Distribution of Main Bioactive Compounds from Saffron Species as a Function of Infusion Temperature and Time in an Oil/Water System
Abstract
1. Introduction
2. Results and Discussion
2.1. Crocins Profiling
2.2. Picrocrocin
2.3. Safranal
2.4. Flavonols
2.5. Extraction Efficiency at Low Temperature
2.6. Comparative Evaluation of the ISO 3632-1:2011 Method and LC–MS/MS
3. Materials and Methods
3.1. Samples, Reagents, and Solvents
3.2. Optimization Study
3.3. LC-QTOF MS/MS Analysis of Saffron Extracts
3.4. Data Treatment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kothari, D.; Thakur, R.; Kumar, R. Saffron (Crocus sativus L.): Gold of the spices—A comprehensive review. Hortic. Environ. Biotechnol. 2021, 62, 661–677. [Google Scholar] [CrossRef]
- Halvorson, S. Saffron Cultivation and Culture in Central Spain. Focus Geogr. 2008, 51, 17–24, 37. (In English) [Google Scholar] [CrossRef]
- José Bagur, M.; Alonso Salinas, G.L.; Jiménez-Monreal, A.M.; Chaouqi, S.; Llorens, S.; Martínez-Tomé, M.; Alonso, G.L. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules 2018, 23, 30. [Google Scholar] [CrossRef]
- Leone, S.; Recinella, L.; Chiavaroli, A.; Orlando, G.; Ferrante, C.; Leporini, L.; Brunetti, L.; Menghini, L. Phytotherapic use of the Crocus sativus L. (Saffron) and its potential applications: A brief overview. Phytother. Res. 2018, 32, 2364–2375. [Google Scholar] [CrossRef]
- Mzabri, I.; Addi, M.; Berrichi, A. Traditional and Modern Uses of Saffron (Crocus sativus). Cosmetics 2019, 6, 63. [Google Scholar] [CrossRef]
- Dai, R.-C.; Nabil, W.N.N.; Xu, H.-X. The History of Saffron in China: From Its Origin to Applications. Chin. Med. Cult. 2021, 4, 228–234. [Google Scholar] [CrossRef]
- Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic. 2020, 272, 109560. [Google Scholar] [CrossRef]
- Ashktorab, H.; Soleimani, A.; Singh, G.; Amin, A.; Tabtabaei, S.; Latella, G.; Stein, U.; Akhondzadeh, S.; Solanki, N.; Gondré-Lewis, M.C.; et al. Saffron: The Golden Spice with Therapeutic Properties on Digestive Diseases. Nutrients 2019, 11, 943. [Google Scholar] [CrossRef]
- Ghaffari, S.; Roshanravan, N. Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomed. Pharmacother. 2019, 109, 21–27. [Google Scholar] [CrossRef]
- Hatziagapiou, K.; Kakouri, E.; Lambrou, G.I.; Bethanis, K.; Tarantilis, P.A. Antioxidant Properties of Crocus sativus L. and Its Constituents and Relevance to Neurodegenerative Diseases; Focus on Alzheimer’s and Parkinson’s Disease. Curr. Neuropharmacol. 2019, 17, 377–402. [Google Scholar] [CrossRef]
- Moradzadeh, M.; Kalani, M.R.; Avan, A. The antileukemic effects of saffron (Crocus sativus L.) and its related molecular targets: A mini review. J. Cell. Biochem. 2019, 120, 4732–4738. [Google Scholar] [CrossRef] [PubMed]
- Bej, E.; Volpe, A.R.; Cesare, P.; Cimini, A.; d’Angelo, M.; Castelli, V. Therapeutic potential of saffron in brain disorders: From bench to bedside. Phytother. Res. 2024, 38, 2482–2495. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Zare, V.; Butler, A.E.; Barreto, G.E.; Sahebkar, A. Antidiabetic potential of saffron and its active constituents. J. Cell. Physiol. 2019, 234, 8610–8617. [Google Scholar] [CrossRef] [PubMed]
- Maggi, M.A.; Bisti, S.; Picco, C. Saffron: Chemical Composition and Neuroprotective Activity. Molecules 2020, 25, 5618. [Google Scholar] [CrossRef] [PubMed]
- Cid-Pérez, T.S.; Nevárez-Moorillón, G.V.; Ochoa-Velasco, C.E.; Navarro-Cruz, A.R.; Hernández-Carranza, P.; Avila-Sosa, R. The Relation between Drying Conditions and the Development of Volatile Compounds in Saffron (Crocus sativus). Molecules 2021, 26, 6954. [Google Scholar] [CrossRef] [PubMed]
- D’Archivio, A.A.; Di Pietro, L.; Maggi, M.A.; Rossi, L. Optimization using chemometrics of HS-SPME/GC–MS profiling of saffron aroma and identification of geographical volatile markers. Eur. Food Res. Technol. 2018, 244, 1605–1613. [Google Scholar] [CrossRef]
- Farag, M.A.; Hegazi, N.; Dokhalahy, E.; Khattab, A.R. Chemometrics based GC-MS aroma profiling for revealing freshness, origin and roasting indices in saffron spice and its adulteration. Food Chem. 2020, 331, 127358. [Google Scholar] [CrossRef] [PubMed]
- ISO 3632-1:2011; Saffron (Crocus sativus L.). Part 1 (Specification) and Part 2 (Test Methods). International Organization for Standardization: Geneva, Switzerland, 2011.
- Jafarisani, M.; Bathaie, S.Z.; Mousavi, M.F. Saffron carotenoids (crocin and crocetin) binding to human serum albumin as investigated by different spectroscopic methods and molecular docking. J. Biomol. Struct. Dyn. 2018, 36, 1681–1690. [Google Scholar] [CrossRef]
- Aiello, D.; Siciliano, C.; Mazzotti, F.; Di Donna, L.; Athanassopoulos, C.M.; Napoli, A. A rapid MALDI MS/MS based method for assessing saffron (Crocus sativus L.) adulteration. Food Chem. 2020, 307, 125527. [Google Scholar] [CrossRef]
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Instrumental approaches and innovative systems for saffron quality assessment. J. Food Eng. 2018, 216, 1–10. [Google Scholar] [CrossRef]
- Li, D.; Zuo, W.; Ma, S.; Li, R.; Ye, Z. Metabolomics characterization of two saffron from Iran and China using GC–MS and LC–MS methods. J. Anal. Sci. Technol. 2024, 15, 7. [Google Scholar] [CrossRef]
- Al Jaberi, F.M.; Alhawarri, M.B.; Dewa, A.; Zainal, Z.; Zakaria, F. Anti-obesity, phytochemical profiling and acute toxicity study of ethanolic extract of saffron (Crocus sativus L.). Pharmacol. Res. Mod. Chin. Med. 2024, 11, 100420. [Google Scholar] [CrossRef]
- Avila-Sosa, R.; Nevarez-Moorillon, G.V.; Ochoa-Velasco, C.E.; Navarro-Cruz, A.R.; Hernandez-Carranza, P.; Cid-Perez, T.S. Detection of Saffron’s Main Bioactive Compounds and Their Relationship with Commercial Quality. Foods 2022, 11, 3245. [Google Scholar] [CrossRef]
- Moras, B.; Loffredo, L.; Rey, S. Quality assessment of saffron (Crocus sativus L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using gardenia fruit extract (Gardenia jasminoides Ellis). Food Chem. 2018, 257, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Neira, L.; Lage-Yusty, M.A.; Lopez-Hernandez, J. Influence of Culinary Processing Time on Saffron’s Bioactive Compounds (Crocus sativus L.). Plant Foods Hum. Nutr. 2014, 69, 291–296. [Google Scholar] [CrossRef]
- Cerda-Bernad, D.; Valero-Cases, E.; Pastor, J.J.; Frutos, M.J. Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action. Crit. Rev. Food Sci. Nutr. 2022, 62, 3232–3249. [Google Scholar] [CrossRef]
- Ghanbari, J.; Khajoei-Nejad, G.; van Ruth, S.M.; Aghighi, S. The possibility for improvement of flowering, corm properties, bioactive compounds, and antioxidant activity in saffron (Crocus sativus L.) by different nutritional regimes. Ind. Crops Prod. 2019, 135, 301–310. [Google Scholar] [CrossRef]
- Popović-Djordjević, J.B.; Kostić, A.Ž.; Kiralan, M. Chapter 2—Antioxidant activities of bioactive compounds and various extracts obtained from saffron. In Saffron; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 41–97. [Google Scholar]
- Armellini, R.; Peinado, I.; Asensio-Grau, A.; Pittia, P.; Scampicchio, M.; Heredia, A.; Andres, A. In vitro starch digestibility and fate of crocins in pasta enriched with saffron extract. Food Chem. 2019, 283, 155–163. [Google Scholar] [CrossRef]
- Rocchi, R.; Mascini, M.; Sergi, M.; Compagnone, D.; Mastrocola, D.; Pittia, P. Crocins pattern in saffron detected by UHPLC-MS/MS as marker of quality, process and traceability. Food Chem. 2018, 264, 241–249. [Google Scholar] [CrossRef]
- Guijarro-Diez, M.; Nozal, L.; Marina, M.L.; Crego, A.L. Metabolomic fingerprinting of saffron by LC/MS: Novel authenticity markers. Anal. Bioanal. Chem. 2015, 407, 7197–7213. [Google Scholar] [CrossRef]
- Carmona, M.; Sanchez, A.M.; Ferreres, F.; Zalacain, A.; Tomas-Barberan, F.; Alonso, G.L. Identification of the flavonoid fraction in saffron spice by LC/DAD/MS/MS: Comparative study of samples from different geographical origins. Food Chem. 2007, 100, 445–450. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, M.V.; Lopez-Corcoles, H.; Alonso, G.L.; Pappas, C.S.; Polissiou, M.G.; Tarantilis, P.A. Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. Food Chem. 2017, 221, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Shajari, M.A.; Moghaddam, P.R. Are the apocarotenoids content and colorimetric traits of saffron (Crocus sativus L.) affected by some post harvesting operations? J. Stored Prod. Res. 2022, 97, 101967. [Google Scholar] [CrossRef]
- Ledesma-Escobar, C.A.; Priego-Capote, F.; Calderón-Santiago, M. MetaboMSDIA: A tool for implementing data-independent acquisition in metabolomic-based mass spectrometry analysis. Anal. Chim. Acta 2023, 1266, 341308. [Google Scholar] [CrossRef]
- Karkoula, E.; Angelis, A.; Koulakiotis, N.-S.; Gikas, E.; Halabalaki, M.; Tsarbopoulos, A.; Skaltsounis, A.-L. Rapid isolation and characterization of crocins, picrocrocin, and crocetin from saffron using centrifugal partition chromatography and LC-MS. J. Sep. Sci. 2018, 41, 4105–4114. [Google Scholar] [CrossRef]
Compound | Mass | RT * | Formula | Adduct | Precursor Ion | Product Ions |
---|---|---|---|---|---|---|
Safranal ** | 150.105 | 17.75 | C10H14O | [M + H]+ | 151.1101 | 91.053, 81.070, 67.054 |
trans-Crocin ** | 976.375 | 11.22 | C44H64O24 | [M − H]− | 975.3757 | 327.157, 283.167 |
cis-Crocin ** | 976.375 | 13.56 | C44H64O24 | [M − H]− | 975.3757 | 327.157, 283.167 |
cis-Crocin-2 | 814.326 | 14.44 | C38H54O19 | [M − H]− | 813.3291 | 327.157, 283.167 |
trans-Crocin-2 | 814.326 | 12.38 | C38H54O20 | [M − H]− | 813.3291 | 327.157, 283.167 |
cis-Crocin-3 | 652.2731 | 14.23 | C32H44O14 | [M − H]− | 651.2651 | 327.157, 283.167 |
trans-Crocin-3 | 652.2731 | 13.49 | C32H44O14 | [M − H]− | 651.2651 | 327.157, 283.167 |
Picrocrocin | 330.1686 | 10.84 | C16H26O7 | [M − H]− | 329.1606 | 329.160, 149.0972 |
Kaempferol ** | 286.0477 | 14.83 | C15H10O6 | [M + H]+ | 287.0558 | 153.016, 121.027 |
Kaempferol glucoside | 448.093 | 12.68 | C21H20O11 | [M − H]− | 447.0933 | 284.0332, 255.303 |
Kaempferol diglucoside | 610.153 | 11.42 | C27H30O16 | [M − H]− | 609.1377 | 447.095, 283.0233 |
Kaempferol triglucoside | 772.2065 | 10.04 | C33H40O21 | [M − H]− | 771.1983 | 446.0853, 284.0319 |
Quercetin ** | 302.0426 | 15.01 | C15H10O7 | [M + H]+ | 303.0490 | 153.0199, 127.0527 |
Quercetin diglucoside | 626.148 | 11.42 | C27H30O17 | [M − H]− | 625.1432 | 463.0843, 301.0327 |
Moracetin (quercetin 3-triglucoside) | 788.2011 | 11.26 | C33H40O22 | [M − H]− | 787.1938 | 463.0843, 301.0327 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Criado-Navarro, I.; Ledesma-Escobar, C.A.; Pérez-Juan, P.; Priego-Capote, F. Distribution of Main Bioactive Compounds from Saffron Species as a Function of Infusion Temperature and Time in an Oil/Water System. Molecules 2024, 29, 3080. https://doi.org/10.3390/molecules29133080
Criado-Navarro I, Ledesma-Escobar CA, Pérez-Juan P, Priego-Capote F. Distribution of Main Bioactive Compounds from Saffron Species as a Function of Infusion Temperature and Time in an Oil/Water System. Molecules. 2024; 29(13):3080. https://doi.org/10.3390/molecules29133080
Chicago/Turabian StyleCriado-Navarro, Inmaculada, Carlos Augusto Ledesma-Escobar, Pedro Pérez-Juan, and Feliciano Priego-Capote. 2024. "Distribution of Main Bioactive Compounds from Saffron Species as a Function of Infusion Temperature and Time in an Oil/Water System" Molecules 29, no. 13: 3080. https://doi.org/10.3390/molecules29133080
APA StyleCriado-Navarro, I., Ledesma-Escobar, C. A., Pérez-Juan, P., & Priego-Capote, F. (2024). Distribution of Main Bioactive Compounds from Saffron Species as a Function of Infusion Temperature and Time in an Oil/Water System. Molecules, 29(13), 3080. https://doi.org/10.3390/molecules29133080