Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = GDYNRs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5145 KiB  
Article
Thermoelectric Properties Regulated by Quantum Size Effects in Quasi-One-Dimensional γ-Graphdiyne Nanoribbons
by Mi Li, Qiaohan Liu, Yi Zou, Jingang Wang and Chuanqiang Fan
Molecules 2024, 29(14), 3312; https://doi.org/10.3390/molecules29143312 - 13 Jul 2024
Cited by 2 | Viewed by 1365
Abstract
Using density functional theory combined with the first principles calculation method of non-equilibrium Green’s function (NEGF-DFT), we studied the thermoelectric (TE) characteristics of one-dimensional γ-graphdiyne nanoribbons (γ-GDYNRs). The study found that the thermal conductivity of γ-GDYNRs has obvious anisotropy. At the same temperature [...] Read more.
Using density functional theory combined with the first principles calculation method of non-equilibrium Green’s function (NEGF-DFT), we studied the thermoelectric (TE) characteristics of one-dimensional γ-graphdiyne nanoribbons (γ-GDYNRs). The study found that the thermal conductivity of γ-GDYNRs has obvious anisotropy. At the same temperature and geometrical size, the lattice thermal conductivity of zigzag-edged γ-graphdiyne nanoribbons (γ-ZGDYNRs) is much lower than that of armchair-edged γ-graphdiyne nanoribbons (γ-AGDYNRs). We disclose the underlying mechanism for this intrinsic orientation. That is, γ-AGDYNRs have more phonon dispersion over the entire frequency range. Furthermore, the orientation dependence increases when the width of the γ-GDYNRs decreases. These excellent TE properties allow armchair-edged γ-graphdiyne nanoribbons with a planar width of 1.639 nm (γ-Z(2)GDYNRs) to have a higher power factor and lower thermal conductivity, ultimately resulting in a significantly higher TE conversion rate than other γ-GDYNR structures. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

Back to TopTop