Density Functional Theory-Based Indicators to Estimate the Corrosion Potentials of Zinc Alloys in Chlorine-, Oxidizing-, and Sulfur-Harsh Environments
Abstract
:1. Introduction
2. Results
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wątroba, M.; Mech, K.; Bednarczyk, W.; Kawałko, J.; Marciszko-Wiąckowska, M.; Marzec, M.; Shepherd, D.E.T.; Bała, P. Long-term in vitro corrosion behavior of Zn-3Ag and Zn-3Ag-0.5Mg alloys considered for biodegradable implant applications. Mater. Des. 2022, 213, 110289. [Google Scholar] [CrossRef]
- Shao, L.; Xie, G.; Zhang, C.; Liu, X.; Lu, W.; He, G.; Huang, J. Combustion of metals in oxygen-enriched atmospheres. Metals 2020, 10, 128. [Google Scholar] [CrossRef]
- Langman, J.B.; Ali, J.D.; Child, A.W.; Wilhelm, F.M.; Moberly, J.G. Sulfur species, bonding environment, and metal mobilization in mining-impacted lake sediments: Column experiments replicating seasonal anoxia and deposition of algal detritus. Minerals 2020, 10, 849. [Google Scholar] [CrossRef]
- O’Donnell, J.A.; Carey, M.P.; Koch, J.C.; Baughman, C.; Hill, K.; Zimmerman, C.E.; Sullivan, P.F.; Dial, R.; Lyons, T.; Cooper, D.J.; et al. Metal mobilization from thawing permafrost to aquatic ecosystems is driving rusting of Arctic streams. Commun. Earth Environ. 2024, 5, 268. [Google Scholar] [CrossRef]
- Dong, H.; Lin, F.; Boccaccini, A.R.; Virtanen, S. Corrosion behavior of biodegradable metals in two different simulated physiological solutions: Comparison of Mg, Zn and Fe. Corr. Sci. 2021, 182, 109278. [Google Scholar] [CrossRef]
- Barzegari, M.; Mei, D.; Lamaka, S.V.; Geris, L. Computational modeling of degradation process of biodegradable magnesium biomaterials. Corr. Sci. 2021, 190, 109674. [Google Scholar] [CrossRef]
- Bryzgalov, V.; Kistanov, A.A.; Khafizova, E.; Polenok, M.; Izosimov, A.; Korznikova, E.A. Experimental study of corrosion rate supplied with an ab-initio elucidation of corrosion mechanism of biodegradable implants based on Ag-doped Zn alloys. Appl. Surf. Sci. 2024, 652, 159300. [Google Scholar] [CrossRef]
- Chiter, F.; Bonnet, M.L.; Lacaze-Dufaure, C.; Tang, H.; Pebere, N. DFT studies of the bonding mechanism of 8-hydroxyquinoline and derivatives on the (111) aluminum surface. Phys. Chem. Chem. Phys. 2018, 20, 21474–21486. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jin, Y.; Leygraf, C. A DFT-Study of Cl Iingress into α-Al2O3(0001) and Al(111) and its possible influence on localized corrosion of Al. J. Electrochem. Soc. 2019, 166, 3124–3130. [Google Scholar] [CrossRef]
- Pan, Y.; Guan, W. Origin of enhanced corrosion resistance of Ag and Au doped anatase TiO2. Int. J. Hydrogen Energy 2019, 44, 10407–10414. [Google Scholar] [CrossRef]
- Li, J.; Zhao, J.; Shao, H.; Zhang, Y.; Dong, H.; Xia, L.; Hu, S. Anticorrosion mechanism of Cr-doped nickel-base alloy in Br/O environment: A DFT study. Mol. Simul. 2019, 45, 1506–1514. [Google Scholar] [CrossRef]
- Gao, W.; Baker, T.A.; Zhou, L.; Pinnaduwage, D.S.; Kaxiras, E.; Friend, C.M. Chlorine adsorption on Au(111): Chlorine overlayer or surface chloride? J. Am. Chem. Soc. 2008, 130, 3560–3565. [Google Scholar] [CrossRef]
- Saraireh, S.A.; Altarawneh, M.; Tarawneh, M.A. Nanosystem’s density functional theory study of the chlorine adsorption on the Fe(100) surface. Nanotech. Rev. 2021, 10, 719–727. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, Y.; Ejtemaei, M.; Nguyen, A.V.; Wang, Y.; Wen, S. DFT simulation of S-species interaction with smithsonite (001) surface: Effect of water molecule adsorption position. Results Phys. 2019, 15, 102575. [Google Scholar] [CrossRef]
- Kang, M.; Huang, K.; Li, J.; Liu, H.; Lian, C. Theoretical design of dendrite-free zinc anode through intrinsic descriptors from symbolic regression. J. Mater. Inf. 2024, 4, 6. [Google Scholar] [CrossRef]
- Giulimondi, V.; Mitchell, S.; Pérez-Ramírez, J. Challenges and opportunities in engineering the electronic structure of single-atom catalysts. ACS Catal. 2023, 13, 2981–2997. [Google Scholar] [CrossRef]
- Xie, T.; Wang, P.; Tian, C.; Zhao, G.; Jia, J.; He, C.; Zhao, C.; Wu, H. Adsorption characteristics of gas molecules adsorbed on graphene doped with Mn: A first principle study. Molecules 2022, 27, 2315. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, M.; Xue, J.; Li, M.; Cheng, Y.; Lai, Z.; Hu, J.; Zhou, F.; Qu, N.; Liu, Y.; et al. A Study of the adsorption properties of individual atoms on the graphene surface: Density functional theory calculations assisted by machine learning techniques. Materials 2024, 17, 1428. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Ren, G.; Wu, Y.; Lu, S.; Huan, Y.; Peng, T.; Liu, P.; Sun, J.; Su, H.; Cui, H. Machine-learning-assisted hydrogen adsorption descriptor design for bilayer MXenes. J. Clean. Prod. 2024, 450, 141953. [Google Scholar] [CrossRef]
- Lubbers, N.; Smith, J.S.; Barros, K. Hierarchical modeling of molecular energies using a deep neural network. J. Chem. Phys. 2018, 148, 241715. [Google Scholar] [CrossRef]
- Malone, W.; Kara, A. Predicting adsorption energies and the physical properties of H, N, and O adsorbed on transition metal surfaces: A machine learning study. Surf. Sci. 2023, 731, 122252. [Google Scholar] [CrossRef]
- Dean, J.; Taylor, M.G.; Mpourmpakisu, G. Unfolding adsorption on metal nanoparticles: Connecting stability with catalysis. Sci. Adv. 2019, 5, eaax5101. [Google Scholar] [CrossRef]
- Restuccia, P.; Ahmada, E.A.; Harrison, N.M. A transferable prediction model of molecular adsorption on metals based on adsorbate and substrate properties. Phys. Chem. Chem. Phys. 2022, 24, 16545–16555. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.-H.; Da Silva, J.L.F.; Deng, H.-Q.; Li, W.-X. Density functional theory study of the energetics, electronic structure, and core-level shifts of NO adsorption on the Pt(111) surface. Phys. Rev. B 2009, 79, 205413. [Google Scholar] [CrossRef]
- Gallego, S.; Sanchez, N.; Martin, S.; Muñoz, M.C.; Szunyogh, L. Reversible enhancement of the magnetism of ultrathin Co films by H adsorption. Phys. Rev. B 2010, 82, 085414. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, Y.; Dostert, K.H.; O’Brien, C.P.; Riedel, W.; Savara, A.; Schauermann, S.; Tkatchenko, A. Catalysis beyond frontier molecular orbitals: Selectivity in partial hydrogenation of multi-unsaturated hydrocarbons on metal catalysts. Sci. Adv. 2017, 3, e1700939. [Google Scholar] [CrossRef] [PubMed]
- Korostelev, V.; Wagnera, J.; Klyukin, K. Simple local environment descriptors for accurate prediction of hydrogen absorption and migration in metal alloys. J. Mater. Chem. A 2023, 11, 23576–23588. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Wei, G.; Li, B.; Mao, Z.; Xu, S.-M.; Tang, S.; Jiang, J.; Li, Z.; Wang, X.; et al. Engineering spin polarization of the surface-adsorbed fe atom by intercalating a transition metal atom into the MoS2 bilayer for enhanced nitrogen reduction. JACS Au 2024, 4, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Ungerer, M.J.; Santos-Carballal, D.; Cadi-Essadek, A.; van Sittert, C.G.C.E.; de Leeuw, N.H. Interaction of H2O with the platinum Pt (001), (011), and (111) surfaces: A density functional theory study with long-range dispersion corrections. J. Phys. Chem. C 2019, 123, 27465–27476. [Google Scholar] [CrossRef]
- Romero, M.A.; Bonetto, F.; García, E.A. Influence of single adsorbed atoms on charge exchange during ion-surface collisions. Phys. Rev. A 2023, 107, 032803. [Google Scholar] [CrossRef]
- Hofmann, O.T.; Egger, D.A.; Zojer, E. Work-Function Modification beyond Pinning: When Do Molecular Dipoles Count? Nano Lett. 2010, 10, 4369–4374. [Google Scholar] [CrossRef] [PubMed]
- Rusu, P.C.; Brocks, G. Surface dipoles and work functions of alkylthiolates and fluorinated alkylthiolates on Au(111). J. Phys. Chem. B 2006, 110, 22628–22634. [Google Scholar] [CrossRef] [PubMed]
- Kistanov, A.A. Atomic insights into the interaction of N2, CO2, NH3, NO, and NO2 gas molecules with Zn2(V, Nb, Ta)N3 ternary nitride monolayers. Phys. Chem. Chem. Phys. 2024, 26, 13719. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, S. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Kabalan, L.; Kowalec, I.; Catlow, C.R.A.; Logsdail, A.J. A computational study of the properties of low- and high-index Pd, Cu and Zn surfaces. Phys. Chem. Chem. Phys. 2021, 23, 14649–14661. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules—A Quantum Theory; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Python Software Foundation. Python Language Reference, Version 3.7. Available online: http://www.python.org (accessed on 25 January 2020).
Structure | Position | d, Å | Ea, eV | Doping Nature | Δq, e |
---|---|---|---|---|---|
Zn(111) + Cl | hcp | 1.54 | −2.88 | acceptor | 0.598 |
Zn(110) + Cl | hcp | 1.99 | −2.16 | acceptor | 0.595 |
Zn(100) + Cl | bridge | 1.68 | −2.38 | acceptor | 0.601 |
Zn(111) + O | bridge | 0.27 | −7.30 | acceptor | 1.231 |
Zn(110) + O | hcp | 0.85 | −6.81 | acceptor | 1.196 |
Zn(100) + O | bridge | 0.42 | −7.08 | acceptor | 1.195 |
Zn(111) + S | bridge | 1.44 | −4.69 | acceptor | 0.823 |
Zn(110) + S | hcp | 1.56 | −4.39 | acceptor | 0.820 |
Zn(100) + S | bridge | 0.81 | −4.96 | acceptor | 0.825 |
Structure | Pure | Cl | O | S |
---|---|---|---|---|
Zn(111) | 4.18 | 4.35 | 4.20 | 4.46 |
Zn(110) | 4.15 | 4.36 | 4.25 | 4.34 |
Zn(100) | 4.03 | 4.27 | 4.10 | 4.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhametov, A.; Samikov, I.; Korznikova, E.A.; Kistanov, A.A. Density Functional Theory-Based Indicators to Estimate the Corrosion Potentials of Zinc Alloys in Chlorine-, Oxidizing-, and Sulfur-Harsh Environments. Molecules 2024, 29, 3790. https://doi.org/10.3390/molecules29163790
Mukhametov A, Samikov I, Korznikova EA, Kistanov AA. Density Functional Theory-Based Indicators to Estimate the Corrosion Potentials of Zinc Alloys in Chlorine-, Oxidizing-, and Sulfur-Harsh Environments. Molecules. 2024; 29(16):3790. https://doi.org/10.3390/molecules29163790
Chicago/Turabian StyleMukhametov, Azamat, Insaf Samikov, Elena A. Korznikova, and Andrey A. Kistanov. 2024. "Density Functional Theory-Based Indicators to Estimate the Corrosion Potentials of Zinc Alloys in Chlorine-, Oxidizing-, and Sulfur-Harsh Environments" Molecules 29, no. 16: 3790. https://doi.org/10.3390/molecules29163790
APA StyleMukhametov, A., Samikov, I., Korznikova, E. A., & Kistanov, A. A. (2024). Density Functional Theory-Based Indicators to Estimate the Corrosion Potentials of Zinc Alloys in Chlorine-, Oxidizing-, and Sulfur-Harsh Environments. Molecules, 29(16), 3790. https://doi.org/10.3390/molecules29163790