholar] [CrossRef]
- Huff, C.; Dushatinski, T.; Barzanji, A.; Abdel-Fattah, N.; Barzanji, K.; Abdel-Fattah, T.M. Pretreatment of gold nanoparticle multi-walled carbon Nanotube Composites for Catalytic Activity toward Hydrogen Generation Reaction. ECS J. Solid State Sci. Technol. 2017, 6, M69. [Google Scholar] [CrossRef]
- Datta, K.K.R.; Reddy, B.V.S.; Ariga, K.; Vinu, A. Gold Nanoparticcles Embedded in a Mesoporous Carbon Nitride Stabilizer for Highly Efficent Three-Component Coupling Reaction. Angew. Chem. 2010, 122, 6097–6101. [Google Scholar] [CrossRef]
- Gan, X.; Liu, T.; Zhong, J.; Li, G. Effect of Silver Nanoparticles on Electron Transfer Reactivity and the Catalytic Activity of Myoglobin. ChemBioChem 2004, 5, 1686–1691. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wang, D.; Zhang, J.; Li, Y. Shape-Dependent Catalytic Activity of Silver Nanoparticles for the Oxidation of Styrene. Chem. Asian J. 2006, 1, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Maillard, F.; Schreier, S.; Hanzlik, M.; Savinova, E.R.; Weinkauf, S.; Stimming, U. Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 2005, 7, 385–393. [Google Scholar] [CrossRef]
- Comotti, M.; Pina, C.D.; Matarrese, R.; Rossi, M. The Catalytic Activity of “Naked” Gold Particles. Angew. Chem. Int. Ed. 2004, 43, 5812–5815. [Google Scholar] [CrossRef]
- Osborne, J.; Horten, M.R.; Abdel-Fattah, T.M. Gold Nanoparticles supported over low-cost supports for hydrogen generation from a hydrogen feedstock material. ECS J. Solid State Sci. Technol. 2020, 9, 071004. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, Z.; Mokaya, R. Simultaneous Control of Morphology and Porosity in Nanoporous Carbon: Graphitic Mesoporous Carbon Nanorods and Nanotubules with Tunable Pore size. Chem. Mater. 2005, 18, 140–148. [Google Scholar] [CrossRef]
- Horváth, E.; Puskás, R.; Rémiás, R.; Mohl, M.; Kukovecz, Á.; Kónya, Z.; Kiriesi, I. A Novel Catalyst Type Containing Noble Metal Nanoparticles Supported on Mesoporous Carbon: Synthesis, Characterization and Catalytic properties. Top Catal. 2009, 52, 1242–1250. [Google Scholar] [CrossRef]
- McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology, 2nd ed.; (the “Gold Book”); IUPAC: Malden, MA, USA, 1997. [Google Scholar]
- Liang, C.; Li, Z.; Dai, S. Mesoporous Carbon Materials: Synthesis and Modification. Angew. Chem. Int. 2008, 47, 3696–3717. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Mokaya, R. Generalized and Facile Synthesis Approach to N-Doped Highly Graphitic Mesoporous Carbon Materials. Chem. Mater. 2005, 17, 1553–1560. [Google Scholar] [CrossRef]
- Su, F.; Zeng, J.; Bao, X.; Yu, Y.; Lee, J.Y.; Zhao, X.S. Preparation and Characterization of Highly Ordered Graphitic Mesoporous Carbon as a Pt Catalyst Support for Direct Methanol Fuel Cells. Chem. Mater. 2005, 17, 3960–3967. [Google Scholar] [CrossRef]
- Matos, I.; Bernardo, M.; Neves, P.D.; Castanheiro, J.E.; Vital, J.; Fonseca, I.M. Mesoporous Carbon as effective and sustainable catalyst for fine chemistry. Bol. Grupo Español Carbón 2016, 39, 19–22. Available online: http://hdl.handle.net/10174/19991 (accessed on 1 January 2024).
- Chang, H.; Joo, S.H.; Pak, C. Synthesis and characterization of mesoporous carbon for fuel cell applications. J. Mater. Chem. 2007, 17, 3078–3088. [Google Scholar] [CrossRef]
- Ryoo, R.; Joo, S.H.; Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 1999, 103, 7743–7746. [Google Scholar] [CrossRef]
- Budarin, V.; Clark, J.H.; Hardy, J.J.E.; Luque, R.; Milkowski, K.; Tavener, S.J.; Wilson, A.J. Starbons: New Starch-Derived Mesoporous Carbonaceous Materials with Tunable Properties. Angew. Int. Ed. 2007, 45, 3782–3786. [Google Scholar] [CrossRef]
- Shuttleworth, P.S.; Budarin, V.; White, R.J.; Gun’ko, V.M.; Luque, R.; Clark, J.H. Molecular-Level Understanding of the Carbonistation of Polysaccharides. Chem. Eur. J. 2013, 19, 9351–9357. [Google Scholar] [CrossRef]
- Biehler, E.; Quach, Q.; Abdel-Fattah, T.M. Screening study of Different Carbon Based Materials for Hydrogen. ECS J. Solid State Sci. Technol. 2023, 12, 081002. [Google Scholar] [CrossRef]
- Milkowski, K.; Clark, J.H.; Doi, S. New materials based on renewable resources: Chemically modified highly porous starches and their composites with synthetic monomers. Green Chem. 2004, 6, 189–190. [Google Scholar] [CrossRef]
- Wahab, M.A.; Darain, F.; Islam, N.; Young, D.J. Nano/mesoporous carbon from rice starch for voltammetric detection of ascorbic acid. Molecules 2018, 23, 234. [Google Scholar] [CrossRef]
- Banerjee, R.; Ghosh, D.; Satra, J.; Ghosh, A.B.; Singha, D.; Nandi, M.; Biswas, P. One Step Synthesis of a gold/ordered mesoporous carbon composite using a hard template method for electrocatalytic oxidation of methanol and colorimetric determination of glutathione. ACS Omega 2019, 4, 16360–16371. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.L.; Zhang, Z.X.; Zhang, J.J.; Li, S.M.; Wang, H.; Lu, J.X. Ordered mesoporous carbon embedded with cu Nanoparticle materials for electrocatalytic synthesis of benzyl methyl carbonate from benzyl alcohol and carbon dioxide. ACS Omega 2020, 5, 3498–3503. [Google Scholar] [CrossRef]
- Khalil, M.M.H.; Ismail, E.H.; El-Magdoub, F. Biosynthesis of Au nanoparticles using olive leaf extract. Arab. J. Chem. 2012, 5, 431–437. [Google Scholar] [CrossRef]
- Yu, L.; Mathews, M.A. Hydrolysis of sodium borohydride in concentrated aqueous solution. Int. J. Hydrog. Energy 2011, 36, 7416–7422. [Google Scholar] [CrossRef]
- Hashimi, A.S.; Nohan, M.; Chin, S.X.; Khiew, P.S.; Zakaria, S.; Chia, C.H. Copper Nanowires as Highly Efficient and Recyclable Catalyst for Rapid Hydrogen Generation from Hydrolysis of Sodium Borohydride. Nanomaterials 2020, 10, 1153. [Google Scholar] [CrossRef]
- Chen, B.; Chen, S.; Bandal, H.A.; Appiah-Ntiamoah, R.; Jadhav, A.R.; Kim, H. Cobalt nanoparticles supported on magnetic core-shell structured carbon as a highly efficient catalyst for hydrogen generation from NaBH4 hydrolysis. Int. J. Hydrog. Energy 2018, 43, 9296–9306. [Google Scholar] [CrossRef]
- Guo, J.; Hou, Y.; Li, B.; Liu, Y. Novel Ni-Co-B hollow nanospheres promote hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrog. Energy 2018, 43, 15245–15254. [Google Scholar] [CrossRef]
- Loghmani, M.H.; Shojaei, A.F.; Khakzad, M. Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu-Fe-B nano powders: Effect of polymers and surfactants. Energy 2017, 126, 830–840. [Google Scholar] [CrossRef]
- Zou, Y.; Yin, Y.; Gao, Y.; Xiang, C.; Chu, H.; Qui, S.; Yan, E.; Xu, F.; Sun, L. Chitosan-mediated Co-Ce-B nanoparticles for catalyzing the hydrolysis of sodium borohydride. Int. J. Hydrog. Energy 2018, 43, 4912–4921. [Google Scholar] [CrossRef]
- Biehler, E.; Quach, Q.; Abdel-Fattah, T.M. Application of Platinum Nanoparticles Decorating Mesoporous Carbon Derived from Sustainable Source for Hydrogen Evolution Reaction. Catalysts 2024, 14, 423. [Google Scholar] [CrossRef]
- Balbay, A.; Saka, C. Effect of phosphoric acid addition on the hydrogen production from hydrolysis of NaBH4 with Cu based catalyst. Energy Source Part A 2018, 40, 794–804. [Google Scholar] [CrossRef]
- Xie, L.; Wang, K.; Du, G.; Asiri, A.M.; Sun, X. 3D hierarchical CuO/Co3O4 core-shell nanowire array on copper foam for on-demand hydrogen generation from alkaline NaBH4 solution. RSC Adv. 2016, 6, 88846–88850. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, J.; Guo, J.; Sun, L.; Ming, J.; Dong, H.; Zhao, Y.; Tian, J.; Yang, X. Ceria-Induced Strategy To Tailor Pt Atomic Clusters on Cobalt-Nickel Oxide and the Synergetic Effect for Superior Hydrogen Generation. ACS Sustain. Chem. Eng. 2018, 6, 7451–7457. [Google Scholar] [CrossRef]
- Lai, Q.; Alligier, D.; Aguey-Zinxou, K.; Demirci, U.B. Hydrogen generation from a sodium borohydride-nickel core@shell structure under hydrolytic conditions. Nanoscale Adv. 2019, 1, 2707–2717. [Google Scholar] [CrossRef] [PubMed]
- Huff, C.; Long, J.M.; Aboulatta, A.; Heyman, A.; Abdel-Fattah, T.M. Silver Nanoparticle/Multi-Walled Carbon Nanotube Composite as Catalyst for Hydrogen Production. ECS J. Solid State Sci. Technol. 2017, 6, 115–118. [Google Scholar] [CrossRef]
- Huff, C.; Quach, Q.; Long, J.M.; Abdel-Fattah, T.M. Nanocomposite Catalyst Derived from Ultrafine Platinum Nanoparticles and Carbon Nanotubes for Hydrogen Generation. ECS J. Solid State Sci. Technol. 2020, 9, 101008. [Google Scholar] [CrossRef]
- Huff, C.; Long, J.M.; Heyman, A.; Abdel-Fattah, T.M. Palladium Nanoparticle Multiwalled Carbon Nanotube Composite as Catalyst for Hydrogen Production by the Hydrolysis of Sodium Borohydride. ACS Appl. Energy Mater. 2018, 1, 4635–4640. [Google Scholar] [CrossRef]
- Huff, C.; Long, J.M.; Abdel-Fattah, F.M. Beta-Cyclodextrin-Assisted Synthesis of Silver Nanoparticle Network and Its Application in a Hydrogen Generation Reaction. Catalysts 2020, 10, 1014. [Google Scholar] [CrossRef]
- Huff, C.; Biehler, E.; Quach, Q.; Long, J.M.; Abdel-Fattah, T.M. Synthesis of highly dispersive platinum nanoparticles and their application in a hydrogen generation reaction. Colloid Surf. A 2021, 610, 125734. [Google Scholar] [CrossRef]
- Biehler, E.; Quach, Q.; Abdel-Fattah, T.M. Application of Silver Nanoparticles Supported over Mesoporous Carbon Produced from Sustainable Sources as Catalysts for Hydrogen Production. Energies 2024, 17, 3327. [Google Scholar] [CrossRef]
- Biehler, E.; Quach, Q.; Abdel-Fattah, T.M. Application of Palladium Mesoporous Carbon Composite Obtained from a Sustainable Source for Catalyzing Hydrogen Generation Reaction. J. Compos. Sci. 2024, 8, 270. [Google Scholar] [CrossRef]
- Abdel-Fattah, T.M.; Biehler, E. Carbon Based Supports for Metal Nanoparticles for Hydrogen Generation Reactions Review. Adv. Carbon J. 2024, 1, 1–19. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Progesses in the synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
Catalyst | Ea (kJ mol−1) | Temperature (K) | Reference |
---|---|---|---|
CuNWs | 42.48 | 298–333 | [30] |
Co/Fe3O4@C | 49.2 | 288–328 | [31] |
Ni-Co-B | 31.3 | 273–303 | [32] |
Cu-Fe-B | 57 | 285–333 | [33] |
Co-Ce-B/Chi-C | 33.1 | 266–303 | [34] |
Pt-MCM | 37.7 | 298–328 | [35] |
Cu based catalyst | 61.16 | 293–313 | [36] |
CuO/Co3O4 | 56.38 | 294–333 | [37] |
Pt/CeO2-Co2Ni2Ox | 47.4 | 298–318 | [38] |
NaBH4@Ni | 46.6 | 283–333 | [39] |
Au/MWCNTs | 21.1 | 273–303 | [20] |
Ag/MWCNTs | 44.45 | 273–303 | [40] |
Pt/MWCNTs | 46.2 | 273–303 | [41] |
Pd/MWCNTs | 62.66 | 273–303 | [42] |
AgNPs | 53.3 | 273–295 | [43] |
PtNPs | 39.2 | 273–303 | [44] |
Pt-MCM | 37.7 | 273–303 | [45] |
Ag-MCM | 15.6 | 273–303 | [45] |
Pd-MCM | 27.9 | 273–303 | [46] |
BCD-AuNP | 57.4 | 283–303 | [4] |
AuNP-MCM | 30 | 273–303 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biehler, E.; Quach, Q.; Abdel-Fattah, T.M. Gold Nanoparticle Mesoporous Carbon Composite as Catalyst for Hydrogen Evolution Reaction. Molecules 2024, 29, 3707. https://doi.org/10.3390/molecules29153707
Biehler E, Quach Q, Abdel-Fattah TM. Gold Nanoparticle Mesoporous Carbon Composite as Catalyst for Hydrogen Evolution Reaction. Molecules. 2024; 29(15):3707. https://doi.org/10.3390/molecules29153707
Chicago/Turabian StyleBiehler, Erik, Qui Quach, and Tarek M. Abdel-Fattah. 2024. "Gold Nanoparticle Mesoporous Carbon Composite as Catalyst for Hydrogen Evolution Reaction" Molecules 29, no. 15: 3707. https://doi.org/10.3390/molecules29153707
APA StyleBiehler, E., Quach, Q., & Abdel-Fattah, T. M. (2024). Gold Nanoparticle Mesoporous Carbon Composite as Catalyst for Hydrogen Evolution Reaction. Molecules, 29(15), 3707. https://doi.org/10.3390/molecules29153707