Thermoelectric Properties Regulated by Quantum Size Effects in Quasi-One-Dimensional γ-Graphdiyne Nanoribbons
Abstract
:1. Introduction
2. Results and Discussions
3. Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xi, J.; Nakamura, Y.; Nakamura, Y.; Zhao, T.; Wang, D.; Shuai, Z.G. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems. Acta Phys.-Chim. Sin. 2018, 34, 961–976. [Google Scholar] [CrossRef]
- Han, C.; Sun, Q.; Li, Z.; Dou, S.X. Thermoelectric Enhancement of Different Kinds of Metal Chalcogenides. Adv. Energy Mater. 2016, 6, 1600498. [Google Scholar] [CrossRef]
- Mao, J.; Chen, G.; Ren, Z. Thermoelectric Cooling Materials. Nat. Mater. 2021, 20, 454–461. [Google Scholar] [CrossRef]
- Lin, T.; Zhang, Y.H.; Li, H.; Li, P.C. Synthesis and Thermoelectric Properties of Dithieno [3,2-b:2′,3′-d] pyrrole-Based D-A Conjugated Polymers. J. Petrochem. Univ. 2024, 37, 1–10. [Google Scholar]
- Mojdeh, G.; Mohammad, P.; Mozhgan, G.; Azadeh, T. A computational insight into the intrinsic, Si-decorated and vacancy-defected γ-graphyne nanoribbon towards adsorption of CO2 and O2 molecules. Appl. Surf. Sci. 2023, 610, 155510. [Google Scholar]
- Hung, N.T.; Hasdeo, E.H.; Nugraha, A.R.; Dresselhaus, M.S.; Saito, R. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors. Phys. Rev. Lett. 2016, 117, 036602. [Google Scholar] [CrossRef]
- Slack, G.A. CRC Handbook of Thermo-Electrics; CRC Press: Boca Raton, FL, USA, 1995; Volume 2, p. 407. [Google Scholar]
- Hicks, L.D.; Dresselhaus, M.S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 12727. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, Y.; Qi, L.; Xue, Y.; Li, Y. 2D graphdiyne: An emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681–2709. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Liu, H.; Li, Y. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586. [Google Scholar] [CrossRef]
- Zhou, W.; Shen, H.; Zeng, Y.; Yi, Y.; Zuo, Z.; Li, J.; Li, Y. Controllable Synthesis of Graphdiyne Nanoribbons. Ange. Chem. Int. Ed. 2020, 59, 4908–4913. [Google Scholar] [CrossRef]
- Haskins, J.; Kınacı, A.; Sevik, C.; Sevinçli, H.; Cuniberti, G.; Cağın, T. Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 2011, 5, 3779–3787. [Google Scholar] [CrossRef]
- Yi, Y.; Jian, H.; Zhan, L.; Sheng, C.; Zhen, Z. Inducing abundant magnetic phases and enhancing magnetic stability by edge modifications and physical regulations for NiI2 nanoribbons. Phys. Chem. Chem. Phys. 2024, 26, 5045–5058. [Google Scholar] [CrossRef]
- Yan, P.; Ouyang, T.; He, C.; Li, J.; Zhang, C.; Tang, C.; Zhong, J. Newly discovered graphyne allotrope with rare and robust Dirac node loop. Nanoscale 2021, 13, 3564–3571. [Google Scholar] [CrossRef]
- Ouyang, T.; Cui, C.; Shi, X.; He, C.; Li, J.; Zhang, C.; Tang, C.; Zhong, J. Systematic Enumeration of Low Energy Graphyne Allotropes Based on a Coordination-Constrained Searching Strategy. Phys. Status Solidi. Rapid Res. Lett. 2020, 14, 2000437. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, P.H.; Liu, H.J.; Fan, D.D.; Liang, J.H.; Wei, J.; Cheng, L.; Zhang, J. Graphdiyne: A two-dimensional thermoelectric material with high figure of merit. Carbon 2015, 90, 255–259. [Google Scholar] [CrossRef]
- Wang, C.; Ouyang, T.; Chen, Y.; Zhou, B.; Zhong, J. Thermoelectric properties of gamma-graphyne nanoribbon incorporating diamond-like quantum dots. J. Phys. D Appl. Phys. 2016, 49, 135303. [Google Scholar] [CrossRef]
- Huang, C.; Li, Y.; Wang, N.; Xue, Y.; Zuo, Z.; Liu, H.; Li, Y. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803. [Google Scholar] [CrossRef]
- Tian, W.; Cheng, C.; Wang, C.; Li, W. Research Progress on Thermal Conductivity of Graphdiyne Nanoribbons and its Defects: A Review. Recent Pat. Nano 2020, 14, 294–306. [Google Scholar] [CrossRef]
- Cui, C.; Ouyang, T.; Tang, C.; He, C.; Li, J.; Zhang, C.; Zhong, J. Bayesian optimization-based design of defect gamma-graphyne nanoribbons with high thermoelectric conversion efficiency. Carbon 2021, 176, 52–60. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Jing, Y.; Wang, J. Graphyne and graphdiyne nanoribbons: From their structures and properties to potential applications. Phys. Chem. Chem. Phys. 2024, 26, 1541. [Google Scholar] [CrossRef]
- Liu, Q.; Feng, N.; Zou, Y.; Fan, C.; Wang, J. Exploring the impact of stress on the electronic structure and optical properties of graphdiyne nanoribbons for advanced optoelectronic applications. Sci. Rep. 2024, 14, 6051. [Google Scholar] [CrossRef]
- Pan, L.D.; Zhang, L.Z.; Song, B.Q.; Du, S.X.; Gao, H.J. Graphyne- and graphdiyne-based nanoribbons: Density functional theory calculations of electronic structures. Appl. Phys. Lett. 2011, 98, 173102. [Google Scholar] [CrossRef]
- Heremans, J.P. Low-Dimensional Thermoelectricity. Acta Phys. Polym. 2005, 108, 609–634. [Google Scholar] [CrossRef]
- Bai, H.C.; Zhu, Y.; Qiao, W.Y.; Huang, Y.H. Structures, stabilities and electronic properties of graphdiyne nanoribbons. RSC Adv. 2011, 1, 768–775. [Google Scholar] [CrossRef]
- Lu, J.; Cui, C.; Ouyang, T.; Li, J.; He, C.; Tang, C.; Zhong, J. Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency. Chin. Phys. B 2023, 32, 048401. [Google Scholar] [CrossRef]
- Tan, X.; Shao, H.; Hu, T.; Liu, G.; Jiang, J.; Jiang, H. High thermoelectric performance in two-dimensional graphyne sheets predicted by first-principles calculations. Phys. Chem. Chem. Phys. 2015, 17, 22872–22881. [Google Scholar] [CrossRef]
- Rodrigues, D.C.; Lage, L.L.; Venezuela, P.; Latgé, A. Exploring the enhancement of the thermoelectric properties of bilayer graphyne nanoribbons. Phys. Chem. Chem. Phys. 2022, 24, 9324–9332. [Google Scholar] [CrossRef]
- Pan, C.N.; Chen, X.K.; Tang, L.M.; Chen, K.Q. Orientation dependent thermal conductivity in graphyne nanoribbons. Phys. E 2014, 64, 129–133. [Google Scholar] [CrossRef]
- Ouyang, T.; Chen, Y.; Liu, L.; Xie, Y.; Wei, X.; Zhong, J. Thermal transport in graphyne nanoribbons. Phys. Rev. B 2012, 85, 235436. [Google Scholar] [CrossRef]
- Wei, N.; Xu, L.; Wang, H.Q.; Zheng, J.C. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility. Nanotechnology 2011, 22, 105705. [Google Scholar] [CrossRef]
- Li, J.Q.; Han, Y. Artificial carbon allotrope γ-graphyne Synthesis, properties, and applications. Giant 2023, 13, 100140. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Miao, W.; Sun, M. Simulation on Stress-Related Anisotropy of qTP C60 and qHP C60: Implications for Optoelectronic Nanodevices. ACS Appl. Nano Mater. 2024, 7, 5912–5921. [Google Scholar] [CrossRef]
- Shen, J.J.; Fang, T.; Fu, T.Z. Lattice thermal conductivity in thermoelectric materials. J. Inorg. Mater. 2019, 34, 260–268. [Google Scholar]
- vanSetten, M.J.; Giantomassi, M.; Bousquet, E.; Verstraete, M.J.; Hamann, D.R.; Gonze, V.; Rignanese, G.M. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 2018, 226, 39–54. [Google Scholar] [CrossRef]
- Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Homyakov, P.A.; Vej-Hansen, U.G.; et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 2019, 32, 015901. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- For Details of Nanodcal Software Package. Available online: http://www.hzwtech.com (accessed on 10 November 2023).
- Hughes, J.L.; Sipe, J. Calculation of second-order optical response in semi-conductors. Phys. Rev. B 1996, 53, 10751. [Google Scholar] [CrossRef]
- Levine, Z.H.; Allan, D.C. Linear optical response in silicon and germanium including self-energy effects. Phys. Rev. Lett. 1989, 63, 1719. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Y.; Hu, Y.; Shao, H. Remarkable intrinsic ZT in the 2D PtX2(X = O, S, Se, Te) monolayers at room temperature. Appl. Surf. Sci. 2020, 532, 147387. [Google Scholar] [CrossRef]
- Song, J.; Sun, M. Modulating thermoelectric properties of the MoSe2/WSe2 superlattice heterostructure by twist angles. ACS Appl. Mater. Inter. 2024, 16, 3325–3333. [Google Scholar] [CrossRef]
- Mott, N. The electrical conductivity of transition metals. Proceedings of the Royal Society of London. Proc. Math. Phys. Eng. Sci. 1936, 153, 699–717. [Google Scholar]
- Trachenko, K. Heat capacity of liquids: An approach from the solid phase. Phys. Rev. B Condens. 2008, 78, 104201. [Google Scholar] [CrossRef]
- Jonson, M.; Mahan, G. Mott’s Formula for the Thermopower and the Wiedemann-Franz Law. Phys. Rev. B 1980, 21, 4223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Liu, Q.; Zou, Y.; Wang, J.; Fan, C. Thermoelectric Properties Regulated by Quantum Size Effects in Quasi-One-Dimensional γ-Graphdiyne Nanoribbons. Molecules 2024, 29, 3312. https://doi.org/10.3390/molecules29143312
Li M, Liu Q, Zou Y, Wang J, Fan C. Thermoelectric Properties Regulated by Quantum Size Effects in Quasi-One-Dimensional γ-Graphdiyne Nanoribbons. Molecules. 2024; 29(14):3312. https://doi.org/10.3390/molecules29143312
Chicago/Turabian StyleLi, Mi, Qiaohan Liu, Yi Zou, Jingang Wang, and Chuanqiang Fan. 2024. "Thermoelectric Properties Regulated by Quantum Size Effects in Quasi-One-Dimensional γ-Graphdiyne Nanoribbons" Molecules 29, no. 14: 3312. https://doi.org/10.3390/molecules29143312
APA StyleLi, M., Liu, Q., Zou, Y., Wang, J., & Fan, C. (2024). Thermoelectric Properties Regulated by Quantum Size Effects in Quasi-One-Dimensional γ-Graphdiyne Nanoribbons. Molecules, 29(14), 3312. https://doi.org/10.3390/molecules29143312