Transition Metal Selenide-Based Anodes for Advanced Sodium-Ion Batteries: Electronic Structure Manipulation and Heterojunction Construction Aspect
Abstract
:1. Introduction
2. Transition Metal Selenides as Electrode Materials
2.1. Transition Metal Selenides
2.1.1. Common Transition Metal Selenides Anodes and Their Properties
2.1.2. Issues of Transition Metal Selenide Anodes
3. Modification of Transition Metal Selenide Electrode Materials
3.1. Heteroatom Doping Strategy
3.1.1. Non-Metallic Doping
3.1.2. Metal Element Doping
3.2. Construction of Heterojunctions
4. Challenges and Recommendations for Future Research Studies
- Further experimental work on SIBs using TMSs as anode materials is crucial, as they are still limited by susceptibility to oxidation or degradation under humid environmental conditions, affecting their performance and lifespan. Additionally, more research is needed to better understand the synthesis and preparation conditions of TMSs and to ensure their operational safety.
- To better understand the application of TMSs as anode materials in SIBs, further molecular dynamics simulations are needed to obtain more valuable molecular interaction data and extract useful information from this data.
- The relationship between the structure and physicochemical properties of electrolytes requires further in-depth investigation to ensure safety across a wide temperature range. Additionally, fundamental parameters, such as the reduction of low-temperature conductivity and the modification of high-temperature structure-driven migration models, also need to be thoroughly studied.
- To gain a deeper understanding of TMSs in SIBs, atomic characterization techniques should be utilized to analyze structural changes, closely observe the microstructure of electrode–electrolyte interfaces, and monitor the crystal structure of TMSs in real time. This approach facilitates the optimization of material-phase stability. Although in situ characterization techniques are essential tools in materials science and engineering, they still face some unavoidable challenges. For example, controlling the environment is difficult, performing precise measurements under high temperature, high pressure, or strong electric fields is challenging, and rapid data changes are hard to capture. The preparation and handling of samples pose significant challenges due to the fragility or sensitivity of the materials involved. Experimental conditions are stringent, and the consumption of time and resources cannot be overlooked. Addressing these issues requires further research investment.
- For a better understanding of the electronic structure of transition metal selenides, appropriate data should be selected to train machine learning models. These trained models can then be applied to new samples of transition metal selenides to predict their electronic structures, thereby providing insights into their properties and characteristics.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quilty, C.D.; Wu, D.; Li, W.; Bock, D.C.; Wang, L.; Housel, L.M.; Abraham, A.; Takeuchi, K.J.; Marschilok, A.C.; Takeuchi, E.S. Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes. Chem. Rev. 2023, 123, 1327–1363. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fleetwood, J.; Hawley, W.B.; Kays, W. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 2021, 122, 903–956. [Google Scholar] [CrossRef] [PubMed]
- Masias, A.; Marcicki, J.; Paxton, W.A. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 2021, 6, 621–630. [Google Scholar] [CrossRef]
- Kriegler, J.; Hille, L.; Stock, S.; Kraft, L.; Hagemeister, J.; Habedank, J.B.; Jossen, A.; Zaeh, M.F. Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes. Appl. Energy 2021, 303, 117693. [Google Scholar] [CrossRef]
- Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ye, L.; Zhao, X.; Zhang, P.; Yang, J. Electronic modulation and structural engineering of carbon-based anodes for low-temperature lithium-ion batteries: A review. Molecules 2023, 28, 2108. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, H.S.; Li, Y.; Tan, D.H.; Zhang, M.; Zhao, E.; Meng, Y.S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274. [Google Scholar] [CrossRef]
- Zhao, Y.; Kang, Y.; Wozny, J.; Lu, J.; Du, H.; Li, C.; Li, T.; Kang, F.; Tavajohi, N.; Li, B. Recycling of sodium-ion batteries. Nat. Rev. Mater. 2023, 8, 623–634. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, R.; Zeng, J.; Shi, K.; Zhu, C.; Yan, X. Size effects in sodium ion batteries. Adv. Funct. Mater. 2021, 31, 2106047. [Google Scholar] [CrossRef]
- Chen, J.; Adit, G.; Li, L.; Zhang, Y.; Chua, D.H.; Lee, P.S. Optimization strategies toward functional sodium-ion batteries. Energy Environ. Mater. 2023, 6, e12633. [Google Scholar] [CrossRef]
- Qiao, S.; Zhou, Q.; Ma, M.; Liu, H.K.; Dou, S.X.; Chong, S. Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 2023, 17, 11220–11252. [Google Scholar] [CrossRef]
- Chu, Y.; Zhang, J.; Zhang, Y.; Li, Q.; Jia, Y.; Dong, X.; Xiao, J.; Tao, Y.; Yang, Q.H. Reconfiguring Hard Carbons with Emerging Sodium-Ion Batteries: A Perspective. Adv. Mater. 2023, 35, 2212186. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Luan, D.; Lou, X.W. Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 2020, 32, 2002976. [Google Scholar] [CrossRef]
- Qi, S.; Xu, B.; Tiong, V.T.; Hu, J.; Ma, J. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem. Eng. J. 2020, 379, 122261. [Google Scholar] [CrossRef]
- Tomboc, G.M.; Wang, Y.; Wang, H.; Li, J.; Lee, K. Sn-based metal oxides and sulfides anode materials for Na ion battery. Energy Storage Mater. 2021, 39, 21–44. [Google Scholar] [CrossRef]
- Hao, Z.; Shi, X.; Yang, Z.; Li, L.; Chou, S.L. Developing high-performance metal selenides for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2208093. [Google Scholar] [CrossRef]
- Lu, T.; Dong, S.; Zhang, C.; Zhang, L.; Cui, G. Fabrication of transition metal selenides and their applications in energy storage. Coordin. Chem. Rev. 2017, 332, 75–99. [Google Scholar] [CrossRef]
- Gong, Y.; Li, Y.; Li, Y.; Liu, M.; Bai, Y.; Wu, C. Metal selenides anode materials for sodium ion batteries: Synthesis, modification, and application. Small 2023, 19, 2206194. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, W.; Zheng, W. Metal selenides find plenty of space in architecting advanced sodium/potassium ion batteries. Small 2024, 20, 2305021. [Google Scholar] [CrossRef]
- Lv, C.; Tai, L.; Li, X.; Miao, X.; Wei, H.; Yang, J.; Geng, H. Interfacial covalent bonding of the MXene-stabilized Sb2Se3 nanotube hybrid with fast ion transport for enhanced sodium-ion half/full batteries. Chem. Commun. 2023, 59, 5094–5097. [Google Scholar] [CrossRef]
- Ali, Z.; Zhang, T.; Asif, M.; Zhao, L.; Yu, Y.; Hou, Y. Transition metal chalcogenide anodes for sodium storage. Mater. Today 2020, 35, 131–167. [Google Scholar] [CrossRef]
- Zhou, H.; Li, X.; Li, Y.; Zheng, M.; Pang, H. Applications of MxSey (M = Fe. Co, Ni) and their composites in electrochemical energy storage and conversion. Nano-Micro Lett. 2019, 11, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bai, K.; Lu, Y.; Mo, W.; Zhang, L. Controllable hierarchical porous FeSe2 with excellent long cycle lifespan as anode materials for sodium-ion battery. J. Power Sources 2024, 592, 233913. [Google Scholar] [CrossRef]
- Santhoshkumar, P.; Nagaraju, G.; Shaji, N.; Sim, G.S.; Nanthagopal, M.; Sekhar, S.C.; Yu, J.S.; Lee, C.W. Hierarchical iron selenide nanoarchitecture as an advanced anode material for high-performance energy storage devices. Electrochim. Acta 2020, 356, 136833. [Google Scholar] [CrossRef]
- Luo, M.; Yu, H.; Hu, F.; Liu, T.; Cheng, X.; Zheng, R.; Bai, Y.; Shui, M.; Shu, J. Metal selenides for high performance sodium ion batteries. Chem. Eng. J. 2020, 380, 122557. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Q.; Li, Y.; Li, Y.; Zhong, W.; Hu, J.; Ji, X.; Yang, C.; Lin, Z.; Huang, K. CoSe@N-doped carbon nanotubes as a potassium-ion battery anode with high initial coulombic efficiency and superior capacity retention. ACS Nano 2021, 15, 1121–1132. [Google Scholar] [CrossRef]
- Zhang, K.; Park, M.; Zhou, L.; Lee, G.H.; Li, W.; Kang, Y.M.; Chen, J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6728–6735. [Google Scholar] [CrossRef]
- Tan, H.; Feng, Y.; Rui, X.; Yu, Y.; Huang, S. Metal chalcogenides: Paving the way for high-performance sodium/potassium-ion batteries. Small Methods 2020, 4, 1900563. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.; Geng, J.; Sui, Y.; Wei, H.; Sun, C.; Geng, H.; Liu, Y. Nickel cobalt selenides on black phosphorene with fast electron transport for high-energy density sodium-ion half/full batteries. Inorg. Chem. Front. 2023, 10, 424–434. [Google Scholar] [CrossRef]
- Liang, Z.; Tu, H.; Zhang, K.; Kong, Z.; Huang, M.; Xu, D.; Liu, S.; Wu, Y.; Hao, X. Self-supporting NiSe2@BCNNTs electrode for high-performance sodium ion batteries. Chem. Eng. J. 2022, 437, 135421. [Google Scholar] [CrossRef]
- Cho, J.S.; Lee, S.Y.; Kang, Y.C. First introduction of NiSe2 to anode material for sodium-ion batteries: A hybrid of graphene-wrapped NiSe2/C porous nanofiber. Sci. Rep. 2016, 6, 23338. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Li, Q.; Wei, Q.; Sun, R.; Liu, X.; An, Q.; Mai, L. NiSe2 nanooctahedra as an anode material for high-rate and long-life sodium-ion battery. ACS Appl. Mater. Interfaces 2017, 9, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xu, Y.; Lv, Y.; Zhang, Q.; Zhou, X. Recent advances in covalent organic framework electrode materials for alkali metal-ion batteries. CCS Chem. 2023, 5, 1259–1276. [Google Scholar] [CrossRef]
- Ruan, Q.; Qian, Y.; Xue, M.; Chen, L.; Zhang, Q. Emerging two-dimensional Mo-based materials for rechargeable metal-ion batteries: Advances and perspectives. J. Energy Chem. 2023, 89, 487–518. [Google Scholar] [CrossRef]
- Lv, C.; Lin, C.; Dong, H.; Wei, H.; Yang, J.; Geng, H. Electronic modulation and structure engineered MoSe2 with multichannel paths as an advanced anode for sodium-ion half/full batteries. Sci. China Mater. 2022, 65, 2997–3006. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Chen, Y.; Zhu, K.; Ye, K.; Wang, Q.; Yan, J.; Cao, D.; Wang, G.; Miao, C. Molybdenum sulfide selenide ultrathin nanosheets anchored on carbon tubes for rapid-charging sodium/potassium-ion batteries. J. Colloid Interf. Sci. 2022, 628, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-S.; Jeong, S.Y.; Jeon, K.M.; Kang, Y.C.; Cho, J.S. Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries. Chem. Eng. J. 2018, 339, 97–107. [Google Scholar] [CrossRef]
- Xu, K.; Wang, X.; Li, Y.; Wang, Z.; Wang, L.; Yang, J.; Zhang, Q. Structural engineering of MoSe2 via interfacial effect and phosphorus doping incorporation for high energy density sodium ion storage. J. Alloys Compd. 2024, 986, 174167. [Google Scholar] [CrossRef]
- Hussain, I.; Sahoo, S.; Lamiel, C.; Nguyen, T.T.; Ahmed, M.; Xi, C.; Iqbal, S.; Ali, A.; Abbas, N.; Javed, M.S. Research progress and future aspects: Metal selenides as effective electrodes. Energy Storage Mater. 2022, 47, 13–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Q.; Zhu, J.; Yan, Q.; Dou, S.X.; Sun, W. Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 2017, 27, 1702317. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Q.; Chou, S.L.; Dou, S.X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 2017, 29, 1700606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, X.; Tai, L.; Shen, C.; Yang, J.; Sun, C.; Geng, H.; Zuo, X. Constructing electronic interconnected bimetallic selenide-filled porous carbon nanosheets for stable and highly efficient sodium-ion half/full batteries. Nanoscale 2021, 13, 18578–18585. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, J.; Guan, J.; Chen, X.; Zhu, Y.; Fu, H.; Liu, Q.; Wei, B.; Geng, H. Interface and electronic structure dual-engineering on MoSe2 with multi-ion/electron transportation channels for boosted sodium-ion half/full batteries. Chem. Eng. J. 2022, 450, 138007. [Google Scholar] [CrossRef]
- Shi, N.; Chu, Y.; Xi, B.; Huang, M.; Chen, W.; Duan, B.; Zhang, C.; Feng, J.; Xiong, S. Sandwich structures constructed by ZnSe⊂N-C@ MoSe2 located in graphene for efficient sodium storage. Adv. Energy Mater. 2020, 10, 2002298. [Google Scholar] [CrossRef]
- Cao, J.; Li, J.; Li, D.; Yuan, Z.; Zhang, Y.; Shulga, V.; Sun, Z.; Han, W. Strongly coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 2021, 13, 1–20. [Google Scholar] [CrossRef]
- Xu, K.; Xie, J.; Dong, H.; Sun, C.; Li, Y.; Guo, J.; Wang, Z.; Yang, J.; Geng, H. Structural regulation enabled stable hollow molybdenum diselenide nanosheet anode for ultrahigh energy density sodium ion pouch cell. J. Colloid Interf. Sci. 2024, 656, 241–251. [Google Scholar] [CrossRef]
- Liu, J.; Xie, J.; Dong, H.; Li, F.-L.; Xu, K.; Li, Y.; Miao, X.; Yang, J.; Geng, H. Metal-injection and interface density engineering induced nickel diselenide with rapid kinetics for high-energy sodium storage. J. Colloid Interf. Sci. 2024, 657, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Lv, C.; Xu, K.; Shu, Y.; Fu, H.; Li, F.-L.; Dong, H.; Yang, J. Constructing fast ion/electron migration multichannels and aliovalent doping co-regulated MoSe2 for high energy density Na+ storage. Electrochim. Acta 2024, 480, 143944. [Google Scholar] [CrossRef]
- Ge, P.; Hou, H.; Li, S.; Yang, L.; Ji, X. Tailoring Rod-Like FeSe2 Coated with Nitrogen-Doped Carbon for High-Performance Sodium Storage. Adv. Funct. Mater. 2018, 28, 1801765. [Google Scholar] [CrossRef]
- Yang, S.H.; Park, S.-K.; Kang, Y.C. Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes. Chem. Eng. J. 2019, 370, 1008–1018. [Google Scholar] [CrossRef]
- Wang, T.; Legut, D.; Fan, Y.; Qin, J.; Li, X.; Zhang, Q. Building fast diffusion channel by constructing metal sulfide/metal selenide heterostructures for high-performance sodium ion batteries anode. Nano Lett. 2020, 20, 6199–6205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pan, A.; Ding, L.; Zhou, Z.; Wang, Y.; Niu, S.; Liang, S.; Cao, G. Nitrogen-doped yolk–shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries, ACS Appl. Materi. Interfaces 2017, 9, 3624–3633. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Dong, H.; Liu, J.; Guan, J.; Li, K.; Feng, Y.; Liu, Q.; Yang, J.; Geng, H. Aliovalent doping and structural design of MoSe2 with fast reaction kinetics for high-stable sodium-ion half/full batteries. J. Colloid Interf. Sci. 2023, 652, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, H.; Liu, B.; Liang, M.; Lv, Z.; Adair, K.R.; Sun, X. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480. [Google Scholar] [CrossRef]
- Liu, H.; Liu, B.; Guo, H.; Liang, M.; Zhang, Y.; Borjigin, T.; Yang, X.; Wang, L.; Sun, X. N-doped C-encapsulated scale-like yolk-shell frame assembled by expanded planes few-layer MoSe2 for enhanced performance in sodium-ion batteries. Nano Energy 2018, 51, 639–648. [Google Scholar] [CrossRef]
- Niu, F.; Yang, J.; Wang, N.; Zhang, D.; Fan, W.; Yang, J.; Qian, Y. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700522. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, A.; Wang, Y.; Cao, X.; Zhou, Z.; Zhu, T.; Liang, S.; Cao, G. Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. Energy Storage Mate. 2017, 8, 28–34. [Google Scholar] [CrossRef]
- Miao, C.; Xiao, X.; Gong, Y.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J.; Cao, D.; Wang, G.; Xu, P. Facile synthesis of metal–organic framework-derived CoSe2 nanoparticles embedded in the N-doped carbon nanosheet array and application for supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 9365–9375. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; He, Q.; Chen, W.; Zai, J.; Qiao, Q.; Qian, X. 3D hierarchical FeSe2 microspheres: Controlled synthesis and applications in dye-sensitized solar cells. Nano Energy 2015, 15, 205–215. [Google Scholar] [CrossRef]
- Huang, S.; He, Q.; Chen, W.; Qiao, Q.; Zai, J.; Qian, X. Ultrathin FeSe2 nanosheets: Controlled synthesis and application as a heterogeneous catalyst in dye-sensitized solar cells. Chem.-Eur. J. 2015, 21, 4085–4091. [Google Scholar] [CrossRef]
- Wang, Z.-Q.; Zeng, B.; Zhou, D.; Tai, L.; Liu, X.-D.; Lau, W.-M. Rich-oxygen-doped FeSe2 nanosheets with high pseudocapacitance capacity as a highly stable anode for sodium ion battery. Chem. Eng. J. 2022, 428, 132637. [Google Scholar] [CrossRef]
- Yang, J.; Hou, W.; Pan, R.; Zhou, M.; Zhang, S.; Zhang, Y. The interfacial electronic engineering in polyhedral MOF derived Co-doped NiSe2 composite for upgrading rate and longevity performance of aqueous energy storage. J. Alloys Compd. 2022, 897, 163187. [Google Scholar] [CrossRef]
- Chen, R.; Li, S.; Liu, J.; Li, Y.; Ma, F.; Liang, J.; Chen, X.; Miao, Z.; Han, J.; Wang, T. Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochim. Acta 2018, 282, 973–980. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, R.; Chen, N.; Meng, X.; Yang, P.; Wang, C.; Zhang, Y.; Wei, Y.; Chen, G.; Du, F. Assembly of SnSe Nanoparticles Confined in Graphene for Enhanced Sodium-Ion Storage Performance. Chem.-Eur. J. 2016, 22, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Yu, Z.; Ma, T.; Shi, H.; Wu, Q.; Ci, L.; Tong, Y.; Wang, J.; Xu, Z. Mechanistic insights into the structural modulation of transition metal selenides to boost potassium ion storage stability. ACS Nano 2021, 15, 14697–14708. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xue, H.; Wang, J.; Tang, Y.; Lee, C.S.; Yang, S. Reduced Graphene Oxide/Marcasite-Type Cobalt Selenide Nanocrystals as an Anode for Lithium-Ion Batteries with Excellent Cyclic Performance. ChemElectroChem 2015, 2, 1682–1686. [Google Scholar] [CrossRef]
- Chen, D.; Chen, G.; Pei, J.; Hu, Y.; Qin, Z.; Wang, J.; Wu, F. Formation of Porous Cu-Doped CoSe2 Connected by Nanoparticles for Efficient Lithium Storage. ChemElectroChem 2017, 4, 2158–2163. [Google Scholar] [CrossRef]
- Geng, J.; Dong, H.; Liu, J.; Lv, C.; Wei, H.; Cheng, Y.; Yang, J.; Geng, H. In situ Cu doping of ultralarge CoSe nanosheets with accelerated electronic migration for superior sodium-ion storage. Nanoscale 2023, 15, 14641–14650. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.; Qin, J.; Wang, J.; Sari, H.M.K.; Lei, L.; Xiao, W.; Li, W.; Xie, C.; Yang, H.; Luo, Y. Doping-Induced Electronic/Ionic Engineering to Optimize the Redox Kinetics for Potassium Storage: A Case Study of Ni-Doped CoSe2. Adv. Sci. 2022, 9, 2200341. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, H.; Lv, C.; Sun, C.; Wei, H.; Miao, X.; Yang, J.; Cao, L.; Geng, H. Electronic structure manipulation of MoSe2 nanosheets with fast reaction kinetics toward long-life sodium-ion half/full batteries. Inorg. Chem. Front. 2023, 10, 2607–2617. [Google Scholar] [CrossRef]
- Liu, J.; Xie, J.; Dong, H.; Wei, H.; Sun, C.; Yang, J.; Geng, H. Iron doping of NiSe2 nanosheets to accelerate reaction kinetics in sodium-ion half/full batteries. Sci. China Mater. 2023, 66, 69–78. [Google Scholar] [CrossRef]
- Ko, Y.N.; Choi, S.; Park, S.; Kang, Y. Hierarchical MoSe2 yolk–shell microspheres with superior Na-ion storage properties. Nanoscale 2014, 6, 10511–10515. [Google Scholar] [CrossRef] [PubMed]
- Ge, P.; Hou, H.; Banks, C.E.; Foster, C.W.; Li, S.; Zhang, Y.; He, J.; Zhang, C.; Ji, X. Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Mater. 2018, 12, 310–323. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, Z.; Hao, X.; Wang, Y.; Liu, Y.; Hou, Y.; Yang, Q.; Wang, X.; Qiu, J. Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. J. Mater. Chem. A 2017, 5, 13591–13600. [Google Scholar] [CrossRef]
- Ali, Z.; Asif, M.; Huang, X.; Tang, T.; Hou, Y. Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv. Mater. 2018, 30, 1802745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Hu, Z.; Liu, X.; Tao, Z.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Liu, J.; Ouyang, L.; Hu, R.; Wang, H.; Yang, L.; Zhu, M. A general metal-organic framework (mof)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707573. [Google Scholar] [CrossRef]
- Ou, X.; Li, J.; Zheng, F.; Wu, P.; Pan, Q.; Xiong, X.; Yang, C.; Liu, M. In situ X-ray diffraction characterization of NiSe2 as a promising anode material for sodium ion batteries. J. Power Sources 2017, 343, 483–491. [Google Scholar] [CrossRef]
- Ge, P.; Li, S.; Xu, L.; Zou, K.; Gao, X.; Cao, X.; Zou, G.; Hou, H.; Ji, X. Hierarchical hollow-microsphere metal–selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv. Energy Mater. 2019, 9, 1803035. [Google Scholar] [CrossRef]
- Wu, H.; Lu, S.; Xu, S.; Zhao, J.; Wang, Y.; Huang, C.; Abdelkader, A.; Wang, W.A.; Xi, K.; Guo, Y. Blowing iron chalcogenides into two-dimensional flaky hybrids with superior cyclability and rate capability for potassium-ion batteries. ACS Nano 2021, 15, 2506–2519. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Gu, Z.; Shi, W.; Sun, Z.; Gan, S.; Xu, L.; Liang, H.; Ma, Y.; Qu, D.; Zhong, L. Mesoporous N-doped carbon-coated CoSe nanocrystals encapsulated in S-doped carbon nanosheets as advanced anode with ultrathin solid electrolyte interphase for high-performance sodium-ion half/full batteries. J. Mater. Chem. A 2022, 10, 2113–2121. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Cao, D.; Lu, X.; Han, X.; Niu, C. Epitaxial Growth of Urchin-Like CoSe2 Nanorods from Electrospun Co-Embedded Porous Carbon Nanofibers and Their Superior Lithium Storage Properties. Part. Part. Syst. Char. 2017, 34, 1700185. [Google Scholar] [CrossRef]
- Yi, Y.; Sun, Z.; Li, C.; Tian, Z.; Lu, C.; Shao, Y.; Li, J.; Sun, J.; Liu, Z. Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 2020, 30, 1903878. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J.; Zhou, J.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Fang, Y.; Xu, L.; Zheng, C.; Yang, M.-Q.; He, J.; Xue, H.; Qian, Q.; Wei, M.; Chen, Q. Rational design of few-layer MoSe2 confined within ZnSe–C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries. Nanoscale 2019, 11, 6766–6775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kang, W.; Jiang, M.; You, Y.; Cao, Y.; Ng, T.-W.; Denis, Y.; Lee, C.-S.; Xu, J. Conversion of 1T-MoSe2 to 2H-MoS2xSe2−2x mesoporous nanospheres for superior sodium storage performance. Nanoscale 2017, 9, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Xu, F.; Wang, C.-H.; Lu, S.-J.; Zhang, Y.-F.; Fan, H.-S. Rational design of metal selenides nanomaterials for alkali metal ion (Li+/Na+/K+) batteries: Current status and perspectives. Rare Met. 2024, 43, 1906–1931. [Google Scholar] [CrossRef]
- Cao, J.M.; Ma, M.Y.; Liu, H.H.; Yang, J.L.; Liu, Y.; Zhang, K.Y.; Butt, F.A.; Gu, Z.Y.; Li, K.; Wu, X.L. Interfacial-Confined Isochronous Conversion to Biphasic Selenide Heterostructure with Enhanced Adsorption Behaviors for Robust High-Rate Na-Ion Storage. Small 2024, 20, 2311024. [Google Scholar] [CrossRef]
- Wang, P.; Liao, X.; Xie, M.; Zheng, Q.; Chen, Y.; Lam, K.-H.; Zhang, H.; Lin, D. Heterogeneous engineering and carbon confinement strategy to synergistically boost the sodium storage performance of transition metal selenides. J. Colloid Interf. Sci. 2024, 665, 355–364. [Google Scholar] [CrossRef]
- Yang, J.; Yang, N.; Xu, Q.; Pearlie, L.S.; Zhang, Y.; Hong, Y.; Wang, Q.; Wang, W.; Yan, Q.; Dong, X. Bioinspired controlled synthesis of NiSe/Ni2P nanoparticles decorated 3D porous carbon for Li/Na ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 13217–13225. [Google Scholar] [CrossRef]
- Liu, P.; Han, J.; Zhu, K.; Dong, Z.; Jiao, L. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Adv. Energy Mater. 2020, 10, 2000741. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Shi, L.; Li, J.; Zhang, G. Rational design of hierarchical nanotubes through encapsulating CoSe2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance. ACS Appl. Mater. Interfaces 2018, 10, 20635–20642. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Wang, Y.; Cao, D.; Kang, Z.; Sun, D. In-situ transformation into MoSe2/MoO3 heterogeneous nanostructures with enhanced electrochemical performance as anode material for sodium ion battery. J. Alloys Compd. 2018, 743, 410–418. [Google Scholar] [CrossRef]
- Zeng, L.; Kang, B.; Luo, F.; Fang, Y.; Zheng, C.; Liu, J.; Liu, R.; Li, X.; Chen, Q.; Wei, M.; et al. Facile Synthesis of Ultra-Small Few-Layer Nanostructured MoSe2 Embedded on N, P Co-Doped Bio-Carbon for High-Performance Half/Full Sodium-Ion and Potassium-Ion Batteries. Chem.-Eur. J. 2019, 25, 13411–13421. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, H.; Qin, F.; Zhang, P.; Zou, L.; Wang, H.; Zhang, K.; Lai, Y. Flower-like MoSe2/C Composite with Expanded (002) Planes of Few-layer MoSe2 as the Anode for High-Performance Sodium-Ion Batteries. Chem.-Eur. J. 2017, 23, 14004–14010. [Google Scholar] [CrossRef]
- Sun, X.; Zeng, S.; Man, R.; Wang, L.; Zhang, B.; Tian, F.; Qian, Y.; Xu, L. Yolk-shell structured CoSe2/C nanospheres as multifunctional anode materials for both full/half sodium-ion and full/half potassium-ion batteries. Nanoscale 2021, 13, 10385–10392. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.; Qin, J.; Ding, Y.; Sari, H.M.K.; Song, X.; Liu, W.; Hao, Y.; Wang, J.; Xie, C.; Zhang, J. Controllable heterojunctions with a semicoherent phase boundary boosting the potassium storage of CoSe2/FeSe2. Adv. Mater. 2021, 33, 2102471. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Wang, Q.; Zhou, J.; Lei, Y.; Chen, Z.; Wang, Z.; Pan, A.; Liang, S. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 2019, 13, 5635–5645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dong, H.; Wei, H.; Ang, E.H.; Yang, J.; Miao, X.; Geng, H.; Zuo, X. Interface and structure engineering of bimetallic selenides toward high-performance sodium-ion half/full batteries. J. Power Sources 2021, 506, 230216. [Google Scholar] [CrossRef]
- Yuan, J.; Yu, B.; Pan, D.; Hu, X.; Chen, J.; Aminua, M.; Liu, Y.; Sheng, L.; Chen, Y.; Wu, Y. Universal Source-Template Route to Metal Selenides Implanting on 3D Carbon Nanoarchitecture: Cu2− xSe@3D-CN with Se-C Bonding for Advanced Na Storage. Adv. Funct. Mater. 2023, 33, 2305503. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Yang, C.; Dai, Y.; Chen, S.; Sun, X.; Huang, C.; Wu, Y.; Situ, Y.; Huang, H. Three-dimensional (3D) ordered macroporous bimetallic (Mn,Fe) selenide/carbon composite with heterojunction interface for high-performance sodium ion batteries, ACS Appl. Mater. Interfaces 2023, 15, 40100–40114. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Wang, S.; Li, Z.; Zhang, Z.; Liu, H.; Wang, J.; Hou, L.; Wang, Y.; Gao, F. A dual-carbon structured molybdenum selenide composites controlled via interface engineering and chemical bonding to attain high initial coulombic efficiency and rate capability of potassium-ion batteries. Chem. Eng. J. 2023, 475, 146187. [Google Scholar] [CrossRef]
- Xu, M.; Ma, Y.; Liu, R.; Xiao, H.; Chen, L.; Zhang, Z.; Wang, L.; Yuan, G. Constructing electron transport channels in FeSe2 microspheres by a facile strategy for superior long-life and ultrafast sodium-ion storage. Chem. Eng. J. 2023, 467, 143382. [Google Scholar] [CrossRef]
- Cong, B.; Li, X.; Suo, Y.; Chen, G. Metal–organic framework derived bimetallic selenide embedded in nitrogen-doped carbon hierarchical nanosphere for highly reversible sodium-ion storage. J. Colloid Interf. Sci. 2023, 635, 370–378. [Google Scholar] [CrossRef]
- Liu, H.; Li, D.; Liu, H.; Wang, X.; Lu, Y.; Wang, C.; Guo, L. CoSe2 nanoparticles anchored on porous carbon network structure for efficient Na-ion storage. J. Colloid Interf. Sci. 2023, 634, 864–873. [Google Scholar] [CrossRef] [PubMed]
Type of Materials | Current Density (A g−1) | Cycle No. | Specific Capacity (mA h g−1) | Theoretical Capacity (mA h g−1) | Electrolytes | Method of Synthesis | Number |
---|---|---|---|---|---|---|---|
MoSe2 microspheres (1–2 mm) | 0.2 A g−1 | 50 | 433 mA h g−1 | 422.6 mA h g−1 | \ | Pyrolytic selenization (300 °C, 3 h) | [72] |
MoSe2 microspheres (90 nm) | 2.0 A g−1 | 120 | 552 mA h g−1 | 422.6 mA h g−1 | 1 M NaClO4 in PC with 5% FEC additive | Hydrothermal method (180 °C, 12 h) | [73] |
Carbon-coated CoSe2 | 1.0 A g−1 | 5000 | 600 mA h g−1 | 494.5 mA h g−1 | 1 M NaCF3SO3 in DEGDME | Pyrolysis method (500 °C, 3 h) | [74] |
FeCo2Se4 | 0.35 A g−1 | 5000 | 350 mA h g−1 | 613.3 mA h g−1 | \ | Pyrolytic selenization (300 °C, 1.5 h) | [75] |
MoSe2-C | 3.0 A g−1 | 1000 | 378 mA h g−1 | 422.6 mA h g−1 | 1 M NaClO4 in EC/DEC (1:1 vol%) with 5 wt% FEC | Hydrothermal method (200 °C, 12 h) | [55] |
MoSe2/N, P-rGO | 0.5 A g−1 | 1000 | 378 mA h g−1 | 422.6 mA h g−1 | \ | Hydrothermal method (200 °C, 10 h) | [56] |
FeSe2 microspheres | 1.0 A g−1 | 2000 | 372 mA h g−1 | 501 mA h g−1 | 1 M NaCF3SO3 in DEGDME | Hydrothermal method (180 °C, 12 h) | [76] |
Carbon nanorod-encapsulated Fe7Se8 | 3.0 A g−1 | 500 | 218 mA h g−1 | 419.3 mA h g−1 | \ | Pyrolysis method (40–750 °C) | [77] |
FeSe2/N-C | 10 A g−1 | 10,000 | 308 mA h g−1 | 501 mA h g−1 | NaCF3SO3/DEGDME | Pyrolytic selenization (500 °C, 2 h) | [49] |
NiSe2 nanofibers | 0.2 A g−1 | 100 | 35 mA h g−1 | 494.8 mA h g−1 | 1 M NaClO4 (Aldrich) dissolved in a mixture of EC/DMC | Pyrolysis method (450 °C, 3 h) | [31] |
NiSe2–rGO-C | 0.2 A g−1 | 100 | 468 mA h g−1 | 494.8 mA h g−1 | 1 M NaClO4 (Aldrich) dissolved in a mixture of EC/DMC | Pyrolytic selenization (300 °C, 10 h) | [31] |
NiSe2/rGO | 1.0 A g−1 | 1000 | 346 mA h g−1 | 494.8 mA h g−1 | 1 M NaCF3SO3 dissolved in DMC | Hydrothermal method (200 °C, 18 h) | [78] |
Fe-NiSe2@CNSs | 1.0 A g−1 | 100 | 406 mA h g−1 | 494.8 mA h g−1 | 1 M NaPF6 in 1,2-DME | Hydrothermal method (150 °C, 3 h) | [71] |
NiSe2 microspheres | 10.0 A g−1 | 3000 | 374 mA h g−1 | 494.8 mA h g−1 | 1 M NaCF3SO3 | Hydrothermal method (120 °C, 10 h) | [79] |
NiSe@C | 3.0 A g−1 | 2000 | 160 mA h g−1 | 494.8 mA h g−1 | \ | Pyrolysis method (40–500 °C) | [77] |
CoSe2–MoSe2 | 10 A g−1 | 1000 | 466 mA h g−1 | 494.5 mA h g−1 | 1 M C6H18KNSi2 imide in DEC/EC (v/v, 1:1) | Pyrolysis method (500 °C, 8 h) | [80] |
O-FeSe2 NSs | 1.0 A g−1 | 700 | 268 mA h g−1 | 501 mA h g−1 | 1 M NaClO4 (PC + 5% FEC) | Hydrothermal method (80 °C, 5 h) | [61] |
P-MoSe2@rGO | 10 A g−1 | 1450 | 338 mA h g−1 | 422.6 mA h g−1 | 1 M NaPF6 (dissolved in DME = 100 vol%) | Hydrothermal method (200 °C, 12 h) | [53] |
CoSe-SC@NC | 0.2 A g−1 | 100 | 505.4 mA h g−1 | 388.7 mA h g−1 | \ | Pyrolysis method (800 °C) | [81] |
Cu-CoSe@NC | 5 A g−1 | 800 | 428.5 mA h g−1 | 388.7 mA h g−1 | A DMM solution containing 1 M NaPF6 | Hydrothermal method (550 °C, 3 h) | [68] |
Ni-CoSe2@NC-II | 0.1 A g−1 | 100 | 400.7 mA h g−1 | 494.5 mA h g−1 | \ | Hydrothermal method (450 °C, 2 h) | [69] |
CoSe2@CNF | 0.2 A g−1 | 300 | 1405 mA h g−1 | 494.5 mA h g−1 | 1 M LiPF6 in EC/DMC (1:1 in volume) | Pyrolysis method (300 °C, 2 h) | [82] |
Fe7Se8@C | 3 A g−1 | 500 | 218 mA h g−1 | 419.3 mA h g−1 | \ | Pyrolysis method (40–750 °C) | [77] |
N-MoSe2-based K+ | 0.2 A g−1 | 30 | 314 mA h g−1 | 422.6 mA h g−1 | 0.8 M KPF6 in EC/DEC (1:1 in volume) | Hydrothermal method (200 °C, 10 h) | [83] |
MoSe2/C core/shell | 1 A g−1 | 1000 | 226 mA h g−1 | 422.6 mA h g−1 | \ | Pyrolysis method (550 °C, 2 h) | [84] |
MoSe2@N-HCS | 2 A g−1 | 16,700 | 158.3 mA h g−1 | 422.6 mA h g−1 | 1 M NaPF6 in DIGYME = 100 vol% | Pyrolysis method (600 °C, 6 h) | [85] |
Fe2CoSe4 | 1 A g−1 | 100 | 615 mA h g−1 | 827 mA h g−1 | \ | Pyrolytic selenization (400 °C, 1.5 h) | [75] |
MoSe2@HCNS | 3 A g−1 | 1000 | 471 mA h g−1 | 422.6 mA h g−1 | \ | Hydrothermal method (500 °C, 5h) | [54] |
2H-MoS2xSe2-2x | 0.5 A g−1 | 100 | 494 mA h g−1 | 670 mA h g−1 | 1 M NaClO4 in PC with 5% FEC | Pyrolytic selenization (600 °C, 1 h) | [86] |
Fe-NiSe2@CNSs | 5 A g−1 | 1000 | 302 mA h g−1 | 494.8 mA h g−1 | 1 M NaPF6 in 1,2-DME | Hydrothermal method (150 °C, 3 h) | [71] |
Co-MoSe2@CN | 10 A g−1 | 1000 | 373 mA h g−1 | 422.6 mA h g−1 | 1,2- DME and 1 M NaPF6 | Hydrothermal method (70 °C, 2 h) | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wang, S.; Peng, J.; Lai, J.; Zhang, H.; Yang, J. Transition Metal Selenide-Based Anodes for Advanced Sodium-Ion Batteries: Electronic Structure Manipulation and Heterojunction Construction Aspect. Molecules 2024, 29, 3083. https://doi.org/10.3390/molecules29133083
Li L, Wang S, Peng J, Lai J, Zhang H, Yang J. Transition Metal Selenide-Based Anodes for Advanced Sodium-Ion Batteries: Electronic Structure Manipulation and Heterojunction Construction Aspect. Molecules. 2024; 29(13):3083. https://doi.org/10.3390/molecules29133083
Chicago/Turabian StyleLi, Lingxiao, Shuotong Wang, Jinyang Peng, Junliang Lai, Heng Zhang, and Jun Yang. 2024. "Transition Metal Selenide-Based Anodes for Advanced Sodium-Ion Batteries: Electronic Structure Manipulation and Heterojunction Construction Aspect" Molecules 29, no. 13: 3083. https://doi.org/10.3390/molecules29133083
APA StyleLi, L., Wang, S., Peng, J., Lai, J., Zhang, H., & Yang, J. (2024). Transition Metal Selenide-Based Anodes for Advanced Sodium-Ion Batteries: Electronic Structure Manipulation and Heterojunction Construction Aspect. Molecules, 29(13), 3083. https://doi.org/10.3390/molecules29133083