Thermal Decomposition of Bio-Based Plastic Materials
Abstract
:1. Introduction
2. Results
2.1. TPS Samples Using Different Starch
2.2. TPS with CaCO3 Added
2.3. PLA Decomposition
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Kinetic Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wahbi, M.; Litke, Q.; Levin, D.; Liu, S.; De France, K.J.; Kontopoulou, M. Compatibilization of PLA/PBAT Blends with Epoxidized Canola Oil for 3D Printing Applications. Mater. Adv. 2024, 5, 5194–5203. [Google Scholar] [CrossRef]
- Guo, B.; Zha, D.; Li, B.; Yin, P.; Li, P. Polyvinyl Alcohol Microspheres Reinforced Thermoplastic Starch Composites. Materials 2018, 11, 640. [Google Scholar] [CrossRef] [PubMed]
- Kaewtatip, K.; Thongmee, J. The Effects of Cross-Linked Starch on the Properties of Thermoplastic Starch. Mater. Des. 2013, 45, 586–589. [Google Scholar] [CrossRef]
- Karim, S.F.A.; Jai, J.; Hamid, K.H.K.; Norhisam, F.N. Thermal and Mechanical Properties of Polyethylene-Starch Based Film Incorporated with Crude Palm Oil. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1092, 012033. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Vu, T.T.; Grillet, A.C.; Ha Thuc, H.; Ha Thuc, C.N. Effect of Organoclay on Morphology and Properties of Linear Low Density Polyethylene and Vietnamese Cassava Starch Biobased Blend. Carbohydr. Polym. 2016, 136, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Rahman, W.A.W.A.; Sin, L.T.; Rahmat, A.R.; Samad, A.A. Thermal Behaviour and Interactions of Cassava Starch Filled with Glycerol Plasticized Polyvinyl Alcohol Blends. Carbohydr. Polym. 2010, 81, 805–810. [Google Scholar] [CrossRef]
- Sin, L.T.; Rahman, W.A.W.A.; Rahmat, A.R.; Mokhtar, M. Determination of Thermal Stability and Activation Energy of Polyvinyl Alcohol–Cassava Starch Blends. Carbohydr. Polym. 2011, 83, 303–305. [Google Scholar] [CrossRef]
- Santos, J.D.C.; Brites, P.; Martins, C.; Nunes, C.; Coimbra, M.A.; Ferreira, P.; Gonçalves, I. Starch Consolidation of Calcium Carbonate as a Tool to Develop Lightweight Fillers for LDPE-Based Plastics. Int. J. Biol. Macromol. 2023, 226, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Sirohi, R.; Singh, S.; Tarafdar, A.; Reddy, N.B.P.; Negi, T.; Gaur, V.K.; Pandey, A.K.; Sindhu, R.; Madhavan, A.; Arun, K.B. Thermoplastic Starch. In Biomass, Biofuels, Biochemicals: Biodegradable Polymers and Composites—Process Engineering to Commercialization; Elsevier: Amsterdam, The Netherlands, 2021; pp. 31–49. ISBN 9780128218884. [Google Scholar]
- Bugnotti, D.; Dalle Vacche, S.; Esposito, L.H.; Callone, E.; Orsini, S.F.; Ceccato, R.; D’Arienzo, M.; Bongiovanni, R.; Dirè, S.; Vitale, A. Structure of Starch–Sepiolite Bio-Nanocomposites: Effect of Processing and Matrix–Filler Interactions. Polymers 2023, 15, 1207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Rempel, C.; McLaren, D. Thermoplastic Starch. In Innovations in Food Packaging: Second Edition; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; pp. 391–412. ISBN 9780123946010. [Google Scholar]
- Conesa, J.A.; Fullana, A.; Font, R. Reactivity of Carbonaceous Materials Modified by Copper Chloride Addition. A Thermogravimetric Study. J. Anal. Appl. Pyrolysis 2001, 58, 553–568. [Google Scholar] [CrossRef]
- Zou, H.; Yi, C.; Wang, L.; Liu, H.; Xu, W. Thermal Degradation of Poly(Lactic Acid) Measured by Thermogravimetry Coupled to Fourier Transform Infrared Spectroscopy. J. Therm. Anal. Calorim. 2009, 97, 929–935. [Google Scholar] [CrossRef]
- Domene-López, D.; Guillén, M.M.; Martin-Gullon, I.; García-Quesada, J.C.; Montalbán, M.G. Study of the Behavior of Biodegradable Starch/Polyvinyl Alcohol/Rosin Blends. Carbohydr. Polym. 2018, 202, 299–305. [Google Scholar] [CrossRef]
- Grønli, M.G.; Várhegyi, G.; Di Blasi, C. Thermogravimetric Analysis and Devolatilization Kinetics of Wood. Ind. Eng. Chem. Res. 2002, 41, 4201–4208. [Google Scholar] [CrossRef]
- Várhegyi, G.; Wang, L.; Skreiberg, Ø. Non-isothermal kinetics: Best-fitting empirical models instead of model-free methods. J. Therm. Anal. Calorim. 2020, 142, 1043–1054. [Google Scholar] [CrossRef]
- Font, R.; Fullana, A.; Conesa, J. Kinetic Models for the Pyrolysis and Combustion of Two Types of Sewage Sludge. J. Anal. Appl. Pyrolysis 2005, 74, 429–438. [Google Scholar] [CrossRef]
- Caballero, J.A.; Conesa, J.A. Mathematical Considerations for Nonisothermal Kinetics in Thermal Decomposition. J. Anal. Appl. Pyrolysis 2005, 73, 85–100. [Google Scholar] [CrossRef]
- Várhegyi, G.; Szabó, P.; Antal, M.J. Kinetics of the Thermal Decomposition of Cellulose under the Experimental Conditions of Thermal Analysis. Theoretical Extrapolations to High Heating Rates. Biomass Bioenergy 1994, 7, 69–74. [Google Scholar] [CrossRef]
- Font, R.; Garcia-Cortes, A.N. Application of the Transition State Theory to the Pyrolysis of Biomass and Tars. J. Anal. Appl. Pyrolysis 1995, 35, 249–258. [Google Scholar] [CrossRef]
TPS from | Potato | Corn/Wheat/Rice/Cassava |
---|---|---|
log k01 (s−1) | 4.89 | 3.51 |
E1 (kJ/mol) | 65.04 | 55.70 |
n1 | 1.49 | 1.51 |
s10 | 0.3996 | |
log k02 (s−1) | 13.88 | |
E2 (kJ/mol) | 180.23 | |
n2 | 4.33 | |
s20 | 0.5358 | |
log k03 (s−1) | 40.22 | |
E3 (kJ/mol) | 552.82 | |
n3 | 1.16 | |
s30 (by difference) | 0.0104 |
Starch from Potato | PVA | Glycerin | |
---|---|---|---|
log k01 (s−1) | 18.71 | 8.58 | 4.79 |
E1 (kJ/mol) | 227.59 | 127.58 | 67.72 |
n1 | 0.46 | 2.40 | 0.01 |
s10 | 0.558 | 0.797 | 0.9800 |
log k02 (s−1) | 89.27 | 24.52 | 6.73 |
E2 (kJ/mol) | 991.52 | 362.16 | 58.03 |
n2 | 37.84 | 2.10 | 20.80 |
s20 (by difference) | 0.296 | 0.203 | 0.0200 |
PLA | |
---|---|
log k0 (s−1) | 12.44 |
E (kJ/mol) | 179.32 |
n | 0.00 |
Origin | Starch | PVA | Glycerin | Zinc Stearate | CaCO3 | |
---|---|---|---|---|---|---|
S1 | Potato | 100 | 100 | 120 | 0.5 wt.% | - |
S2 | Potato | 100 | 100 | 120 | 0.5 wt.% | 1 wt.% |
S3 | Potato | 100 | 100 | 120 | 0.5 wt.% | 5 wt.% |
S4 | Potato * | 100 | 100 | 120 | 0.5 wt.% | - |
S5 | Corn | 100 | 100 | 120 | 0.5 wt.% | - |
S6 | Wheat | 100 | 100 | 120 | 0.5 wt.% | - |
S7 | Rice | 100 | 100 | 120 | 0.5 wt.% | - |
S8 | Cassava | 100 | 100 | 120 | 0.5 wt.% | - |
Other samples different from TPS | ||||||
S9 | PLA | |||||
S10 | PVA | |||||
S11 | Starch from potato | |||||
S12 | Glycerin (plasticizer) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliver, I.; Conesa, J.A.; Fullana, A. Thermal Decomposition of Bio-Based Plastic Materials. Molecules 2024, 29, 3195. https://doi.org/10.3390/molecules29133195
Oliver I, Conesa JA, Fullana A. Thermal Decomposition of Bio-Based Plastic Materials. Molecules. 2024; 29(13):3195. https://doi.org/10.3390/molecules29133195
Chicago/Turabian StyleOliver, Inés, Juan A. Conesa, and Andres Fullana. 2024. "Thermal Decomposition of Bio-Based Plastic Materials" Molecules 29, no. 13: 3195. https://doi.org/10.3390/molecules29133195
APA StyleOliver, I., Conesa, J. A., & Fullana, A. (2024). Thermal Decomposition of Bio-Based Plastic Materials. Molecules, 29(13), 3195. https://doi.org/10.3390/molecules29133195