A Review of Machine Learning and QSAR/QSPR Predictions for Complexes of Organic Molecules with Cyclodextrins
Abstract
:1. Introduction
2. Thermodynamic Stability Predictions of CD Inclusion Complexes
2.1. Theoretical Background
2.2. Datasets
2.3. Descriptors
2.4. ML Algorithms
2.5. Model Validation
2.5.1. Validation of Regression Models
2.5.2. Validation of Classification Models
2.6. Comparison of QSAR with the Possibilities Offered by Molecular Modelling
3. Other ML Applications in the Field of CD Complexes
4. Summary and Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Loftsson, T.; Sigurdsson, H.H.; Jansook, P. Anomalous Properties of Cyclodextrins and Their Complexes in Aqueous Solutions. Materials 2023, 16, 2223. [Google Scholar] [CrossRef] [PubMed]
- Betlejewska-Kielak, K.; Bednarek, E.; Budzianowski, A.; Michalska, K.; Maurin, J.K. Comprehensive characterisation of the flurbiprofen/β-cyclodextrin inclusion complex using X-ray techniques and NMR spectroscopy. J. Mol. Struct. 2023, 1285, 135450. [Google Scholar] [CrossRef]
- European Medicines Agency. Cyclodextrins Used as Excipients. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/questions-answers-cyclodextrins-used-excipients-medicinal-products-human-use_en.pdf (accessed on 18 April 2024).
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed]
- Popielec, A.; Loftsson, T. Effects of cyclodextrins on the chemical stability of drugs. Int. J. Pharm. 2017, 531, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Haimhoffer, Á.; Rusznyák, Á.; Réti-Nagy, K.; Vasvári, G.; Váradi, J.; Vecsernyés, M.; Bácskay, I.; Fehér, P.; Ujhelyi, Z.; Fenyvesi, F. Cyclodextrins in Drug Delivery Systems and Their Effects on Biological Barriers. Sci. Pharm. 2019, 87, 33. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, S.; Li, Z.; Gu, Z.; Xu, S.; Ban, X.; Hong, Y.; Cheng, L.; Li, C. A review of controlled release from cyclodextrins: Release methods, release systems and application. Crit. Rev. Food Sci. Nutr. 2021, 63, 4744–4756. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska-Walendowska, M.; Rosiak, N.; Tykarska, E.; Michalska, K.; Płazińska, A.; Płaziński, W.; Szymanowska, D.; Cielecka-Piontek, J. Tedizolid-Cyclodextrin System as Delayed-Release Drug Delivery with Antibacterial Activity. Int. J. Mol. Sci. 2021, 22, 115. [Google Scholar] [CrossRef]
- Christaki, S.; Spanidi, E.; Panagiotidou, E.; Athanasopoulou, S.; Kyriakoudi, A.; Mourtzinos, I.; Gardikis, K. Cyclodextrins for the Delivery of Bioactive Compounds from Natural Sources: Medicinal, Food and Cosmetics Applications. Pharmaceuticals 2023, 16, 1274. [Google Scholar] [CrossRef] [PubMed]
- Boczar, D.; Michalska, K. Cyclodextrin Inclusion Complexes with Antibiotics and Antibacterial Agents as Drug-Delivery Systems-A Pharmaceutical Perspective. Pharmaceutics 2022, 14, 1389. [Google Scholar] [CrossRef]
- Braga, S.S.; Barbosa, J.S.; Santos, N.E.; El-Saleh, F.; Paz, F.A.A. Cyclodextrins in Antiviral Therapeutics and Vaccines. Pharmaceutics 2021, 13, 409. [Google Scholar] [CrossRef]
- Appleton, S.L.; Navarro-Orcajada, S.; Martínez-Navarro, F.J.; Caldera, F.; López-Nicolás, J.M.; Trotta, F.; Matencio, A. Cyclodextrins as Anti-inflammatory Agents: Basis, Drugs and Perspectives. Biomolecules 2021, 11, 1384. [Google Scholar] [CrossRef]
- Matencio, A.; Hoti, G.; Monfared, Y.K.; Rezayat, A.; Pedrazzo, A.R.; Caldera, F.; Trotta, F. Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers 2021, 13, 1684. [Google Scholar] [CrossRef] [PubMed]
- Puskás, I.; Szente, L.; Szőcs, L.; Fenyvesi, É. Recent List of Cyclodextrin-Containing Drug Products. Period. Polytech. Chem. Eng. 2023, 67, 11–17. [Google Scholar] [CrossRef]
- Genetic Engineering & Biotechnology News. The Unbearable Cost of Drug Development: Deloitte Report Shows 15% Jump in R & D to $2.3 Billion. Available online: https://www.genengnews.com/gen-edge/the-unbearable-cost-of-drug-development-deloitte-report-shows-15-jump-in-rd-to-2-3-billion/ (accessed on 18 April 2024).
- Elbashir, A.A.; Dsugi, N.F.A.; Mohmed, T.O.M.; Aboul-Enein, H.Y. Spectrofluorometric analytical applications of cyclodextrins. Luminescence 2014, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bocian, W.; Bednarek, E.; Michalska, K. Explanation of the Formation of Complexes between Representatives of Oxazolidinones and HDAS-β-CD Using Molecular Modeling as a Complementary Technique to cEKC and NMR. Int. J. Mol. Sci. 2021, 22, 7139. [Google Scholar] [CrossRef]
- Goyal, N.; Amar, A.; Gulati, S.; Varma, R.S. Cyclodextrin-Based Nanosponges as an Environmentally Sustainable Solution for Water Treatment: A Review. ACS Appl. Nano Mater. 2023, 6, 13766–13791. [Google Scholar] [CrossRef]
- Abdolmaleki, A.; Ghasemi, F.; Ghasemi, J.B. Computer-aided drug design to explore cyclodextrin therapeutics and biomedical applications. Chem. Biol. Drug Des. 2017, 89, 257–268. [Google Scholar] [CrossRef]
- Ding, B.; Yu, Y.; Geng, S.; Liu, B.; Hao, Y.; Liang, G. Computational Methods for the Interaction between Cyclodextrins and Natural Compounds: Technology, Benefits, Limitations, and Trends. J. Agric. Food Chem. 2022, 70, 2466–2482. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, Q.-X. The Driving Forces in the Inclusion Complexation of Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 1–14. [Google Scholar] [CrossRef]
- Engel, T.; Gasteiger, J. Chemoinformatics: Basic Concepts and Methods; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Han, R.; Yoon, H.; Kim, G.; Lee, H.; Lee, Y. Revolutionizing Medicinal Chemistry: The Application of Artificial Intelligence (AI) in Early Drug Discovery. Pharmaceuticals 2023, 16, 1259. [Google Scholar] [CrossRef]
- Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.H.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev. 2022, 55, 1947–1999. [Google Scholar] [CrossRef]
- Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N.; Cedrón, F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 2021, 19, 4538–4558. [Google Scholar] [CrossRef]
- Trafton, A. Artificial Intelligence Yields New Antibiotic. Available online: https://news.mit.edu/2020/artificial-intelligence-identifies-new-antibiotic-0220 (accessed on 18 April 2024).
- Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Engel, T.; Gasteiger, J. Applied Chemoinformatics: Achievements and Future Opportunities; Wiley-VCH: Hoboken, NJ, USA, 2018. [Google Scholar]
- Ghasemi, J.B.; Salahinejad, M.; Rofouei, M.K. Review of the quantitative structure–activity relationship modelling methods on estimation of formation constants of macrocyclic compounds with different guest molecules. Supramol. Chem. 2011, 23, 614–629. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł. Current Status of Quantum Chemical Studies of Cyclodextrin Host–Guest Complexes. Molecules 2022, 27, 3874. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł.; Gubica, T. Application of Molecular Dynamics Simulations in the Analysis of Cyclodextrin Complexes. Int. J. Mol. Sci. 2021, 22, 9422. [Google Scholar] [CrossRef]
- Li, T.; Guo, R.; Zong, Q.; Ling, G. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydr. Polym. 2022, 276, 118644. [Google Scholar] [CrossRef]
- Kfoury, M.; Landy, D.; Fourmentin, S. Characterization of Cyclodextrin/Volatile Inclusion Complexes: A Review. Molecules 2018, 23, 1204. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K.A. Phase Solubility Techniques. Adv. Anal. Chem. Instrum. 1965, 4, 117–212. [Google Scholar]
- Rekharsky, M.V.; Inoue, Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998, 98, 1875–1918. [Google Scholar] [CrossRef]
- Ahmadi, P.; Ghasemi, J.B. 3D-QSAR and docking studies of the stability constants of different guest molecules with beta-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2014, 79, 401–413. [Google Scholar] [CrossRef]
- Rivera-Delgado, E.; Xin, A.; von Recum, H.A. Using QSARs for predictions in drug delivery. bioRxiv 2019, 2019, 727172. [Google Scholar] [CrossRef]
- Kerner, J.; Recum, H. Predicting Drug Interactions to Unassociated Biomedical Implants Using Machine Learning Techniques and Model Polymers. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Suzuki, T. A nonlinear group contribution method for predicting the free energies of inclusion complexation of organic molecules with alpha- and beta-cyclodextrins. J. Chem. Inf. Comput. Sci. 2001, 41, 1266–1273. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Fara, D.C.; Yang, H.; Karelson, M.; Suzuki, T.; Solov’ev, V.P.; Varnek, A. Quantitative structure-property relationship modeling of beta-cyclodextrin complexation free energies. J. Chem. Inf. Comput. Sci. 2004, 44, 529–541. [Google Scholar] [CrossRef]
- Perez-Garrido, A.; Morales Helguera, A.; Abellan Guillen, A.; Cordeiro, M.N.; Garrido Escudero, A. Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins. Bioorg. Med. Chem. 2009, 17, 896–904. [Google Scholar] [CrossRef]
- Zhao, Q.; Ye, Z.; Su, Y.; Ouyang, D. Predicting complexation performance between cyclodextrins and guest molecules by integrated machine learning and molecular modeling techniques. Acta Pharm. Sin. B 2019, 9, 1241–1252. [Google Scholar] [CrossRef]
- Rekharsky, M.; Inoue, Y. Chiral Recognition Thermodynamics of β-Cyclodextrin: The Thermodynamic Origin of Enantioselectivity and the Enthalpy−Entropy Compensation Effect. J. Am. Chem. Soc. 2000, 122, 4418–4435. [Google Scholar] [CrossRef]
- Mizera, M.; Muratov, E.N.; Alves, V.M.; Tropsha, A.; Cielecka-Piontek, J. Computer-Aided Discovery of New Solubility-Enhancing Drug Delivery System. Biomolecules 2020, 10, 913. [Google Scholar] [CrossRef]
- Fourches, D.; Muratov, E.; Tropsha, A. Trust, But Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research. J. Chem. Inf. Model. 2010, 50, 1189–1204. [Google Scholar] [CrossRef]
- Fourches, D.; Muratov, E.; Tropsha, A. Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation. J. Chem. Inf. Model. 2016, 56, 1243–1252. [Google Scholar] [CrossRef]
- Tahıl, G.; Delorme, F.; Le Berre, D.; Monflier, É.; Sayede, A.; Tilloy, S. Curated dataset of association constants between a cyclodextrin and a guest for machine learning. Chem. Data Collect. 2023, 45, 101022. [Google Scholar] [CrossRef]
- Lach, J.L.; Cohen, J. Interaction of Pharmaceuticals with Schardinger Dextrins II: Interaction with Selected Compounds. J. Pharm. Sci. 1963, 52, 137–142. [Google Scholar] [CrossRef]
- Connors, K.A. Population Characteristics of Cyclodextrin Complex Stabilities in Aqueous Solution. J. Pharm. Sci. 1995, 84, 843–848. [Google Scholar] [CrossRef]
- Lantz, A.W.; Rodriguez, M.A.; Wetterer, S.M.; Armstrong, D.W. Estimation of association constants between oral malodor components and various native and derivatized cyclodextrins. Anal. Chim. Acta 2006, 557, 184–190. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Encapsulation in cyclodextrins to widen the applications of essential oils. Environ. Chem. Lett. 2019, 17, 129–143. [Google Scholar] [CrossRef]
- Carvalho, R.M.; Rosa, I.G.L.; Gomes, D.E.B.; Goliatt, P.V.Z.C.; Goliatt, L. Gaussian processes regression for cyclodextrin host-guest binding prediction. J. Incl. Phenom. Macrocycl. Chem. 2021, 101, 149–159. [Google Scholar] [CrossRef]
- Tahıl, G.; Delorme, F.; Le Berre, D.; Monflier, É.; Sayede, A.; Tilloy, S. Curated Dataset of Association Constants between a Cyclodextrin and a Guest for Machine Learning [Dataset]. Available online: https://doi.org/10.5281/zenodo.7575539 (accessed on 18 April 2024).
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef]
- Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. DRAGON software: An easy approach to molecular descriptor calculations. MATCH Commun. Math. Comput. Chem. 2006, 56, 237–248. [Google Scholar]
- Chemical Computing Group Molecular Operating Environment (MOE), 2022.02, Canada. 2024. Available online: https://www.chemcomp.com/index.htm (accessed on 18 April 2024).
- Di, P.; Chen, J.; Liu, L.; Li, W.; Tang, Y.; Liu, G. In silico prediction of binding capacity and interaction forces of organic compounds with α- and β-cyclodextrins. J. Mol. Liq. 2020, 302, 112585. [Google Scholar] [CrossRef]
- Veselinović, A.M.; Veselinović, J.B.; Toropov, A.A.; Toropova, A.P.; Nikolić, G.M. In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method. Int. J. Pharm. 2015, 495, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.-C.; Kanwal, S.; Jia, Q.-Z.; Wang, Q.; Ji, H.-F.; Zhu, Z.-C.; Xia, S.-Q.; Ma, P.-S. Norm Index-Based Quantitative Structure-Activity Relationship to Predict β-Cyclodextrin Complex Binding Constants. Acta Phys.-Chim. Sin. 2015, 31, 893–898. [Google Scholar] [CrossRef]
- Niu, H.; Wang, J.; Jia, Q.; Wang, Q.; Zhao, J.; Yan, F. QSPR models for complexation performance of α-cyclodextrin and β-cyclodextrin complexes by norm indices. Chem. Eng. Sci. 2024, 284, 119484. [Google Scholar] [CrossRef]
- Sang, P.; Zou, J.-W.; Dai, D.-M.; Hu, G.-X.; Jiang, Y.-J. Prediction of the complexation of structurally diverse compounds with β-cyclodextrin using structural descriptors derived from electrostatic potentials on molecular surface and different chemometric methods. Chemom. Intell. Lab. Syst. 2013, 127, 166–176. [Google Scholar] [CrossRef]
- Jeschke, S.; Cole, I.S. 3D-QSAR for binding constants of beta-cyclodextrin host-guest complexes by utilising spectrophores as molecular descriptors. Chemosphere 2019, 225, 135–138. [Google Scholar] [CrossRef]
- Gladysz, R.; Dos Santos, F.M.; Langenaeker, W.; Thijs, G.; Augustyns, K.; De Winter, H. Spectrophores as one-dimensional descriptors calculated from three-dimensional atomic properties: Applications ranging from scaffold hopping to multi-target virtual screening. J. Cheminformatics 2018, 10, 9. [Google Scholar] [CrossRef]
- Solovev, A.; Solov’ev, V. 3D molecular fragment descriptors for structure–property modeling: Predicting the free energies for the complexation between antipodal guests and β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2017, 89, 167–175. [Google Scholar] [CrossRef]
- Prakasvudhisarn, C.; Wolschann, P.; Lawtrakul, L. Predicting Complexation Thermodynamic Parameters of β-Cyclodextrin with Chiral Guests by Using Swarm Intelligence and Support Vector Machines. Int. J. Mol. Sci. 2009, 10, 2107–2121. [Google Scholar] [CrossRef]
- Linden, L.; Goss, K.U.; Endo, S. 3D-QSAR predictions for alpha-cyclodextrin binding constants using quantum mechanically based descriptors. Chemosphere 2017, 169, 693–699. [Google Scholar] [CrossRef]
- Ghasemi, J.B.; Salahinejad, M.; Rofouei, M.K. An alignment independent 3D-QSAR study for predicting the stability constants of structurally diverse compounds with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 195–206. [Google Scholar] [CrossRef]
- Ghasemi, J.B.; Salahinejad, M.; Rofouei, M.K.; Mousazadeh, M.H. Docking and 3D-QSAR study of stability constants of benzene derivatives as environmental pollutants with α-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2012, 73, 405–413. [Google Scholar] [CrossRef]
- Cysewski, P.; Przybyłek, M. Predicting Value of Binding Constants of Organic Ligands to Beta-Cyclodextrin: Application of MARSplines and Descriptors Encoded in SMILES String. Symmetry 2019, 11, 922. [Google Scholar] [CrossRef]
- Dong, J.; Cao, D.-S.; Miao, H.-Y.; Liu, S.; Deng, B.-C.; Yun, Y.-H.; Wang, N.-N.; Lu, A.-P.; Zeng, W.-B.; Chen, A.F. ChemDes: An integrated web-based platform for molecular descriptor and fingerprint computation. J. Cheminformatics 2015, 7, 60. [Google Scholar] [CrossRef]
- Cao, D.-S.; Xu, Q.-S.; Hu, Q.-N.; Liang, Y.-Z. ChemoPy: Freely available python package for computational biology and chemoinformatics. Bioinformatics 2013, 29, 1092–1094. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, C.; Liu, R.; Gu, S.; Xu, J. Quantitative structure–property relationship study of β-cyclodextrin complexation free energies of organic compounds. Chemom. Intell. Lab. Syst. 2015, 146, 313–321. [Google Scholar] [CrossRef]
- Wei, M.; Yang, X.; Watson, P.; Yang, F.; Liu, H. Development of QSAR model for predicting the inclusion constants of organic chemicals with alpha-cyclodextrin. Env. Sci. Pollut. Res. Int. 2018, 25, 17565–17574. [Google Scholar] [CrossRef]
- Mirrahimi, F.; Salahinejad, M.; Ghasemi, J.B. QSPR approaches to elucidate the stability constants between β-cyclodextrin and some organic compounds: Docking based 3D conformer. J. Mol. Liq. 2016, 219, 1036–1043. [Google Scholar] [CrossRef]
- Ma, Y.; Niu, Y.; Yang, H.; Dai, J.; Lin, J.; Wang, H.; Wu, S.; Yin, Q.; Zhou, L.; Gong, J. Prediction and design of cyclodextrin inclusion complexes formation via machine learning-based strategies. Chem. Eng. Sci. 2022, 261, 117946. [Google Scholar] [CrossRef]
- Carvalho, R.M.; Rosa, I.G.L.; Goliatt, P.V.Z.C.; Gomes, D.E.B.; Goliatt, L. Prediction of Cyclodextrin Host-Guest Binding Through a Hybrid Support Vector Method. In Proceedings of the Research and Applications in Artificial Intelligence; Springer Nature Singapore Pte Ltd.: Singapore, 2021; pp. 309–317. [Google Scholar]
- Merzlikine, A.; Abramov, Y.A.; Kowsz, S.J.; Thomas, V.H.; Mano, T. Development of machine learning models of beta-cyclodextrin and sulfobutylether-beta-cyclodextrin complexation free energies. Int. J. Pharm. 2011, 418, 207–216. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019. [Google Scholar]
- Raschka, S.; Mirjalili, V. Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow, 2nd ed.; Packt Publishing: Birmingham, UK, 2017. [Google Scholar]
- Ye, Z.; Yang, W.; Yang, Y.; Ouyang, D. Interpretable machine learning methods for in vitro pharmaceutical formulation development. Food Front. 2021, 2, 195–207. [Google Scholar] [CrossRef]
- Wikimedia Commons. Structure of Neuron. Available online: https://commons.wikimedia.org/wiki/File:Structure_of_Neuron.png (accessed on 18 April 2024).
- Zhou, J.; Li, E.; Wei, H.; Li, C.; Qiao, Q.; Armaghani, D.J. Random Forests and Cubist Algorithms for Predicting Shear Strengths of Rockfill Materials. Appl. Sci. 2019, 9, 1621. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. 2014. Available online: https://doi.org/10.1787/9789264085442-en (accessed on 18 April 2024).
- Saxena, S. Underfitting and Overfitting in Machine Learning. Available online: https://www.analyticsvidhya.com/blog/2020/02/underfitting-overfitting-best-fitting-machine-learning/ (accessed on 18 April 2024).
- Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010, 29, 476–488. [Google Scholar] [CrossRef]
- Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.-G.; Guo, Q.-X. Association Constant Prediction for the Inclusion of α-Cyclodextrin with Benzene Derivatives by an Artificial Neural Network. J. Incl. Phenom. Macrocycl. Chem. 1999, 34, 291–298. [Google Scholar] [CrossRef]
- Linden, L.; Goss, K.-U.; Endo, S. Exploring 3D structural influences of aliphatic and aromatic chemicals on α-cyclodextrin binding. J. Colloid Interface Sci. 2016, 468, 42–50. [Google Scholar] [CrossRef]
- Cai, W.; Xia, B.; Shao, X.; Guo, Q.; Maigret, B.; Pan, Z. Molecular docking of α-cyclodextrin inclusion complexes by genetic algorithm and empirical binding free energy function. Chem. Phys. Lett. 2001, 342, 387–396. [Google Scholar] [CrossRef]
- Mizera, M.; Lewandowska, K.; Miklaszewski, A.; Cielecka-Piontek, J. Machine Learning Approach for Determining the Formation of beta-Lactam Antibiotic Complexes with Cyclodextrins Using Multispectral Analysis. Molecules 2019, 24, 743. [Google Scholar] [CrossRef]
- Dong, J.; Wu, Z.; Xu, H.; Ouyang, D. FormulationAI: A novel web-based platform for drug formulation design driven by artificial intelligence. Brief. Bioinform. 2024, 25, bbad419. [Google Scholar] [CrossRef]
- Binding, D.B. Available online: https://www.bindingdb.org/rwd/bind/index.jsp (accessed on 18 April 2024).
- Michalska, K.; Bocian, W.; Bednarek, E.; Pałys, B.; Cielecka-Piontek, J. Enantioselective recognition of sutezolid by cyclodextrin modified non-aqueous capillary electrophoresis and explanation of complex formation by means of infrared spectroscopy, NMR and molecular modelling. J. Pharm. Biomed. Anal. 2019, 169, 49–59. [Google Scholar] [CrossRef]
- Li, J.J.; Gao, H.L.; Ye, Z.Y.; Deng, J.Y.; Ouyang, D.F. In silico formulation prediction of drug/cyclodextrin/polymer ternary complexes by machine learning and molecular modeling techniques. Carbohyd. Polym. 2022, 275, 118712. [Google Scholar] [CrossRef]
- Rivera-Delgado, E. R Shiny App for QSAR Predictions with Cyclodextrin. Available online: https://github.com/eriveradelgado/qsar-app (accessed on 18 April 2024).
- Formulation, A.I. Available online: https://formulationai.computpharm.org/ (accessed on 18 April 2024).
- Wang, Z.; He, Z.; Zhang, L.; Zhang, H.; Zhang, M.; Wen, X.; Quan, G.; Huang, X.; Pan, X.; Wu, C. Optimization of a doxycycline hydroxypropyl-β-cyclodextrin inclusion complex based on computational modeling. Acta Pharm. Sin. B 2013, 3, 130–139. [Google Scholar] [CrossRef]
- Miletić, T.; Ibrić, S.; Đurić, Z. Combined Application of Experimental Design and Artificial Neural Networks in Modeling and Characterization of Spray Drying Drug: Cyclodextrin Complexes. Dry. Technol. 2014, 32, 167–179. [Google Scholar] [CrossRef]
- Ng, S.M.; Narayanaswamy, R. Spectrofluorometry study of β-cyclodextrin and N-phenyl-1-naphthylamine inclusion complex and its analytical application via artificial neural network. J. Incl. Phenom. Macrocycl. Chem. 2012, 72, 357–365. [Google Scholar] [CrossRef]
- Maljurić, N.; Golubović, J.; Otašević, B.; Zečević, M.; Protić, A. Quantitative structure –retention relationship modeling of selected antipsychotics and their impurities in green liquid chromatography using cyclodextrin mobile phases. Anal. Bioanal. Chem. 2018, 410, 2533–2550. [Google Scholar] [CrossRef]
- Maljurić, N.; Otašević, B.; Malenović, A.; Zečević, M.; Protić, A. Quantitative structure retention relationship modeling as potential tool in chromatographic determination of stability constants and thermodynamic parameters of β-cyclodextrin complexation process. J. Chromatogr. A 2020, 1619, 460971. [Google Scholar] [CrossRef]
- Djajić, N.; Petković, M.; Zečević, M.; Otašević, B.; Malenović, A.; Holzgrabe, U.; Protić, A. A comprehensive study on retention of selected model substances in β-cyclodextrin-modified high performance liquid chromatography. J. Chromatogr. A 2021, 1645, 462120. [Google Scholar] [CrossRef]
- Mura, P. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. J. Pharm. Biomed. Anal. 2015, 113, 226–238. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, Y.; Ma, Y.; Ji, Y.; Huang, D.; Qian, H. Prediction of enhanced drug solubility related to clathrate compositions and operating conditions: Machine learning study. Int. J. Pharm. 2023, 646, 123458. [Google Scholar] [CrossRef]
- Aiassa, V.; Garnero, C.; Longhi, M.R.; Zoppi, A. Cyclodextrin Multicomponent Complexes: Pharmaceutical Applications. Pharmaceutics 2021, 13, 1099. [Google Scholar] [CrossRef] [PubMed]
- Asensi-Bernardi, L.; Escuder-Gilabert, L.; Martín-Biosca, Y.; Medina-Hernández, M.J.; Sagrado, S. Modeling the chiral resolution ability of highly sulfated β-cyclodextrin for basic compounds in electrokinetic chromatography. J. Chromatogr. A 2013, 1308, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Šoškić, M.; Porobić, I. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study. PLoS ONE 2016, 11, e0154339. [Google Scholar] [CrossRef] [PubMed]
- Rincon-Lopez, J.; Almanza-Arjona, Y.C.; Riascos, A.P.; Rojas-Aguirre, Y. Technological evolution of cyclodextrins in the pharmaceutical field. J. Drug Deliv. Sci. Technol. 2021, 61, 102156. [Google Scholar] [CrossRef]
- Rincón-López, J.; Almanza-Arjona, Y.C.; Riascos, A.P.; Rojas-Aguirre, Y. When Cyclodextrins Met Data Science: Unveiling Their Pharmaceutical Applications through Network Science and Text-Mining. Pharmaceutics 2021, 13, 1297. [Google Scholar] [CrossRef]
= experimental value for the i-th data point |
= predicted value for the i-th data point |
= mean of all experimental values in the dataset |
y | ndataset [Source] | ntraining/ntest, Split Algorithm | Descriptors | Algorithms, Best Algorithm (Software) | Performance | AD Check | Ref. |
---|---|---|---|---|---|---|---|
72 [89] | 54/18, largest minimum distance | VolSurf, CoMFA | SVR, PLS (MATLAB, PLS_toolbox) | R2train = 0.84, R2test = 0.89, Q2LOO = 0.68 | - | [69] | |
60 [90] | 45/15, hierarchic bin system | standard CoMFA, COSMOsar3D | PLS | R2test = 0.70, Q2leave-two-out = 0.83, RMSEtest = 2.57 kJ/mol | - | [67] | |
195 (from 17 sources) | 146/49, random division | DRAGON | stepwise MLR (SPSS software) | R2test = 0.77, Q2LOO = 0.84, MAEtest = 2.17 kJ/mol, RMSEtest = 2.82 kJ/mol | + | [74] | |
ΔG | about 200 [40,44] | 75%/25%, R package caret | PaDEL | ensemble of: Cubist, GBM, MARSplines, RF, polynomial SVR, RBF SVR (Rstudio) | for single models: R2test from 0.63 to 0.78, Q2LOO from 0.50 to 0.64 | + | [38] |
186 [40,44,91] | 149/37 | PaDEL or molecular fingerprints | ensemble of: RBF regression, GPR, RF, GBT, tree ensemble (KNIME) | R2test = 0.84, MAEtest = 1.37 kJ/mol RMSEtest = 1.71 kJ/mol | + | [58] | |
229 | 183/46 | norm indices | MLR | R2train = 0.92, R2test = 0.93, Q2LOO = 0.89, MAEtest = 1.03 kJ/mol | - | [61] |
y | ndataset [Source] | ntraining/ntest, Split Algorithm | Descriptors | Algorithms, Best Algorithm (Software) | Performance | AD Check | Ref. |
---|---|---|---|---|---|---|---|
233 [40] | 173/60, most descriptive compound | GRIND (Pentacle) | PLS (Pentacle) | R2train = 0.87, R2test = 0.74 Q2LOO = 0.75 | + | [68] | |
ΔG | 218 [41] | 196/22, maximum dissimilarity algorithm | MOE 2D, Moriguchi and Blake, SMARTS keys, Erlangen 2D | Cubist, RF | R2train = 0.996, R2test = 0.95 MAEtest = 1.54 kJ/mol, RMSEtest = 2.09 kJ/mol | - | [78] |
233 [42] | 186/47, k-means cluster analysis | derived from electrostatic potentials on the molecular surface | MLR, PLS, SVR, least squares SVR, RF, GPR (ZP-explore in MATLAB) | R2train = 0.93, R2test = 0.83 Q2LOO = 0.76, RMSEtest = 2.13 kJ/mol | - | [62] | |
126 [36] | 98/28, Kennard–Stone algorithm | GRIND (Pentacle) | PLS (MATLAB, PLS_toolbox) | R2train = 0.76, R2test = 0.68 Q2LOO = 0.64 | - | [37] | |
233 [42] | 186/47, k-means cluster analysis | norm indexes | PLS, ANN, MLR, least squares SVR | R2train = 0.91, R2test = 0.83 Q2LOO = 0.77 | - | [60] | |
ΔG | 218 [41] | 160/58, DUPLEX | DRAGON | stepwise MLR, ANN | R2train = 0.94, R2test = 0.96, MAEtest = 0.93 kJ/mol | + | [73] |
233 [42] | 70 (sub-training)/69 (calibration)/47 (validation)/47 (test) | molecular optimal descriptor DCW | Monte Carlo + linear regression (CORAL) | R2test = 0.93, MAEtest = 1.10 kJ/mol | + | [59] | |
233 [40] | 170/63, random division | for ligand and complex (MOE, AutoDockTools, BINANA) | MLR | R2train = 0.83, R2test = 0.78 Q2 = 0.82 | + | [75] | |
ΔG | 76 [44] | n.a. | 3D fragment molecular descriptors (mfSpace) | singular value decomposition for MLR (TRAIL, ISIDA QSPR) | R2 = 0.92 RMSE = 1.1 kJ/mol | + | [65] |
324 [37,40] | 243/81, random split | spectrophores | RF (scikit-learn) | R2train = 0.95, R2test = 0.66, MAEtest = 2.28 kJ/mol, RMSEtest = 2.91 kJ/mol | - | [63] | |
233 [40] | 187/46, activity division approach | Chemopy, CDK, RDKit, Pybel, BlueDesc, PaDEL (ChemDes, BioCCI) | MARSplines (STATISTICA 12) | R2train = 0.91, R2test = 0.94, Q2LOO = 0.90, MAEtest = 1.09 kJ/mol | - | [70] | |
ΔG | about 250 [36,40] | 75%/25%, R package caret | PaDEL | ensemble of: Cubist, GBM, MARSplines, RF, polynomial SVR, RBF SVR (Rstudio) | for single models: R2test from 0.73 to 0.85 Q2LOO from 0.56 to 0.73 | + | [38] |
232 [40] | 186/46 | PaDEL or molecular fingerprints | ensemble of: RBF regression, GPR, RF, GBT, tree ensemble (KNIME) | R2test = 0.89 MAEtest = 1.26 kJ/mol RMSEtest = 1.61 kJ/mol | + | [58] | |
true/false | 200 (own) | 140/60, random division | MOE | ensembles of DNN, SVM, LR (scikit-learn, numpy) | depending on the model | - | [76] |
330 | 264/66 | norm indices | MLR | R2train = 0.91, R2test = 0.92 Q2LOO = 0.90, MAEtest = 1.09 kJ/mol | - | [61] |
Host | y | ndataset [Source] | ntraining/ntest, Split Algorithm | Descriptors | Algorithms, Best Algorithm (Software) | Performance | AD Check | Ref. |
---|---|---|---|---|---|---|---|---|
SBE-β-CD | ΔG | 220 | 198/22, maximum dissimilarity algorithm | MOE 2D, Moriguchi and Blake, SMARTS keys, Erlangen 2D | Cubist, RF | R2train = 0.94, R2test = 0.92, MAEtest = 2.12 kJ/mol, RMSEtest = 2.71 kJ/mol | - | [78] |
7 CDs | true/ false | 42 (own) | n.a. | infrared spectra | ExtraTreesClassifier (TPOT, scikit-learn) | accuracy 90.1% | - | [92] |
8 CDs | ΔG | 3000 | 80% (training)/ 10% (validation)/ 10% (test) | 17 for guests, 22 for CDs + pH + T (ALOGPS, ChemAxon) | RF, DNN, LightGBM (scikit-learn, Keras) | R2train = 0.86, R2test = 0.86, MAEtest = 1.38 kJ/mol, RMSEtest = 1.83 kJ/mol | - | [43,93] |
16 CDs | true/ false | 1654 | 80%/20%, random division | PaDEL (Modred) | GB of DTs (LightGBM) | depending on the threshold | - | [45] |
3 CDs | ΔG | 725 [36] | 95%/5% | PaDEL for guests and CDs | DNN | R2train = 0.98, R2test = 0.996, MAEtest = 0.771 kJ/mol | - | [39] |
8 CDs | ΔG | 2992 [43] | 2318 (test)/339 (validation)/335 (test), stratified random sampling | 19 for guests, 21 for CDs + pH + T (ALOGPS, ChemAxon) | SVR, DNN, LightGBM, AttPharm (scikit-learn, Keras, TensorFlow) | R2train = 0.88, R2test = 0.86, MAEtest = 1.34 kJ/mol | - | [81] |
3 CDs | ΔG | 280 [94] | 224/56, stratified k-fold method | 9 for guests, 10 for CDs + pH + T (RDKit, KNIME) | SVR | R2train = 0.92, R2test = 0.78, MAEtest = 1.35 kJ/mol, RMSEtest = 1.93 kJ/mol | - | [77] |
3 CDs | ΔG | 280 [94] | 224/56, stratified k-fold method | 9 for guests, 10 for CDs + pH + T (RDKit, KNIME) | SVR, XGB, GPR | R2train = 0.95, R2test = 0.80, MAEtest = 1.20 kJ/mol, RMSEtest = 1.81 kJ/mol | + | [53] |
Experimental | |||
---|---|---|---|
complex formed | complex not formed | ||
Predicted | complex formed | ||
complex not formed | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boczar, D.; Michalska, K. A Review of Machine Learning and QSAR/QSPR Predictions for Complexes of Organic Molecules with Cyclodextrins. Molecules 2024, 29, 3159. https://doi.org/10.3390/molecules29133159
Boczar D, Michalska K. A Review of Machine Learning and QSAR/QSPR Predictions for Complexes of Organic Molecules with Cyclodextrins. Molecules. 2024; 29(13):3159. https://doi.org/10.3390/molecules29133159
Chicago/Turabian StyleBoczar, Dariusz, and Katarzyna Michalska. 2024. "A Review of Machine Learning and QSAR/QSPR Predictions for Complexes of Organic Molecules with Cyclodextrins" Molecules 29, no. 13: 3159. https://doi.org/10.3390/molecules29133159
APA StyleBoczar, D., & Michalska, K. (2024). A Review of Machine Learning and QSAR/QSPR Predictions for Complexes of Organic Molecules with Cyclodextrins. Molecules, 29(13), 3159. https://doi.org/10.3390/molecules29133159