Evaluation of the Antioxidant and Anti-Inflammatory Activities and Acute Toxicity of Caco Seed (Chrysobalanus icaco L.) in Murine Models
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Content
2.2. Antioxidant Potential In Vitro
2.3. Phytochemical Profiling by FIA-ESI-FTICR-MS
2.4. Acute Toxicity
2.5. Relative Weight and Analysis of Organs (Liver, Spleen, and Kidneys)
2.6. Anti-Inflammatory Activity In Vivo
3. Discussion
4. Materials and Methods
4.1. Biological Materials and Preparation of C. icaco Flour
4.2. Preparation of the Aqueous Extract of C. icaco Seed
4.3. Determination of Total Phenolic Content, Flavonoids, and Condensed Tannins
4.4. Antioxidant Potential In Vitro
4.4.1. DPPH Inhibition Assay
4.4.2. Scavenging of ABTS+ Radicals
4.4.3. Reducing Power
4.5. Determination of the Phytochemical Composition by FIA-ESI-FTICR-MS Analysis
4.6. In Vivo Evaluation
4.6.1. Assessment of Acute Toxicity
4.6.2. Carrageenan-Induced Model of Subplantar Edema
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramírez-Villalobos, M.; Urdaneta-Fernández, A.; Vargas-Simón, G. Tratamientos con ácido indolbutírico y lesionado sobre el enraizamiento de estacas de icaco (Chrysobalanus icaco L.). Agron. Trop. 2004, 54, 203–218. [Google Scholar]
- Vargas, C.E.; Mendes, M.F.; Azevedo, D.A.; Pessoa, F.L.; Uller, A.C. Extraction of the essential oil of abajeru (Chrysobalanus icaco) using supercritical CO2. J. Supercrit. Fluids 2010, 54, 171–177. [Google Scholar] [CrossRef]
- Onilude, H.A.; Kazeem, M.I.; Adu, O.B. Chrysobalanus icaco: A review of its phytochemistry and pharmacology. J. Integr. Med. 2021, 19, 13–19. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Barbosa, A.P.; de Oliveira Silveira, G.; Cortés de Menezes, I.A.; Rezende Neto, J.M.; Bitencurt, J.; dos Santos Estavam, C.; do Carmo Bion de Lima, A.; Tomazzi, S.M.; Gibara-Guimaraes, A.; Quintans, L.J.; et al. Antidiabetic effect of the Chrysobalanus icaco L. aqueous extract in rats. J. Med. Food. 2013, 16, 538–543. [Google Scholar] [CrossRef] [PubMed]
- White, P.A.; Cercato, L.M.; Batista, V.S.; Camargo, E.A.; De Lucca, W.; Oliveira, A.S.; Silva, F.T.; Goes, T.C.; Oliveira, E.R.; Moraes, V.R.; et al. Aqueous extract of Chrysobalanus icaco leaves, in lower doses, prevent fat gain in obese high-fat fed mice. J. Ethnopharmacol. 2016, 179, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Machado, S.C.; Rodrigues, M.P.; Nunes, A.P.M.; Dantas, F.J.; De Mattos, J.C.P.; Silva, C.R.; Bezerra, R.J.; Caldeira de Araujo, A. Genotoxic potentiality of aqueous extract prepared from Chrysobalanus icaco L. leaves. Toxicol. Lett. 2004, 151, 481–487. [Google Scholar] [CrossRef]
- Silva, I.; Peixoto, A. El abajurú (Chrysobalanus icaco L. y Eugenia rotundifolia Casar.) comercializado en la ciudad de Río de Janeiro, Brasil. Rev. Bras. Farmacogn. 2009, 19, 325–332. [Google Scholar] [CrossRef]
- Feitosa, E.; Xavier, H.; Randau, K. Chrysobalanaceae: Traditional uses, phytochemistry and pharmacology. Rev. Bras. Farmacogn. 2012, 22, 1181–1186. [Google Scholar] [CrossRef]
- Stephen-Onojedje, Q.O.; Asagba, S.O.; Kadiri, H.E. Assessment of Antioxidant and Polyphenol Profile of Chrysobalanus icaco from Southern Nigeria. Trop. J. Nat. Prod. Res. 2023, 7, 2782–2789. [Google Scholar]
- da Silva Pantoja, L.; Trindade, S.; da Silva Carneiro, A.; Silva, J.P.; da Paixa, T.P.; Romeiro, C.F.; de Andrade, M. Computational study of the main flavonoids from Chrysobalanus icaco L. against NADPH-oxidase and in vitro Antioxidant Activity. Res. Soc. Dev. 2022, 11, e5011628542. [Google Scholar] [CrossRef]
- Carnevale, N.F.; Pilon, A.C.; da Silva, B.V.; Castro, G.I. Chrysobalanaceae: Secondary metabolites, ethnopharmacology and pharmacological potential. Phytochem. Rev. 2013, 12, 121–146. [Google Scholar] [CrossRef]
- Araújo-Filho, H.G.; Dias, J.D.S.; Quintans-Júnior, L.J.; Santos, M.R.; White, P.A.; Barreto, R.S.; Quintans, J.S. Phytochemical screening and analgesic profile of the lyophilized aqueous extract obtained from Chrysobalanus icaco leaves in experimental protocols. Pharm. Biol. 2016, 54, 3055–3062. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Farag, M.A.; Xiao, J.; Yang, X.; Liu, Y.; Shen, J.; Lu, B. The influence of phytochemicals on cell heterogeneity in chronic inflammation-associated diseases: The prospects of single cell sequencing. J. Nutr. Biochem. 2022, 108, 109091. [Google Scholar] [CrossRef] [PubMed]
- Felgus-Lavefve, L.; Howard, L.; Adams, S.H.; Baum, J.I. The effects of blueberry phytochemicals on cell models of inflammation and oxidative stress. Adv. Nutr. 2022, 13, 1279–1309. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, J.L.; Pinheiro, A.V.; de Oliveira, A.M. Cyperaceae species used for the treatment of inflammation: A review of ethnomedicinal, pharmacological, toxicological, and phytochemical evidence. S. Afr. J. Bot. 2022, 150, 1138–1158. [Google Scholar] [CrossRef]
- Corte-Real, J.; Bohn, T. Interaction of divalent minerals with liposoluble nutrients and phytochemicals during digestion and influences on their bioavailability—A review. Food Chem. 2018, 252, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Venancio, V.P.; Cipriano, P.A.; Kim, H.; Antunes, L.M.; Talcott, S.T.; Mertens-Talcott, S.U. Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells. Food. Funct. 2017, 8, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, N.E.; Pereira, P.S.; Bezerra de Oliveira, T.; de Arruda, S.M.; Sarmento Silva, T.M.; Delmiro Santana, A.; Silva do Nascimiento, M.S.; Moreno Santisteban, R.; Coelho Teixeira, A.; Goncalves da Silva, T. Acute and repeated dose 28-day oral toxicity of Chrysobalanus icaco L. leaf aqueous extract. Regul. Toxicol. Pharmacol. 2020, 113, 104643. [Google Scholar] [CrossRef]
- Villagra, E.; Quintero, E.; Mero, A.; De León, E.G.; Morán-Pinzón, J.A.; Palermo, J.A.; Cano, L.P. Caracterización química y actividad biológica de las hojas y semillas de Chrysobalanus icaco L. (Icaco). Rev. Cubana Plant. Med. 2020, 25, 1–11. [Google Scholar]
- Oliveira, I.; Meyer, A.; Afonso, S.; Ribeiro, C.; Gonçalves, B. Morphological, mechanical and antioxidant properties of Portuguese almond cultivars. J. Food Sci. Technol. 2018, 55, 467–478. [Google Scholar] [CrossRef]
- Ogunmoyole, T.; Kade, I.J.; Korodele, B. In vitro antioxidant properties of aqueous and ethanolic extracts of walnut (Juglans regia). J. Med. Plant Res. 2011, 5, 6839–6848. [Google Scholar] [CrossRef]
- Oliveira, I.; Meyer, A.S.; Afonso, S.; Sequeira, A.; Vilela, A.; Goufo, P.; Trindade, H.; Goncalves, B. Effects of different processing treatments on almond (Prunus dulcis) bioactive compounds, antioxidant activities, fatty acids, and sensorial characteristics. Plants 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kong, X.; Xia, S.; Jia, B.; Dong, M.; Gan, L. UV light-driven controlled photodegradation of condensed tannins from larch bark. Ind. Crops Prod. 2022, 177, 114403. [Google Scholar] [CrossRef]
- Olivas-Aguirre, F.J.; Wall-Medrano, A.; González-Aguilar, G.A.; López-Díaz, J.A.; Álvarez-Parrilla, E.; Rosa, L.A.; Ramos-Jimenez, A. Hydrolyzable tannins; biochemistry, nutritional & analytical aspects and health. Nutr. Hosp. 2015, 31, 55–66. [Google Scholar]
- Pelitli, E.P.; Janiak, M.A.; Amarowicz, R.; Alasalvar, C. Protein precipitating capacity and antioxidant activity of Turkish Tombul hazelnut phenolic extract and its fractions. Food Chem. 2017, 218, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, P.; Koundal, R.; Agnihotri, V.K. Antioxidant properties and UPLC–MS/MS profiling of phenolics in jacquemont’s hazelnut kernels (Corylus jacquemontii) and its byproducts from western Himalaya. J. Food Sci. 2016, 53, 3522–3531. [Google Scholar] [CrossRef] [PubMed]
- Pelvan, E.; Olgun, E.O.; Karadag, A.; Alasalvar, C. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chem. 2018, 244, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Martelli, A.; Stévigny, C.; Arlorio, M. Total antioxidant activity of hazelnut skin (Nocciola Piemonte PGI): Impact of different roasting conditions. Food Chem. 2010, 119, 1647–1655. [Google Scholar] [CrossRef]
- Granados-Balbuena, S.Y.; Díaz-Pacheco, A.; García-Meza, M.G.; Tapia-López, L.; Cruz-Narváez, Y.; Ocaranza-Sánchez, E. Phytochemical profile of petals from black Dahlia pinnata by flow injection analysis–electrospray ionization–Fourier transform ion cyclotron resonance mass spectrometry. Phytochem. Anal. 2023, 34, 1009–1021. [Google Scholar] [CrossRef]
- Ogbonnia, S.O.; Adekunle, A.; Olagbende-Dada, S.O.; Anyika, E.N.; Enwuru, V.N.; Orolepe, M. Assessing plasma glucose and lipid levels, body weight and acute toxicity following oral administration of an aqueous ethanolic extract of Parinari curatellifolia Planch, (Chrysobalanaceae) seeds in alloxan-induced diabetes in rats. Afr. J. Biotechnol. 2008, 7, 2998–3003. [Google Scholar]
- Oliveira, T.; Júnior, C.; Mota, F.; Araújo, L.; Maia, M.; Randau, K.; Nascimento, S.; Silva, T.G.D. Anti-inflammatory and Antinociceptive Effects of the Aqueous Extract of the Bark of Chrysobalanus icaco Linnaeus. Br. J. Pharm. Res. 2014, 4, 1253–1268. [Google Scholar] [CrossRef]
- Silva, L.B.A.; Pinheiro-Castro, N.; Novaes, G.M.; Pascoal, G.; Ong, T. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res. Inter. 2019, 125, 108646. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Tian, X.; Li, Q.; Liao, L.; Wu, S.; Tang, F.; Shen, D.; Liu, Y. Walnut pellicle color affects its phenolic composition: Free, esterified and bound phenolic compounds in various colored-pellicle walnuts. J. Food Compos. Anal. 2022, 109, 104470. [Google Scholar] [CrossRef]
- Xiaokang, W.; Lyng, J.G.; Brunton, N.P.; Cody, L.; Jacquier, J.C.; Harrison, S.M.; Papoutsis, K. Monitoring the effect of different microwave extraction parameters on the recovery of polyphenols from shiitake mushrooms: Comparison with hot-water and organic-solvent extractions. Biotechnol. Rep. 2020, 27, e00504. [Google Scholar] [CrossRef] [PubMed]
- Durmus, N.; Kilic-Akyilmaz, M. Bioactivity of non-extractable phenolics from lemon peel obtained by enzyme and ultrasound assisted extractions. Food Biosci. 2023, 53, 102571. [Google Scholar] [CrossRef]
- Hazmi, S.A.; Ismail, N.S.; Mohamad, M.; Osman, W.H. Extraction of phenolic and flavonoids compounds from kenaf (Hibiscus cannabinus L.) using ultrasound assisted extraction. Mater. Today Proc. 2023, in press. [Google Scholar]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, S.; Niakousari, M.; Babajafari, S.; Mazloomi, S.M. Ultrasound-assisted extraction of mucilaginous seed hydrocolloids: Physicochemical properties and food applications. Trends Food Sci. Technol. 2021, 118, 356–361. [Google Scholar] [CrossRef]
- Ruviaro, A.R.; Barbosa, P.D.; Alexandre, E.C.; Justo, A.F.; Antunes, E.; Macedo, G.A. Aglycone-rich extracts from citrus by-products induced endothelium-independent relaxation in isolated arteries. Biocatal. Agric. Biotechnol. 2020, 23, 2–7. [Google Scholar] [CrossRef]
- Arcan, I.; Yemenicioglu, A. Antioxidant activity and phenolic content of fresh and dry nuts with or without the seed coat. J. Food Compos. Anal. 2009, 22, 184–188. [Google Scholar] [CrossRef]
- Ferreyra, S.; Bottini, R.; Fontana, A. Temperature and light conditions affect stability of phenolic compounds of stored grape cane extracts. Food Chem. 2023, 405, 2–12. [Google Scholar] [CrossRef]
- Pundir, S.; Garg, P.; Dviwedi, A.; Ali, A.; Kapoor, V.K.; Kapoor, D.; Kulshrestha, S.; Ranjan, U.; Negi, P. Ethnomedicinal uses, phytochemistry and dermatological effects of Hippophae rhamnoides L.: A review. J. Ethnopharmacol. 2021, 266, 113434. [Google Scholar] [CrossRef] [PubMed]
- Esparza, I.; Cimminelli, M.J.; Moler, J.A.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Stability of phenolic compounds in grape stem extracts. Antioxidants 2020, 9, 720. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Shen, D.; Wang, R.; Li, Q.; Mo, R.; Zheng, Y.; Liu, Y. Phenolic profiles and antioxidant activities of free, esterified and bound phenolic compounds in walnut kernel. Food Chem. 2021, 350, 129217. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. ¿Are polyphenols antioxidants or pro-oxidants? ¿What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 2008, 476, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Kondakci, E.; Ozyurek, M.; Guclu, K.; Apak, R. Novel pro-oxidant activity assay for polyphenols, vitamins C and E using a modified CUPRAC method. Talanta 2013, 115, 583–589. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Lin, H.; Lin, Z. Hazelnut and its by-products: A comprehensive review of nutrition, phytochemical profile, extraction, bioactivities and applications. Food Chem. 2023, 413, 135576. [Google Scholar] [CrossRef] [PubMed]
- Ono, E.; Waki, T.; Oikawa, D.; Murata, J.; Shiraishi, A.; Kato, M.; Ogata, N.; Takahashi, S.; Yamaguchi, M.; Horikawa, M.; et al. Glycoside-specific glycosyltransferases catalyze regio-selective sequential glucosylations for a sesame lignan, sesaminol triglucoside. TPJ Plant J. 2020, 101, 1221–1233. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Sarma, P.; Barge, S.R.; Swargiary, D.; Devi, G.S.; Borah, J.C. Xanthosine, a purine glycoside mediates hepatic glucose homeostasis through inhibition of gluconeogenesis and activation of glycogenesis via regulating the AMPK/FoxO1/AKT/GSK3β signaling cascade. Chem. Biol. Interact. 2023, 371, 110347. [Google Scholar] [CrossRef] [PubMed]
- Herrou, J.; Czyz, D.M.; Willett, J.W.; Kim, H.S.; Chhor, G.; Babnigg, G.; Kim, Y.; Crosson, S. WrpA is an atypical flavodoxin family protein under regulatory control of the Brucella abortus general stress response system. J. Bacteriol. 2016, 198, 1281–1293. [Google Scholar] [CrossRef]
- Ma, Z.; Du, B.; Li, J.; Yang, Y.; Zhu, F. An insight into anti-inflammatory activities and inflammation related diseases of anthocyanins: A review of both in vivo and in vitro investigations. Int. J. Mol. Sci. 2021, 22, 11076. [Google Scholar] [CrossRef]
- Lainas, K.; Alasalvar, C.; Bolling, B.W. Effects of roasting on proanthocyanidin contents of Turkish Tombul hazelnut and its skin. J. Funct. Foods. 2016, 23, 647–653. [Google Scholar] [CrossRef]
- Pham, E.C.; Van, L.V.; Nguyen, C.V.; Duong, N.T.N.; Le Thi, T.V.; Truong, T.N. Acute and sub-acute toxicity evaluation of Merremia tridentata (L.) stem extract on mice. Toxicon 2023, 227, 107093. [Google Scholar] [CrossRef] [PubMed]
- Asare, G.A.; Gyan, B.; Bugyei, K.; Adjei, S.; Mahama, R.; Addo, P.; Nyarko, L.; Wiredu, E.; Nyarko, A. Toxicity potentials of the nutraceutical Moringa oleifera at supra-supplementation levels. J. Ethnopharmacol. 2012, 139, 265–272. [Google Scholar] [CrossRef]
- Youns, M.; Hoheisel, J.D.; Efferth, T. Toxicogenomics for the prediction of toxicity related to herbs from traditional Chinese medicine. Planta Med. 2010, 76, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 423: Acute Oral toxicity—Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2002. [Google Scholar]
- Amanat, M.; Daula, A.; Singh, R. Acute toxicity assessment of methanolic extract of Zingiber roseum (Roscoe.) rhizome in swiss albino mice. Pharmacol. Res.-Mod. Chin. Med. 2023, 7, 100244. [Google Scholar] [CrossRef]
- Enciso, E.; Arroyo, J. Efecto antiinflamatorio y antioxidante de los flavonoides de las hojas de Jungia rugosa Less (matico de puna) en un modelo experimental en ratas. An. Fac. Med. 2011, 72, 231–237. [Google Scholar] [CrossRef]
- Joseph, S.G.; Carlos, P.M.; Elmer, L.C.; Alberto, S.G. Efecto antinociceptivo y antiinflamatorio de la metformina en modelos experimentales en ratón. Horiz. Med. 2019, 19, 49–57. [Google Scholar]
- Yera, A.O.; Cuevas, V.M.; Calzado, Y.R.; Guerra, Y.P.; Despaigne, S.J. Estudio comparativo de los efectos del D-004 y sustancias antiinflamatorias sobre la pleuresía inducida por carragenina en ratas. Rev. CENIC Cienc. Biológicas 2019, 50, 212–225. [Google Scholar]
- Annamalai, P.; Thangam, E.B. Vitex trifolia L. modulates inflammatory mediators via down-regulation of the NF-κB signaling pathway in carrageenan-induced acute inflammation in experimental rats. J. Ethnopharmacol. 2022, 298, 115583. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N. Resolvins and Cysteinyl-containing Pro-Resolving Mediators Activate Resolution of Infectious Inflammation and Tissue Regeneration. Prostaglandins Other Lipid Mediat. 2023, 166, 106718. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients 2019, 11, 2579. [Google Scholar] [CrossRef] [PubMed]
- Truong, V.L.; Jeong, W.S. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases. Food Sci. Hum. Wellness 2022, 11, 502–511. [Google Scholar] [CrossRef]
- Zhou, J.; Fang, C.; Rong, C.; Luo, T.; Liu, J.; Zhang, K. Reactive oxygen species-sensitive materials: A promising strategy for regulating inflammation and favoring tissue regeneration. Smart Mater. Med. 2023, 4, 427–446. [Google Scholar] [CrossRef]
- Li, K.K.; Shen, S.S.; Deng, X.; Shiu, H.T.; Siu, W.S.; Leung, P.C.; Hay Ko, C.; Cheng, B.H. Dihydrofisetin exerts its anti-inflammatory effects associated with suppressing ERK/p38 MAPK and Heme Oxygenase-1 activation in lipopolysaccharide-stimulated RAW 264.7 macrophages and carrageenan-induced mice paw edema. Int. Immunopharmacol. 2018, 54, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef] [PubMed]
- Alrugaibah, M.; Washington, T.L.; Yagiz, Y.; Gu, L. Ultrasound-assisted extraction of phenolic acids, flavonols, and flavan-3-ols from muscadine grape skins and seeds using natural deep eutectic solvents and predictive modelling by artificial neural networking. Ultrason. Sonochem. 2021, 79, 3–12. [Google Scholar] [CrossRef]
- Borges-Martínez, E.; Gallardo-Velázquez, T.; Cardador-Martínez, A.; Moguel-Concha, D.; Osorio-Revilla, G.; Ruiz-Ruiz, J.C.; Martínez, C.J. Phenolic compounds profile and antioxidant activity of pea (Pisum sativum L.) and black bean (Phaseolus vulgaris L.) sprouts. Food Sci. Technol. 2021, 42, e46920. [Google Scholar] [CrossRef]
- Ortega-Medrano, R.J.; Ceja-Torres, L.F.; Vázquez-Sánchez, M.; Martínez-Ávila, G.C.G.; Medina-Medrano, J.R. Characterization of Cosmos sulphureus Cav. (Asteraceae): Phytochemical Screening, Antioxidant Activity and Chromatography Analysis. Plants. 2023, 12, 896. [Google Scholar] [CrossRef]
- Medina-Medrano, J.R.; Quiñones-Muñoz, T.A.; Arce-Ortíz, A.; Torruco-Uco, J.G.; Hernández-Martínez, R.; Lizardi-Jiménez, M.A.; Varela-Santos, E. Antioxidant activity of collagen extracts obtained from the skin and gills of Oreochromis sp. J. Med. Food 2019, 22, 722–728. [Google Scholar] [CrossRef]
- Ramos, L.Á.; Baez, D.A.; Ortiz, G.D.; Ruiz, J.C.R.; López, V.M.T. Antioxidant and antihypertensive activity of Gouda cheese at different stages of ripening. Food Chem. 2022, 10, 100284. [Google Scholar]
- Gutiérrez-Rebolledo, G.A.; Garduño-Siciliano, L.; García-Rodríguez, R.V.; Pérez-González, M.Z.; Chávez, M.I.; Bah, M.; Siordia-Reyes, G.A.; Jiménez-Arellanes, M.A. Anti-inflammatory and toxicological evaluation of Moussonia deppeana (Schldl. & Cham) Hanst and Verbascoside as a main active metabolite. J. Ethnopharmacol. 2016, 187, 269–280. [Google Scholar] [PubMed]
Assay | Content |
---|---|
TPC 1 | 124.14 ± 0.32 |
Flavonoids 2 | 1.65 ± 0.02 |
Condensed tannins 3 | 0.910 ± 0.01 |
Antioxidant techniques | IC50 |
DPPH 4 | 0.050 |
ABTS 4 | 0.074 |
FRAP 4 | 0.49 |
Theoretical m/z | Measured m/z | Formula of the Element [M − H]+ | Error (ppm) | Compound | Relative Abundance |
---|---|---|---|---|---|
Positive mode | |||||
622.3596406 | 622.35880 | C28H46O15 | 1.350 | 2-acetyl-3-isobutanoyl-3,4-di (3-methylbutanoyl) sucrose | 3.055 |
Negative mode | |||||
756.0952107 | 756.09669 | C36H36O18 | 1.956 | Cyanidin 3-O-(6-O-p-coumaroyl)glucoside-5-O-glucoside (shisonin) | 1.01 |
170.0667055 | 170.06637 | C8H10O4, | 1.972 | 3,4-Dihydroxyphenylglycol | 1.080 |
856.1952003 | 856.20052 | C38H48O22 | 6.213 | (+)-Sesaminol 2-O-beta-d-gentiotrioside | 2.014 |
758.3327712 | 758.32797 | C39H42N4O12 | 6.331 | C8-beta-glucuronosyl-bilirubin-IX alpha | 1.56 |
328.9521572 | 328.95623 | C10H12N5O6P | 12.381 | Deoxyadenosine monophosphate (dAMP) | 2.23 |
284.0726800 | 284.07642 | C10H12N4O6 | 13.165 | Xanthosine | 1.40 |
84.04504602 | 84.04698 | C5H8O | 23.011 | 3-Methyl-2-butenal | 1.00 |
336.9370951 | 336.94496 | C9H12N3O9P | 23.342 | 5-hydroxy-CMP | 1.210 |
456.1216171 | 456.13245 | C17H21N4O9P | 23.749 | Reduced flavodoxin | 1.516 |
Time (h) | Behavioral Parameters | Experimental Groups (g/kg) | |||
---|---|---|---|---|---|
Control | 0.5 | 1 | 2 | ||
1 | Piloerection | 0 | 17 | 33 | 33 |
Lethargy | 0 | 0 | 0 | 0 | |
Tachycardia | 0 | 0 | 0 | 0 | |
Hyperactivity | 0 | 17 | 33 | 17 | |
2 | Piloerection | 0 | 50 | 67 | 83 |
Lethargy | 0 | 0 | 0 | 0 | |
Tachycardia | 0 | 17 | 83 | 0 | |
Hyperactivity | 0 | 0 | 0 | 83 | |
3 | Piloerection | 0 | 67 | 100 | 83 |
Lethargy | 0 | 0 | 0 | 0 | |
Tachycardia | 0 | 0 | 100 | 83 | |
Hyperactivity | 0 | 0 | 0 | 83 | |
4 | Piloerection | 0 | 17 | 33 | 83 |
Lethargy | 0 | 0 | 0 | 0 | |
Tachycardia | 0 | 0 | 0 | 17 | |
Hyperactivity | 0 | 0 | 17 | 0 | |
5 | Piloerection | 0 | 17 | 33 | 50 |
Lethargy | 0 | 0 | 0 | 50 | |
Tachycardia | 0 | 0 | 0 | 50 | |
Hyperactivity | 0 | 0 | 0 | 0 | |
6 | Piloerection | 0 | 0 | 17 | 50 |
Lethargy | 0 | 0 | 0 | 50 | |
Tachycardia | 0 | 0 | 0 | 50 | |
Hyperactivity | 0 | 0 | 0 | 0 |
Experimental Groups (g/kg) | Organ–Body Weight Relationship (%) | ||
---|---|---|---|
Liver | Spleen | Kidneys | |
Control | 5.33 ± 0.08 | 0.62 ± 0.03 | 1.32 ± 0.03 |
0.5 | 5.28 ± 0.24 | 0.66 ± 0.07 | 1.32 ± 0.11 |
1 | 4.75 ± 0.05 | 0.69 ± 0.06 | 1.21 ± 0.05 |
2 | 4.74 ± 0.13 | 0.60 ± 0.05 | 1.33 ± 0.04 |
Groups (mg/kg) | Time (h) | |||
---|---|---|---|---|
1 | 3 | 5 | 7 | |
Carrageenan | 0.615 ± 0.02 | 0.751 ± 0.04 ● | 1.056 ± 0.04 ●▲ | 0.791 ± 0.05 ●+ |
Indomethacin (10) | 0.417 ± 0.04 a (32.30%) | 0.285 ± 0.03 a● (62.0%) | 0.463 ± 0.03 a▲ (59.19%) | 0.391 ± 0.04 a▲ (50.38%) |
AECS (150) | 0.502 ± 002 a (18.14%) | 0.457 ± 0.02 ab (39.14%) | 0.499 ± 0.04 a (52.76%) | 0.434 ± 0.05 a (45.21%) |
AECS (300) | 0.413 ± 0.02 a (32.89%) | 0.409 ± 0.02 a (45.50%) | 0.542 ± 0.07 a▲ (48.68%) | 0.431 ± 0.04 a+ (45.69%) |
AECS (600) | 0.356 ± 0.02 ac (42.15%) | 0.376 ± 0.03 a (49.88%) | 0.445 ± 0.04 a (57.85%) | 0.359 ± 0.03 a (54.64%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arce-Ortiz, A.; Jiménez-Martínez, C.; Gutiérrez-Rebolledo, G.A.; Corzo-Ríos, L.J.; Olivo-Vidal, Z.E.; Mora-Escobedo, R.; Cruz-Narváez, Y.; Sánchez-Chino, X.M. Evaluation of the Antioxidant and Anti-Inflammatory Activities and Acute Toxicity of Caco Seed (Chrysobalanus icaco L.) in Murine Models. Molecules 2024, 29, 3243. https://doi.org/10.3390/molecules29143243
Arce-Ortiz A, Jiménez-Martínez C, Gutiérrez-Rebolledo GA, Corzo-Ríos LJ, Olivo-Vidal ZE, Mora-Escobedo R, Cruz-Narváez Y, Sánchez-Chino XM. Evaluation of the Antioxidant and Anti-Inflammatory Activities and Acute Toxicity of Caco Seed (Chrysobalanus icaco L.) in Murine Models. Molecules. 2024; 29(14):3243. https://doi.org/10.3390/molecules29143243
Chicago/Turabian StyleArce-Ortiz, Abel, Cristian Jiménez-Martínez, Gabriel Alfonso Gutiérrez-Rebolledo, Luis Jorge Corzo-Ríos, Zendy Evelyn Olivo-Vidal, Rosalva Mora-Escobedo, Yair Cruz-Narváez, and Xariss M. Sánchez-Chino. 2024. "Evaluation of the Antioxidant and Anti-Inflammatory Activities and Acute Toxicity of Caco Seed (Chrysobalanus icaco L.) in Murine Models" Molecules 29, no. 14: 3243. https://doi.org/10.3390/molecules29143243
APA StyleArce-Ortiz, A., Jiménez-Martínez, C., Gutiérrez-Rebolledo, G. A., Corzo-Ríos, L. J., Olivo-Vidal, Z. E., Mora-Escobedo, R., Cruz-Narváez, Y., & Sánchez-Chino, X. M. (2024). Evaluation of the Antioxidant and Anti-Inflammatory Activities and Acute Toxicity of Caco Seed (Chrysobalanus icaco L.) in Murine Models. Molecules, 29(14), 3243. https://doi.org/10.3390/molecules29143243