Copper (II) Level in Musts Affects Acetaldehyde Concentration, Phenolic Composition, and Chromatic Characteristics of Red and White Wines
Abstract
:1. Introduction
2. Results and Discussions
2.1. Fermentation Evolutions and Copper (II) Evolution during Fermentations
2.2. Acetaldehyde Production during Fermentations
2.3. Effect of Copper (II) on Phenolic Composition and Chromatic Characteristics of Red and White Wine during Fermentation
2.4. Effect of Copper (II) on One-Year Aged Wines
3. Materials and Methods
3.1. Biological Materials
3.2. Fermentation Experiments
3.3. Fermentation Experiments
3.4. Base Parameter Analyses
3.5. Wine Color and Spectrophotometric Analyses
3.6. Determination of Copper (II) Content
3.7. Determination of Monomeric and Polymeric Phenolics
3.8. Determination of Acetaldehyde
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Brix | Degree Brix (sugar content) |
a* | Red–green chromaticity in CIELab color space |
AF | Alcoholic fermentation |
AG | Aglianico (red) grape variety |
b* | Yellow–blue chromaticity in CIELab color space |
BSA | Bovine serum albumin |
CI | Color intensity |
CIELab | Color space system (L*, a*, b*) |
DD | Days after yeast inoculation |
EAF | End of alcoholic fermentation |
FX10 | Zymaflore FX10 (yeast strain) |
g/hL | Grams per hectoliter (concentration) |
GR | Greco di Tufo (white) grape variety |
HCAs | Hydroxycinnamic acids |
L* | Lightness in CIELab color space |
LPPs | Large polymeric pigments |
NTU | Nephelometric turbidity unit |
OIV | Organisation Internationale de la Vigne et du Vin |
SDS | Sodium dodecyl sulfate |
SPPs | Small polymeric colors |
VRFs | Vanillin-reactive flavanols |
WL | Wallerstein Laboratory nutrient agar |
X5 | Zymaflore X5 (yeast strain) |
Δ | Change or difference in a measurement |
ΔE⁄ab | Euclidean distance in CIELab color space |
References
- Fagnano, M.; Agrelli, D.; Pascale, A.; Adamo, P.; Fiorentino, N.; Rocco, C.; Pepe, O.; Ventorino, V. Copper Accumulation in Agricultural Soils: Risks for the Food Chain and Soil Microbial Populations. Sci. Total Environ. 2020, 734, 139434. [Google Scholar] [CrossRef]
- Peña, M.J.; Koch, K.A.; Thiele, D.J. Dynamic Regulation of Copper Uptake and Detoxification Genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 1998, 18, 2514–2523. [Google Scholar] [CrossRef]
- Brunetto, G.; Bastos de Melo, G.W.; Terzano, R.; Del Buono, D.; Astolfi, S.; Tomasi, N.; Pii, Y.; Mimmo, T.; Cesco, S. Copper Accumulation in Vineyard Soils: Rhizosphere Processes and Agronomic Practices to Limit Its Toxicity. Chemosphere 2016, 162, 293–307. [Google Scholar] [CrossRef]
- Tariba, B. Metals in Wine—Impact on Wine Quality and Health Outcomes. Biol. Trace Elem. Res. 2011, 144, 143–156. [Google Scholar] [CrossRef]
- Royer, A.; Tariq, S. Copper Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Implementing Regulation—540/2011—EN—EUR-Lex. Europa.eu. Available online: http://data.europa.eu/eli/reg_impl/2011/540/oj (accessed on 15 March 2024).
- Ana Paula Hummes; Edson Campanhola Bortoluzzi; Tonini, V.; Rangel, L.; Petry, C. Transfer of Copper and Zinc from Soil to Grapevine-Derived Products in Young and Centenarian Vineyards. Water Air Soil Poll 2019, 230, 150. [Google Scholar] [CrossRef]
- Arias, M.; Pérez-Novo, C.; López, E.; Soto, B. Competitive Adsorption and Desorption of Copper and Zinc in Acid Soils. Geoderma 2006, 133, 151–159. [Google Scholar] [CrossRef]
- Azenha, M.; Vasconcelos, M.T.; Moradas-Ferreira, P. The Influence of Cu Concentration on Ethanolic Fermentation by Saccharomyces cerevisiae. J. Biosci. Bioeng. 2000, 90, 163–167. [Google Scholar] [CrossRef]
- Ferreira, J.; Toit, M.D.; Toit, W.J.D. The Effects of Copper and High Sugar Concentrations on Growth, Fermentation Efficiency and Volatile Acidity Production of Different Commercial Wine Yeast Strains. Aust. J. Grape Wine Res. 2006, 12, 50–56. [Google Scholar] [CrossRef]
- Clark, A.C.; Grant-Preece, P.; Cleghorn, N.; Scollary, G.R. Copper (II) Addition to White Wines Containing Hydrogen Sulfide: Residual Copper Concentration and Activity. Aust. J. Grape Wine Res. 2014, 21, 30–39. [Google Scholar] [CrossRef]
- Sun, X.; Liu, L.; Zhao, Y.; Ma, T.; Zhao, F.; Huang, W.; Zhan, J. Effect of Copper Stress on Growth Characteristics and Fermentation Properties of Saccharomyces cerevisiae and the Pathway of Copper Adsorption during Wine Fermentation. Food Chem. 2016, 192, 43–52. [Google Scholar] [CrossRef]
- Eschenbruch, R.; Kleynhans, P.H. The Influence of Copper-Containing Fungicides on the Copper Content of Grape Juice and on Hydrogen Sulphide Formation. Vitis 2017, 12, 320. [Google Scholar]
- Danilewicz, J.C. Review of Oxidative Processes in Wine and Value of Reduction Potentials in Enology. Am. J. Enol. Vitic. 2011, 63, 1–10. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A. Handbook of Enology: The Chemistry of Wine: Stabilization and Treatments; John Wiley & Sons: Chichester, UK, 2006; Volume 2. [Google Scholar]
- Implementing Regulation—2018/1981—EN—EUR-Lex. eur-lex.europa.eu. Available online: https://eur-lex.europa.eu/eli/reg_impl/2018/1981/oj (accessed on 17 May 2024).
- EUR-Lex—02005R0396-20220919—EN—EUR-Lex. eur-lex.europa.eu. Available online: http://data.europa.eu/eli/reg/2005/396/2022-09-19 (accessed on 17 May 2024).
- Sun, X.; Ma, T.; Han, L.; Huang, W.; Zhan, J. Effects of Copper Pollution on the Phenolic Compound Content, Color, and Antioxidant Activity of Wine. Molecules 2017, 22, 726. [Google Scholar] [CrossRef]
- Rousseva, M.; Kontoudakis, N.; Schmidtke, L.M.; Scollary, G.R.; Clark, A.C. Impact of Wine Production on the Fractionation of Copper and Iron in Chardonnay Wine: Implications for Oxygen Consumption. Food Chem. 2016, 203, 440–447. [Google Scholar] [CrossRef]
- Mendes-Ferreira, A.; Barbosa, C.; Lage, P.; Mendes-Faia, A. The Impact of Nitrogen on Yeast Fermentation and Wine Quality. Ciência Téc. Vitiv. 2011, 26, 17–32. [Google Scholar]
- Clark, A.C.; Wilkes, E.N.; Scollary, G.R. Chemistry of copper in white wine: A review. Aust. J. Grape Wine Res. 2015, 21, 339–350. [Google Scholar] [CrossRef]
- Junghans, K.; Straube, G. Biosorption of Copper by Yeasts. Biol. Met. 1991, 4, 233–237. [Google Scholar] [CrossRef]
- Fregoni, M.; Corallo, G. Il Rame Nei Vigneti Italiani; La Dotazione in Rame Dei Vigneti Italiani. VVQ Vigne Vini Qual. 2001, 28, 35–43. [Google Scholar]
- Sauvage, L.; Frank, D.; Stearne, J.; Millikan, M. Trace Metal Studies of Selected White Wines: An Alternative Approach. Anal. Chim. Acta 2002, 458, 223–230. [Google Scholar] [CrossRef]
- Bica, A.; Sánchez, R.; Todolí, J.-L. Evolution of the Multielemental Content along the Red Wine Production Process from Tempranillo and Grenache Grape Varieties. Molecules 2020, 25, 2961. [Google Scholar] [CrossRef]
- Hsia, C.L.; Planck, R.W.; Nagel, C.W. Influence of Must Processing on Iron and Copper Contents of Experimental Wines. Am. J. Enol. Vitic. 1975, 26, 57–61. [Google Scholar] [CrossRef]
- Tromp, A.; de Klerk, C.A. Effect of Copper oxychloride on the Fermentation of Must and on Wine Quality. S. Afr. J. Enol. Vitic. 2017, 9, 31–36. [Google Scholar] [CrossRef]
- Cacho, J.; Castells, J.E.; Esteban, A.; Laguna, B.; Sagristá, N. Iron, Copper, and Manganese Influence on Wine Oxidation. Am. J. Enol. Vitic. 1995, 46, 380–384. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Laurie, V.F. Oxidation of Wine Phenolics: A Critical Evaluation and Hypotheses. Am. J. Enol. Vitic. 2006, 57, 306–313. [Google Scholar] [CrossRef]
- Li, E.; Mira de Orduña, R. Evaluation of the Acetaldehyde Production and Degradation Potential of 26 Enological Saccharomyces and Non-Saccharomyces Yeast Strains in a Resting Cell Model System. J. Ind. Microbiol. Biotechnol. 2010, 38, 1391–1398. [Google Scholar] [CrossRef]
- Bakker, B.M.; Bro, C.; Kötter, P.; Luttik, M.A.; Van Dijken, J.P.; Pronk, J.T. The Mitochondrial Alcohol Dehydrogenase Adh3p Is Involved in a Redox Shuttle in Saccharomyces cerevisiae. J. Bacteriol. 2000, 182, 4730–4737. [Google Scholar] [CrossRef]
- Peterson, A.L.; Waterhouse, A.L. 1H NMR: A Novel Approach to Determining the Thermodynamic Properties of Acetaldehyde Condensation Reactions with Glycerol, (+)-Catechin, and Glutathione in Model Wine. J. Agric. Food Chem. 2016, 64, 6869–6878. [Google Scholar] [CrossRef]
- Casassa, L.F.; Harbertson, J.F. Extraction, Evolution, and Sensory Impact of Phenolic Compounds during Red Wine Maceration. Annu. Rev. Food Sci. Technol. 2014, 5, 83–109. [Google Scholar] [CrossRef]
- Liang, Q.; Zhou, B. Copper and Manganese Induce Yeast Apoptosis via Different Pathways. Mol. Biol. Cell 2007, 18, 4741–4749. [Google Scholar] [CrossRef]
- Forino, M.; Picariello, L.; Lopatriello, A.; Moio, L.; Gambuti, A. New Insights into the Chemical Bases of Wine Color Evolution and Stability: The Key Role of Acetaldehyde. Eur. Food Res. Technol. 2020, 246, 733–743. [Google Scholar] [CrossRef]
- Teng, B.; Hayasaka, Y.; Smith, P.A.; Bindon, K.A. Precipitation of Tannin–Anthocyanin Derivatives in Wine Is Influenced by Acetaldehyde Concentration and Tannin Molecular Mass with Implications for the Development of Nonbleachable Pigments. J. Agric. Food Chem. 2021, 69, 4804–4815. [Google Scholar] [CrossRef]
- Danilewicz, J.C.; Wallbridge, P.J. Further Studies on the Mechanism of Interaction of Polyphenols, Oxygen, and Sulfite in Wine. Am. J. Enol. Vitic. 2010, 61, 166–175. [Google Scholar] [CrossRef]
- Thomas, D.S.; Hossack, J.A.; Rose, A.H. Plasma-Membrane Lipid Composition and Ethanol Tolerance in Saccharomyces cerevisiae. Arch. Microbiol. 1978, 117, 239–245. [Google Scholar] [CrossRef]
- Ghareib, M.; Youssef, K.A.; Khalil, A.A. Ethanol Tolerance of Saccharomyces cerevisiae and Its Relationship to Lipid Content and Composition. Folia Microbiol. 1988, 33, 447–452. [Google Scholar] [CrossRef]
- Stehlik-Tomas, V.; Gulan Zetić, V.; Stanzer, D.; Grba, S.; Vahčić, N. Zinc, Copper and Manganese Enrichment in Yeast Saccharomyces cerevisae. Food Technol. Biotechnol. 2004, 42, 115–120. [Google Scholar]
- Fulcrand, H.; Dueñas, M.; Salas, E.; Cheynier, V. Phenolic Reactions during Winemaking and Aging. Am. J. Enol. Vitic. 2006, 57, 289–297. [Google Scholar] [CrossRef]
- Cucciniello, R.; Forino, M.; Picariello, L.; Coppola, F.; Moio, L.; Gambuti, A. How Acetaldehyde Reacts with Low Molecular Weight Phenolics in White and Red Wines. Eur. Food Res. Technol. 2021, 247, 2935–2944. [Google Scholar] [CrossRef]
- Ćurko, N.; Ganić, K.K.; Tomašević, M.; Gracin, L.; Jourdes, M.; Teissedre, P.-L. Effect of Enological Treatments on Phenolic and Sensory Characteristics of Red Wine during Aging: Micro-Oxygenation, Sulfur Dioxide, Iron with Copper and Gelatin Fining. Food Chem. 2021, 339, 127848. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Review of Reaction Mechanisms of Oxygen and Proposed Intermediate Reduction Products in Wine: Central Role of Iron and Copper. Am. J. Enol. Vitic. 2003, 54, 73–85. [Google Scholar] [CrossRef]
- Mokrzycki, W.; Tatol, M. Color Difference Delta E—A Survey. 2017. Available online: https://wisotop.de/assets/2017/DeltaE-%20Survey-2.pdf (accessed on 15 March 2024).
- Sarni-Manchado, P.; Cheynier, V.; Moutounet, M. Interactions of Grape Seed Tannins with Salivary Proteins. J. Agric. Food Chem. 1998, 47, 42–47. [Google Scholar] [CrossRef]
- Spagna, G.; Pier Giorgio, P.; Rangoni, C.; Mattivi, F.; Nicolini, G.; Palmonari, R. The Stabilization of White Wines by Adsorption of Phenolic Compounds on Chitin and Chitosan. Food Res. Int. 1996, 29, 241–248. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Picciotto, E.A.; Adams, D.O. Measurement of Polymeric Pigments in Grape Berry Extracts and Wines Using a Protein Precipitation Assay Combined with Bisulfite Bleaching. Am. J. Enol. Vitic. 2003, 54, 301–306. [Google Scholar] [CrossRef]
- Mouls, L.; Fulcrand, H. UPLC-ESI-MS Study of the Oxidation Markers Released from Tannin Depolymerization: Toward a Better Characterization of the Tannin Evolution over Food and Beverage Processing. J. Mass Spectrom. 2012, 47, 1450–1457. [Google Scholar] [CrossRef]
- Suo, H.; Tian, R.; Li, J.; Zhang, S.; Cui, Y.; Li, L.; Sun, B. Compositional Characterization Study on High -Molecular -Mass Polymeric Polyphenols in Red Wines by Chemical Degradation. Food Res. Int. 2019, 123, 440–449. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Wine Phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- Mayén, M.; Barón, R.; Mérida, J.; Medina, M. Changes in Phenolic Compounds during Accelerated Browning in White Wines from Cv. Pedro Ximenez and Cv. Baladi Grapes. Food Chem. 1997, 58, 89–95. [Google Scholar] [CrossRef]
- Schneider, V. Must Hyperoxidation: A Review. Am. J. Enol. Vitic. 1998, 49, 65–73. [Google Scholar] [CrossRef]
- Mekoue Nguela, J.; Sieczkowski, N.; Roi, S.; Vernhet, A. Sorption of Grape Proanthocyanidins and Wine Polyphenols by Yeasts, Inactivated Yeasts, and Yeast Cell Walls. J. Agric. Food Chem. 2015, 63, 660–670. [Google Scholar] [CrossRef]
- GEORGE, N.; CLARK, A.C.; PRENZLER, P.D.; SCOLLARY, G.R. Factors Influencing the Production and Stability of Xanthylium Cation Pigments in a Model White Wine System. Aust. J. Grape Wine Res. 2006, 12, 57–68. [Google Scholar] [CrossRef]
- Oszmiański, J.; Cheynier, A.; Moutounet, M. Iron-Catalyzed Oxidation of (+)-Catechin in Model Systems. J. Agric. Food Chem. 1996, 44, 1712–1715. [Google Scholar] [CrossRef]
- De Iseppi, A.; Lomolino, G.; Marangon, M.; Curioni, A. Current and Future Strategies for Wine Yeast Lees Valorization. Food Res. Int. 2020, 137, 109352. [Google Scholar] [CrossRef]
- Schmidtke, L.M.; Clark, A.C.; Scollary, G.R. Micro-Oxygenation of Red Wine: Techniques, Applications, and Outcomes. Crit. Rev. Food Sci. Nutr. 2011, 51, 115–131. [Google Scholar] [CrossRef]
- He, F.; Liang, N.-N.; Mu, L.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef]
- de Freitas, V.; Mateus, N. Formation of Pyranoanthocyanins in Red Wines: A New and Diverse Class of Anthocyanin Derivatives. Anal. Bioanal. Chem. 2010, 401, 1463–1473. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Mattivi, F.; Waterhouse, A. Analysis of Red Wine Phenolics: Comparison of HPLC and Spectrophotometric Methods. Vitis 2001, 40, 8791. [Google Scholar]
- Kontoudakis, N.; Guo, A.; Scollary, G.R.; Clark, A.C. The Impact of Aging Wine in High and Low Oxygen Conditions on the Fractionation of Cu and Fe in Chardonnay Wine. Food Chem. 2017, 229, 319–328. [Google Scholar] [CrossRef]
- Gislason, N.E.; Currie, B.L.; Waterhouse, A.L. Novel Antioxidant Reactions of Cinnamates in Wine. J. Agric. Food Chem. 2011, 59, 6221–6226. [Google Scholar] [CrossRef]
- Picariello, L.; Gambuti, A.; Picariello, B.; Moio, L. Evolution of Pigments, Tannins and Acetaldehyde during Forced Oxidation of Red Wine: Effect of Tannins Addition. LWT 2017, 77, 370–375. [Google Scholar] [CrossRef]
- del Carmen Llaudy, M.; Canals, R.; González-Manzano, S.; Canals, J.M.; Santos-Buelga, C.; Zamora, F. Influence of Micro-Oxygenation Treatment before Oak Aging on Phenolic Compounds Composition, Astringency, and Color of Red Wine. J. Agric. Food Chem. 2006, 54, 4246–4252. [Google Scholar] [CrossRef]
- Cano-López, M.; Pardo-Mínguez, F.; Schmauch, G.; Saucier, C.; Teissedre, P.-L.; López-Roca, J.M.; Gómez-Plaza, E. Effect of Micro-Oxygenation on Color and Anthocyanin-Related Compounds of Wines with Different Phenolic Contents. J. Agric. Food Chem. 2008, 56, 5932–5941. [Google Scholar] [CrossRef]
- Gambuti, A.; Han, G.; Peterson, A.L.; Waterhouse, A.L. Sulfur Dioxide and Glutathione Alter the Outcome of Microoxygenation. Am. J. Enol. Vitic. 2015, 66, 411–423. [Google Scholar] [CrossRef]
- Zhang, X.-K.; Lan, Y.-B.; Huang, Y.; Zhao, X.; Duan, C.-Q. Targeted Metabolomics of Anthocyanin Derivatives during Prolonged Wine Aging: Evolution, Color Contribution and Aging Prediction. Food Chem. 2021, 339, 127795. [Google Scholar] [CrossRef]
- Zhang, X.-K.; Zhao, X.; Ying, S.; Duan, C.-Q. The Formation Mechanism of Pinotin a in Model Wine: Experimental and Theoretical Investigation. Food Chem. 2022, 380, 132196. [Google Scholar] [CrossRef]
- Gambuti, A.; Picariello, L.; Moio, L.; Waterhouse, A.L. Cabernet Sauvignon Aging Stability Altered by Microoxygenation. Am. J. Enol. Vitic. 2019, 70, 323–331. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; West Sussex Wiley: Chichester, UK, 2016. [Google Scholar]
- Es-Safi, N.E.; Le Guernevé, C.; Fulcrand, H.; Cheynier, V.; Moutounet, M. Xanthylium Salts Formation Involved in Wine Colour Changes. Int. J. Food Sci. Technol. 2000, 35, 63–74. [Google Scholar] [CrossRef]
- Ferreira-Lima, N.E.; Burin, V.M.; Bordignon-Luiz, M.T. Characterization of Goethe White Wines: Influence of Different Storage Conditions on the Wine Evolution during Bottle Aging. Eur. Food Res. Technol. 2013, 237, 509–520. [Google Scholar] [CrossRef]
- Cucciniello, R.; Tomasini, M.; Russo, A.; Falivene, L.; Gambuti, A.; Forino, M. Experimental and Theoretical Studies on the Acetaldehyde Reaction with (+)-Catechin. Food Chem. 2023, 426, 136556. [Google Scholar] [CrossRef]
- Glories, Y. La Couleur Des Vins Rouges. Conn. Vigne Vin. 1984, 18, 253–271. [Google Scholar]
- Vlahou, E.; Christofi, S.; Roussis, I.G.; Kallithraka, S. Browning Development and Antioxidant Compounds in White Wines after Selenium, Iron, and Peroxide Addition. Appl. Sci. 2022, 12, 3834. [Google Scholar] [CrossRef]
- Master, O.I.V.; Patronage, O.I.V. Compendium of International Methods of Wine and Must Analysis. International Organisation of Vine and Wine. 2024. Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis (accessed on 15 May 2024).
- Waterhouse, A.L.; Price, S.F.; McCord, J.D. [11] Reversed-Phase High-Performance Liquid Chromatography Methods for Analysis of Wine Polyphenols. Methods Enzymol. CD-ROM/Methods Enzymol. 1999, 299, 113–121. [Google Scholar] [CrossRef]
- Han, G.; Wang, H.; Webb, M.R.; Waterhouse, A.L. A Rapid, One Step Preparation for Measuring Selected Free plus SO2-Bound Wine Carbonyls by HPLC-DAD/MS. Talanta 2015, 134, 596–602. [Google Scholar] [CrossRef]
Aglianico Red Grape | |||||
---|---|---|---|---|---|
Copper (II) (mg/L) | |||||
Time zero | Control | 5.35 | ± | 0.64 | C a |
AG10 | 12.70 | ± | 0.20 | B a | |
AG20 | 18.22 | ± | 2.50 | A a | |
day 1 | Control | 5.50 | ± | 0.19 | C a |
AG10 | 10.67 | ± | 0.98 | B a | |
AG20 | 15.50 | ± | 1.65 | A ab | |
day 5 | Control | 2.26 | ± | 0.23 | A b |
AG10 | 5.99 | ± | 0.25 | A b | |
AG20 | 14.52 | ± | 7.98 | A ab | |
day 8 | Control | 1.90 | ± | 0.14 | A b |
AG10 | 7.06 | ± | 1.66 | A b | |
AG20 | 3.61 | ± | 4.63 | A ab | |
EAF | Control | 0.70 | ± | 0.28 | A c |
AG10 | 0.57 | ± | 0.27 | A c | |
AG20 | 0.82 | ± | 0.40 | A b |
Greco di Tufo | |||||
---|---|---|---|---|---|
Copper (II) (mg/L) | |||||
Time zero | Control | 3.94 | ± | 0.27 | C a |
GR10 | 9.73 | ± | 0.33 | B b | |
GR20 | 16.22 | ± | 0.05 | A ab | |
day 1 | Control | 4.38 | ± | 0.04 | C a |
GR10 | 11.51 | ± | 0.23 | B a | |
GR20 | 19.07 | ± | 0.12 | A a | |
day 4 | Control | 4.37 | ± | 0.49 | C a |
GR10 | 11.37 | ± | 0.35 | B a | |
GR20 | 18.01 | ± | 0.34 | A ab | |
day 8 | Control | 3.22 | ± | 0.18 | C ab |
GR10 | 11.72 | ± | 0.23 | B a | |
GR20 | 18.99 | ± | 1.51 | A a | |
day 12 | Control | 3.11 | ± | 0.89 | C ab |
GR10 | 9.81 | ± | 0.37 | B b | |
GR20 | 16.40 | ± | 0.35 | A ab | |
day 15 | Control | 3.39 | ± | 0.33 | C a |
GR10 | 9.30 | ± | 0.45 | B b | |
GR20 | 15.97 | ± | 1.19 | A b | |
day 25 | Control | 1.46 | ± | 0.31 | B bc |
GR10 | 2.56 | ± | 0.39 | AB c | |
GR20 | 3.72 | ± | 0.61 | A c | |
EAF | Control | 0.71 | ± | 0.04 | C c |
GR10 | 1.07 | ± | 0.08 | B d | |
GR20 | 1.66 | ± | 0.04 | A c |
Color Intensity † | Hue ‡ | Total Native Anthocyanins § | Polymeric Pigments ¶ | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time zero | Control | 2.05 | ± | 0.17 | B e | 0.82 | ± | 0.02 | A a | 913.16 | ± | 89.89 | A d | 14.17 | ± | 11.42 | A e |
AG10 | 2.76 | ± | 0.01 | A e | 0.82 | ± | 0.01 | A a | 709.69 | ± | 69.22 | B d | 18.20 | ± | 1.89 | A e | |
AG20 | 2.73 | ± | 0.23 | A d | 0.82 | ± | 0.04 | A a | 701.20 | ± | 28.27 | B d | 16.46 | ± | 3.75 | A e | |
day 1 | Control | 3.93 | ± | 0.00 | B d | 0.44 | ± | 0.00 | C c | 1571.28 | ± | 37.24 | A c | 29.32 | ± | 6.99 | C d |
AG10 | 4.39 | ± | 0.27 | A d | 0.47 | ± | 0.01 | B b | 1588.89 | ± | 270.14 | A c | 49.94 | ± | 9.23 | BC d | |
AG20 | 3.97 | ± | 0.16 | B c | 0.48 | ± | 0.00 | A b | 1435.28 | ± | 65.38 | A c | 63.83 | ± | 13.27 | A d | |
day 5 | Control | 4.96 | ± | 0.02 | A c | 0.40 | ± | 0.01 | C e | 2385.45 | ± | 114.52 | A a | 69.89 | ± | 5.46 | B c |
AG10 | 5.07 | ± | 0.13 | A c | 0.41 | ± | 0.00 | B e | 2144.04 | ± | 39.96 | B b | 78.17 | ± | 2.17 | B c | |
AG20 | 5.08 | ± | 0.23 | A b | 0.43 | ± | 0.00 | A d | 2116.72 | ± | 82.40 | B b | 103.08 | ± | 10.92 | A c | |
day 8 | Control | 6.26 | ± | 0.15 | A b | 0.41 | ± | 0.00 | C d | 2495.33 | ± | 133.27 | B a | 139.70 | ± | 11.46 | B b |
AG10 | 6.43 | ± | 0.29 | A b | 0.42 | ± | 0.00 | B d | 2581.75 | ± | 232.46 | A a | 159.39 | ± | 17.68 | AB b | |
AG20 | 5.46 | ± | 0.08 | B b | 0.53 | ± | 0.06 | A b | 2458.77 | ± | 49.06 | AB a | 175.36 | ± | 3.48 | A b | |
EAF | Control | 6.92 | ± | 0.17 | A a | 0.46 | ± | 0.01 | B b | 1728.20 | ± | 33.28 | A b | 253.56 | ± | 11.84 | B a |
AG10 | 7.19 | ± | 0.46 | A a | 0.46 | ± | 0.00 | B c | 1796.57 | ± | 104.26 | A c | 281.94 | ± | 23.85 | AB a | |
AG20 | 6.61 | ± | 0.12 | B a | 0.47 | ± | 0.00 | A c | 1524.18 | ± | 115.47 | B c | 267.41 | ± | 4.12 | A a |
Total Phenols † | BSA-Reactive Tannins ‡ | Vanillin-Reactive Flavans § | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time zero | Control | 814.29 | ± | 58.99 | B e | 103.19 | ± | 25.58 | B e | 126.32 | ± | 33.13 | A e |
AG10 | 1038.41 | ± | 28.93 | A e | 176.69 | ± | 16.08 | A e | 137.50 | ± | 11.37 | A e | |
AG20 | 1052.33 | ± | 29.11 | A e | 170.81 | ± | 9.37 | A e | 112.18 | ± | 67.74 | A e | |
day 1 | Control | 1304.29 | ± | 36.48 | A d | 225.06 | ± | 9.59 | A d | 281.25 | ± | 54.56 | A d |
AG10 | 1322.39 | ± | 30.33 | A d | 240.17 | ± | 11.25 | A d | 268.75 | ± | 47.50 | A d | |
AG20 | 1302.90 | ± | 42.41 | A d | 237.79 | ± | 15.40 | A d | 318.13 | ± | 55.17 | A d | |
day 5 | Control | 1702.42 | ± | 111.12 | A c | 448.58 | ± | 10.43 | A c | 684.76 | ± | 30.89 | A c |
AG10 | 1607.76 | ± | 143.22 | A c | 428.85 | ± | 38.56 | AB c | 592.06 | ± | 62.08 | AB c | |
AG20 | 1641.17 | ± | 45.32 | A c | 392.90 | ± | 25.61 | B c | 583.42 | ± | 53.96 | B c | |
day 8 | Control | 2094.97 | ± | 144.23 | A b | 569.17 | ± | 41.58 | A b | 796.31 | ± | 23.86 | A b |
AG10 | 2099.15 | ± | 71.45 | A b | 570.76 | ± | 9.65 | A b | 801.81 | ± | 51.85 | A b | |
AG20 | 1894.52 | ± | 45.55 | B b | 526.22 | ± | 22.50 | A b | 716.18 | ± | 28.69 | B b | |
day 19 | Control | 2828.58 | ± | 74.98 | AB a | 640.68 | ± | 36.59 | A a | 1533.18 | ± | 29.92 | A a |
AG10 | 2881.48 | ± | 18.47 | A a | 690.80 | ± | 27.32 | A a | 1599.17 | ± | 46.40 | A a | |
AG20 | 2763.16 | ± | 95.62 | B a | 575.85 | ± | 20.41 | B a | 1420.84 | ± | 18.39 | B a |
HCAs † | Abs 420 nm ‡ | Total Phenols § | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time zero | Control | 124.13 | ± | 0.52 | A a | 0.16 | ± | 0.01 | A a | 405.03 | ± | 74.48 | A a |
AG10 | 124.13 | ± | 0.52 | A a | 0.16 | ± | 0.01 | A a | 405.03 | ± | 74.48 | A a | |
AG20 | 124.13 | ± | 0.52 | A a | 0.16 | ± | 0.01 | A a | 405.03 | ± | 74.48 | A a | |
EAF | Control | 86.88 | ± | 7.30 | A b | 0.09 | ± | 0.00 | B b | 420.34 | ± | 39.76 | A a |
AG10 | 88.94 | ± | 1.14 | A b | 0.09 | ± | 0.00 | B b | 417.56 | ± | 46.81 | A a | |
AG20 | 90.81 | ± | 5.96 | A b | 0.12 | ± | 0.01 | A b | 396.68 | ± | 59.43 | A a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Errichiello, F.; Picariello, L.; Forino, M.; Blaiotta, G.; Petruzziello, E.; Moio, L.; Gambuti, A. Copper (II) Level in Musts Affects Acetaldehyde Concentration, Phenolic Composition, and Chromatic Characteristics of Red and White Wines. Molecules 2024, 29, 2907. https://doi.org/10.3390/molecules29122907
Errichiello F, Picariello L, Forino M, Blaiotta G, Petruzziello E, Moio L, Gambuti A. Copper (II) Level in Musts Affects Acetaldehyde Concentration, Phenolic Composition, and Chromatic Characteristics of Red and White Wines. Molecules. 2024; 29(12):2907. https://doi.org/10.3390/molecules29122907
Chicago/Turabian StyleErrichiello, Francesco, Luigi Picariello, Martino Forino, Giuseppe Blaiotta, Ernesto Petruzziello, Luigi Moio, and Angelita Gambuti. 2024. "Copper (II) Level in Musts Affects Acetaldehyde Concentration, Phenolic Composition, and Chromatic Characteristics of Red and White Wines" Molecules 29, no. 12: 2907. https://doi.org/10.3390/molecules29122907
APA StyleErrichiello, F., Picariello, L., Forino, M., Blaiotta, G., Petruzziello, E., Moio, L., & Gambuti, A. (2024). Copper (II) Level in Musts Affects Acetaldehyde Concentration, Phenolic Composition, and Chromatic Characteristics of Red and White Wines. Molecules, 29(12), 2907. https://doi.org/10.3390/molecules29122907