First-Principles Investigation on the Tunable Electronic Structures and Photocatalytic Properties of AlN/Sc2CF2 and GaN/Sc2CF2 Heterostructures
Abstract
:1. Introduction
2. Results and Discussions
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, S.; Osterloh, F.; Wang, X.; Mallouk, T.; Maeda, K. Photocatalytic Water Splitting. Nat. Rev. Methods Primers 2023, 3, 42. [Google Scholar] [CrossRef]
- Jafari, T.; Moharreri, E.; Amin, A.; Miao, R.; Song, W.; Suib, S. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances. Molecules 2016, 21, 900. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Sa, B.; Ahuja, R. Review of Two-Dimensional Materials for Photocatalytic Water Splitting from a Theoretical Perspective. Catal. Sci. Technol. 2017, 7, 545–559. [Google Scholar] [CrossRef]
- Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Recent Advances and Perspectives for Solar-Driven Water Splitting Using Particulate Photocatalysts. Chem. Soc. Rev. 2022, 51, 3561–3608. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; He, X.; Rong, C.; Zhong, A.; Liu, S.; Zhao, D. On the Origin and Nature of Internal Methyl Rotation Barriers: An Information-Theoretic Approach Study. Theor. Chem. Acc. 2022, 141, 68. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, S.; Rong, C.; Zhong, A.; Liu, S. Toward Understanding the Isomeric Stability of Fullerenes with Density Functional Theory and the Information-Theoretic Approach. ACS Omega 2018, 3, 17986–17990. [Google Scholar] [CrossRef]
- Eidsvåg, H.; Bentouba, S.; Vajeeston, P.; Yohi, S.; Velauthapillai, D. TiO2 as a Photocatalyst for Water Splitting—An Experimental and Theoretical Review. Molecules 2021, 26, 1687. [Google Scholar] [CrossRef] [PubMed]
- Acar, C.; Dincer, I.; Naterer, G. Review of Photocatalytic Water-Splitting Methods for Sustainable Hydrogen Production: Review: Photocatalysis for Sustainable Hydrogen. Int. J. Energy Res. 2016, 40, 1449–1473. [Google Scholar] [CrossRef]
- Tang, J.; Durrant, J.; Klug, D. Mechanism of Photocatalytic Water Splitting in TiO2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry. J. Am. Chem. Soc. 2008, 130, 13885–13891. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, B.; Lin, S. P-Type ZnO for Photocatalytic Water Splitting. APL Mater. 2022, 10, 030901. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J. Elaborately Modified BiVO4 Photoanodes for Solar Water Splitting. Adv. Mater. 2019, 31, 1806938. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Domen, K. Photocatalytic Water Splitting: Recent Progress and Future Challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661. [Google Scholar] [CrossRef]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Wu, X.; Yang, J. Material Design for Photocatalytic Water Splitting from a Theoretical Perspective. Adv. Mater. 2018, 30, 1802106. [Google Scholar] [CrossRef] [PubMed]
- Moniz, S.; Shevlin, S.; Martin, D.; Guo, Z.; Tang, J. Visible-Light Driven Heterojunction Photocatalysts for Water Splitting-a Critical Review. Energy Environ. Sci. 2015, 8, 731–759. [Google Scholar] [CrossRef]
- Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z. Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catal. 2018, 8, 2253–2276. [Google Scholar] [CrossRef]
- Zha, X.; Zhou, J.; Zhou, Y.; Huang, Q.; He, J.; Francisco, J.; Luo, K.; Du, S. Promising Electron Mobility and High Thermal Conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale 2016, 8, 6110–6117. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, M.; Zhong, X.; Qiu, K.; Bai, L.; Ma, B.; Wang, J.; Chen, Y. Theoretical Design of Sc2CF2/Ti2CO2 Heterostructure as a Promising Direct Z-Scheme Photocatalyst towards Efficient Water Splitting. Results Phys. 2024, 60, 107706. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Y.; Li, X.; Li, Y.; Zhao, H.; Huang, L.; Yang, Z.; Zhang, X.; Li, G. 2D AlN Layers Sandwiched Between Graphene and Si Substrates. Adv. Mater. 2019, 31, 1803448. [Google Scholar] [CrossRef]
- Yu, R.; Liu, G.; Wang, G.; Chen, C.; Xu, M.; Zhou, H.; Wang, T.; Yu, J.; Zhao, G.; Zhang, L. Ultrawide-Bandgap Semiconductor AlN Crystals: Growth and Applications. J. Mater. Chem. C 2021, 9, 1852–1873. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, K.; Liu, J.; Lv, T.; Wei, B.; Zhang, T.; Zeng, M.; Wang, Z.; Fu, L. Growth of 2D GaN Single Crystals on Liquid Metals. J. Am. Chem. Soc. 2018, 140, 16392–16395. [Google Scholar] [CrossRef] [PubMed]
- Al Balushi, Z.; Wang, K.; Ghosh, R.; Vilá, R.; Eichfeld, S.; Caldwell, J.; Qin, X.; Lin, Y.; DeSario, P.; Stone, G.; et al. Two-Dimensional Gallium Nitride Realized via Graphene Encapsulation. Nat. Mater 2016, 15, 1166–1171. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Singh, A.; Hennig, R. Computational Discovery of Single-Layer III-V Materials. Phys. Rev. B 2013, 87, 165415. [Google Scholar] [CrossRef]
- Sanders, N.; Bayerl, D.; Shi, G.; Mengle, K.; Kioupakis, E. Electronic and Optical Properties of Two-Dimensional GaN from First-Principles. Nano Lett. 2017, 17, 7345–7349. [Google Scholar] [CrossRef]
- Bacaksiz, C.; Sahin, H.; Ozaydin, H.; Horzum, S.; Senger, R.; Peeters, F. Hexagonal AlN: Dimensional-Crossover-Driven Band-Gap Transition. Phys. Rev. B 2015, 91, 085430. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, K.; Kan, E. Electronic and Magnetic Properties of an AlN Monolayer Doped with First-Row Elements: A First-Principles Study. RSC Adv. 2015, 5, 18352–18358. [Google Scholar] [CrossRef]
- Zhang, C. First-Principles Study on Electronic Structures and Magnetic Properties of AlN Nanosheets and Nanoribbons. J. Appl. Phys. 2012, 111, 043702. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, F. First-principles Prediction on Electronic and Magnetic Properties of Hydrogenated AlN Nanosheets. J. Comput. Chem. 2011, 32, 3122–3128. [Google Scholar] [CrossRef]
- Xu, C.; Xue, L.; Yin, C.; Wang, G. Formation and Photoluminescence Properties of AlN Nanowires. Phys. Stat. Sol. A 2003, 198, 329–335. [Google Scholar] [CrossRef]
- Xu, D.; He, H.; Pandey, R.; Karna, S. Stacking and Electric Field Effects in Atomically Thin Layers of GaN. J. Phys. Condens. Matter. 2013, 25, 345302. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hu, H.; Chen, X.; Wang, J. Tailoring Band Gap in GaN Sheet by Chemical Modification and Electric Field: Ab Initio Calculations. Appl. Phys. Lett. 2011, 98, 053102. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M.; Makimoto, T. An Aluminium Nitride Light-Emitting Diode with a Wavelength of 210 Nanometres. Nature 2006, 441, 325–328. [Google Scholar] [CrossRef] [PubMed]
- McDermott, E.; Kurmaev, E.; Boyko, T.; Finkelstein, L.; Green, R.; Maeda, K.; Domen, K.; Moewes, A. Structural and Band Gap Investigation of GaN:ZnO Heterojunction Solid Solution Photocatalyst Probed by Soft X-Ray Spectroscopy. J. Phys. Chem. C 2012, 116, 7694–7700. [Google Scholar] [CrossRef]
- Cui, Z.; Li, E.; Ke, X.; Zhao, T.; Yang, Y.; Ding, Y.; Liu, T.; Qu, Y.; Xu, S. Adsorption of Alkali-Metal Atoms on GaN Nanowires Photocathode. Appl. Surf. Sci. 2017, 423, 829–835. [Google Scholar] [CrossRef]
- Ren, K.; Wang, S.; Luo, Y.; Chou, J.; Yu, J.; Tang, W.; Sun, M. High-Efficiency Photocatalyst for Water Splitting: A Janus MoSSe/XN (X = Ga, Al) van Der Waals Heterostructure. J. Phys. D Appl. Phys. 2020, 53, 185504. [Google Scholar] [CrossRef]
- Ren, K.; Zheng, R.; Xu, P.; Cheng, D.; Huo, W.; Yu, J.; Zhang, Z.; Sun, Q. Electronic and Optical Properties of Atomic-Scale Heterostructure Based on MXene and MN (M = Al, Ga): A DFT Investigation. Nanomaterials 2021, 11, 2236. [Google Scholar] [CrossRef]
- Munawar, M.; Idrees, M.; Alrebdi, T.; Amin, B. Revealing the Electronic, Optical and Photocatalytic Properties of PN-M2CO2 (P = Al, Ga; M = Ti, Zr, Hf) Heterostructures. Nanoscale Adv. 2023, 5, 1405–1415. [Google Scholar] [CrossRef]
- Zhang, M.; Si, R.; Wu, X.; Dong, Y.; Fu, K.; Xu, X.; Zhang, J.; Li, L.; Guo, Y. Two-Dimensional Hf2CO2/GaN van Der Waals Heterostructure for Overall Water Splitting: A Density Functional Theory Study. J. Mater. Sci. Mater. Electron. 2021, 32, 19368–19379. [Google Scholar] [CrossRef]
- Bacaksiz, C.; Dominguez, A.; Rubio, A.; Senger, R.; Sahin, H. H-AlN-Mg(OH)2 van Der Waals Bilayer Heterostructure: Tuning the Excitonic Characteristics. Phys. Rev. B 2017, 95, 075423. [Google Scholar] [CrossRef]
- Li, L.; Martirez, J.; Carter, E. Prediction of Highly Selective Electrocatalytic Nitrogen Reduction at Low Overpotential on a Mo-Doped g-GaN Monolayer. ACS Catal. 2020, 10, 12841–12857. [Google Scholar] [CrossRef]
- Kadioglu, Y.; Ersan, F.; Kecik, D.; Aktürk, O.; Aktürk, E.; Ciraci, S. Chemical and Substitutional Doping, and Anti-Site and Vacancy Formation in Monolayer AlN and GaN. Phys. Chem. Chem. Phys. 2018, 20, 16077–16091. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Zhu, B.; Zhang, F.; Chen, X.; Guo, H.; Qiu, J.; Liu, X.; Yu, J. Sc2CF2/Janus MoSSe Heterostructure: A Potential Z-Scheme Photocatalyst with Ultra-High Solar-to-Hydrogen Efficiency. Int. J. Hydrogen Energ. 2021, 46, 39830–39843. [Google Scholar] [CrossRef]
- Björkman, T.; Gulans, A.; Krasheninnikov, A.; Nieminen, R. Van Der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Phys. Rev. Lett. 2012, 108, 235502. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J.; Bechtel, H.; Desai, S.; Kronast, F.; Unal, A.; et al. Strong Interlayer Coupling in van Der Waals Heterostructures Built from Single-Layer Chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198–6202. [Google Scholar] [CrossRef]
- Guan, Y.; Li, X.; Hu, Q.; Zhao, D.; Zhang, L. Theoretical Design of BAs/WX2 (X = S, Se) Heterostructures for High-Performance Photovoltaic Applications from DFT Calculations. Appl. Surf. Sci. 2022, 599, 153865. [Google Scholar] [CrossRef]
- Nasir, S.; Ullah, H.; Ebadi, M.; Tahir, A.; Sagu, J.; Mat Teridi, M. New Insights into Se/BiVO4 Heterostructure for Photoelectrochemical Water Splitting: A Combined Experimental and DFT Study. J. Phys. Chem. C 2017, 121, 6218–6228. [Google Scholar] [CrossRef]
- Liu, B.; Long, M.; Cai, M.; Ding, L.; Yang, J. Interfacial Charge Behavior Modulation in 2D/3D Perovskite Heterostructure for Potential High-Performance Solar Cells. Nano Energy 2019, 59, 715–720. [Google Scholar] [CrossRef]
- Sanville, E.; Kenny, S.; Smith, R.; Henkelman, G. Improved Grid-based Algorithm for Bader Charge Allocation. J. Comput. Chem. 2007, 28, 899–908. [Google Scholar] [CrossRef]
- Ni, J.; Quintana, M.; Jia, F.; Song, S. Using van Der Waals Heterostructures Based on Two-Dimensional InSe-XS2 (X = Mo, W) as Promising Photocatalysts for Hydrogen Production. J. Mater. Chem. C 2020, 8, 12509–12515. [Google Scholar] [CrossRef]
- Abid, A.; Haneef, M.; Ali, S.; Dahshan, A. Optoelectronic and Photocatalytic Properties of GaN, GeS and SiS Monolayers and Their vdW Heterostructures. J. Phys. Chem. Solids 2022, 161, 110433. [Google Scholar] [CrossRef]
- Idrees, M.; Amin, B.; Chen, Y.; Yan, X. Computation Insights of MoS2-CrXY (X≠Y S, Se, Te) van Der Waals Heterostructure for Spintronic and Photocatalytic Water Splitting Applications. Int. J. Hydrogen Energ. 2024, 51, 1217–1228. [Google Scholar] [CrossRef]
- Wang, S.; Ren, C.; Tian, H.; Yu, J.; Sun, M. MoS2/ZnO van Der Waals Heterostructure as a High-Efficiency Water Splitting Photocatalyst: A First-Principles Study. Phys. Chem. Chem. Phys. 2018, 20, 13394–13399. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Xu, H.; Cong, C.; Li, S.; Feng, S.; Zhang, H.; Zou, C.; Shang, J.; Yang, S.; et al. Visualizing the Anomalous Charge Density Wave States in Graphene/NbSe2 Heterostructures. Adv. Mater. 2020, 32, 2003746. [Google Scholar] [CrossRef] [PubMed]
- Toroker, M.; Kanan, D.; Alidoust, N.; Isseroff, L.; Liao, P.; Carter, E. First Principles Scheme to Evaluate Band Edge Positions in Potential Transition Metal Oxide Photocatalysts and Photoelectrodes. Phys. Chem. Chem. Phys. 2011, 13, 16644. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Huang, M.; Zhang, Z.; Wang, J.; Zhao, D.; Guo, X.; Liu, X. First-Principles Study on the Electronic Structure and Catalytic Properties of Two-Dimensional MX2N4 Systems (M = Ti, Zr; X = Si, Ge). Results Phys. 2023, 52, 106820. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, T.; Zhang, M.; Tong, Y.; Zhong, C.; Zhang, N.; Zhang, L.; Wu, C.; Xie, Y. 3D Nitrogen-Anion-Decorated Nickel Sulfides for Highly Efficient Overall Water Splitting. Adv. Mater. 2017, 29, 1701584. [Google Scholar] [CrossRef]
- Lalwani, S.; AlNahyan, M.; Al Zaabi, A.; AlMarzooqi, F.; Qurashi, A. Advances in Interfacial Engineering and Their Role in Heterostructure Formation for HER Applications in Wider pH. ACS Appl. Energy Mater. 2022, 5, 14571–14592. [Google Scholar] [CrossRef]
- Xu, L.; Tao, J.; Xiao, B.; Xiong, F.; Ma, Z.; Zeng, J.; Huang, X.; Tang, S.; Wang, L. Two-Dimensional AlN/g-CNs van Der Waals Type-II Heterojunction for Water Splitting. Phys. Chem. Chem. Phys. 2023, 25, 3969–3978. [Google Scholar] [CrossRef]
- Park, H.; Lee, E.; Lei, M.; Joo, H.; Coh, S.; Fokwa, B. Canonic-Like HER Activity of Cr1-xMoxB2 Solid Solution: Overpowering Pt/C at High Current Density. Adv. Mater. 2020, 32, 2000855. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, X.; Cong, B.; Hong, W.; Chen, G. Tailoring the D-Band Centers Endows (NixFe1-x)2P Nanosheets with Efficient Oxygen Evolution Catalysis. ACS Catal. 2020, 10, 9086–9097. [Google Scholar] [CrossRef]
- He, Y.; Yang, Y.; Zhang, Z.; Gong, Y.; Zhou, W.; Hu, Z.; Ye, G.; Zhang, X.; Bianco, E.; Lei, S.; et al. Strain-Induced Electronic Structure Changes in Stacked van Der Waals Heterostructures. Nano Lett. 2016, 16, 3314–3320. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, L.; Zhang, Z. Strain Engineering of 2D Materials: Issues and Opportunities at the Interface. Adv. Mater. 2019, 31, 1805417. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Aneesh, J.; Yadav, R.; Sanda, S.; Barik, A.; Mishra, A.; Maji, T.; Karmakar, D.; Adarsh, K. Strong Interlayer Coupling Mediated Giant Two-Photon Absorption in MoSe2/Graphene Oxide Heterostructure: Quenching of Exciton Bands. Phys. Rev. B 2016, 93, 155433. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Y.; Yu, G.; Shen, D.; Wang, Y.; Kan, E. Visible-Light-Absorption in Graphitic C3N4 Bilayer: Enhanced by Interlayer Coupling. J. Phys. Chem. Lett. 2012, 3, 3330–3334. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Y.; Yu, S.; Yang, K.; Shao, Y.; Zou, L.; Zhao, B.; Wang, Z.; Ling, Y.; Chen, Y. Ni Doping in Unit Cell of BiOBr to Increase Dipole Moment and Induce Spin Polarization for Promoting CO2 Photoreduction via Enhanced Build-in Electric Field. Appl. Catal. B Environ. 2023, 327, 122420. [Google Scholar] [CrossRef]
- Mao, J.; Yu, Y.; Wang, L.; Zhang, X.; Wang, Y.; Shao, Z.; Jie, J. Ultrafast, Broadband Photodetector Based on MoSe2/Silicon Heterojunction with Vertically Standing Layered Structure Using Graphene as Transparent Electrode. Adv. Sci. 2016, 3, 1600018. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Blöchl, P. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.; Pack, J. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.; Tang, G.; Geng, W. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef]
- Gonze, X.; Lee, C. Dynamical Matrices, Born Effective Charges, Dielectric Permittivity Tensors, and Interatomic Force Constants from Density-Functional Perturbation Theory. Phys. Rev. B 1997, 55, 10355–10368. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First Principles Phonon Calculations in Materials Science. Scripta Materialia 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Ling, C.; Shi, L.; Ouyang, Y.; Zeng, X.C.; Wang, J. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. Nano Lett. 2017, 17, 5133–5139. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Fu, C.; Hu, W.; Yang, J. Designing Direct Z-Scheme Heterojunctions Enabled by Edge-Modified Phosphorene Nanoribbons for Photocatalytic Overall Water Splitting. J. Phys. Chem. Lett. 2022, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pei, W.; Zhou, S.; Bai, Y.; Zhao, J. N-Doped Graphitic Carbon Materials Hybridized with Transition Metals (Compounds) for Hydrogen Evolution Reaction: Understanding the Synergistic Effect from Atomistic Level. Carbon 2018, 133, 260–266. [Google Scholar] [CrossRef]
Heterostructure | Item | SC-I | SC-II | SC-III | SC-IV | SC-V | SC-VI | |
---|---|---|---|---|---|---|---|---|
AlN/Sc2CF2 | a | 3.21 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | |
d | 2.71 | 3.38 | 2.93 | 3.37 | 2.84 | 3.03 | ||
Eb | −22.17 | −8.74 | −13.62 | −9.69 | −18.25 | −10.54 | ||
Eg | PBE | 0.79 | 0.85 | 0.86 | 0.86 | 0.85 | 0.85 | |
HSE06 | 1.75 | 1.70 | 1.71 | 1.70 | 1.70 | 1.70 | ||
GaN/Sc2CF2 | a | 3.25 | 3.22 | 3.24 | 3.22 | 3.22 | 3.21 | |
d | 2.82 | 3.37 | 2.98 | 3.31 | 2.85 | 3.18 | ||
Eb | −30.82 | −15.21 | −24.24 | −15.87 | −27.19 | −21.27 | ||
Eg | PBE | 0.90 | 0.95 | 0.96 | 0.95 | 0.93 | 0.95 | |
HSE06 | 1.84 | 1.81 | 1.82 | 1.81 | 1.82 | 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Lu, Y.; Song, J.; Ma, B.; Qiu, K.; Bai, L.; Wang, Y.; Chen, Y.; Tang, Y. First-Principles Investigation on the Tunable Electronic Structures and Photocatalytic Properties of AlN/Sc2CF2 and GaN/Sc2CF2 Heterostructures. Molecules 2024, 29, 3303. https://doi.org/10.3390/molecules29143303
Liu M, Lu Y, Song J, Ma B, Qiu K, Bai L, Wang Y, Chen Y, Tang Y. First-Principles Investigation on the Tunable Electronic Structures and Photocatalytic Properties of AlN/Sc2CF2 and GaN/Sc2CF2 Heterostructures. Molecules. 2024; 29(14):3303. https://doi.org/10.3390/molecules29143303
Chicago/Turabian StyleLiu, Meiping, Yidan Lu, Jun Song, Benyuan Ma, Kangwen Qiu, Liuyang Bai, Yinling Wang, Yuanyuan Chen, and Yong Tang. 2024. "First-Principles Investigation on the Tunable Electronic Structures and Photocatalytic Properties of AlN/Sc2CF2 and GaN/Sc2CF2 Heterostructures" Molecules 29, no. 14: 3303. https://doi.org/10.3390/molecules29143303
APA StyleLiu, M., Lu, Y., Song, J., Ma, B., Qiu, K., Bai, L., Wang, Y., Chen, Y., & Tang, Y. (2024). First-Principles Investigation on the Tunable Electronic Structures and Photocatalytic Properties of AlN/Sc2CF2 and GaN/Sc2CF2 Heterostructures. Molecules, 29(14), 3303. https://doi.org/10.3390/molecules29143303