1,6-Nucleophilic Di- and Trifluoromethylation of para-Quinone Methides with Me3SiCF2H/Me3SiCF3 Facilitated by CsF/18-Crown-6
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Information
3.2. General Procedure
3.2.1. Experimental Procedures for the Synthesis of 2–5
3.2.2. Experimental Procedures for the Synthesis of 2,6-Di-tert-butyl-4-(1-(4-chlorophenyl)-2,2-difluoroethylidene)cyclohexa-2,5-dien-1-one (6a)
3.2.3. Experimental Procedures for the Synthesis of 4-(1-(4-Chlorophenyl)-2,2-difluoroethyl) Phenol (6b)
3.2.4. General Experimental Procedure for the Synthesis of 1-Ethoxy-4-(2,2,2-trifluoro-1-(4-methoxyphenyl)ethyl)benzene (7b)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford, UK, 2006; pp. 206–219. [Google Scholar]
- Müller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking Beyond Intuition. Science 2007, 317, 1881–1886. [Google Scholar] [CrossRef]
- Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. [Google Scholar] [CrossRef]
- He, J.; Li, Z.; Dhawan, G.; Zhang, W.; Sorochinsky, A.E.; Butler, G.; Soloshonok, V.A.; Han, J. Fluorine-containing drugs approved by the FDA in 2021. Chin. Chem. Lett. 2023, 34, 107578. [Google Scholar] [CrossRef]
- Li, W.-B.; Cheng, Y.-Z.; Yang, D.-H.; Liu, Y.-W.; Han, B.-H. Fluorine-Containing Covalent Organic Frameworks: Synthesis and Application. Macromol. Rapid Commun. 2023, 44, 2200778. [Google Scholar] [CrossRef]
- Upadhyay, C.; Chaudhary, M.; De Oliveira, R.N.; Borbas, A.; Kempaiah, P.; Rathi, B. Fluorinated scaffolds for antimalarial drug discovery. Expert Opin. Drug Dis. 2020, 15, 705–718. [Google Scholar] [CrossRef]
- Fang, Z.; Peng, Y.; Zhou, X.; Zhu, L.; Wang, Y.; Dong, X.; Xia, Y. Fluorinated Carbon Materials and the Applications in Energy Storage Systems. ACS Appl. Energy Mater. 2022, 5, 3966–3978. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, K.; Fu, C.; Peng, H.; Hawker, C.J.; Whittaker, A.K. Biological Utility of Fluorinated Compounds: From Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem. Rev. 2022, 122, 167–208. [Google Scholar] [CrossRef]
- Masoud, S.M.; Mailyan, A.K.; Dorcet, V.; Roisnel, T.; Dixneuf, P.H.; Bruneau, C.; Osipov, S.N. Metathesis Catalysts with Fluorinated Unsymmetrical NHC Ligands. Organometallics 2015, 34, 2305–2313. [Google Scholar] [CrossRef]
- Prakash, G.K.S.; Ganesh, S.K.; Jones, J.P.; Kulkarni, A.; Masood, K.; Swabeck, J.K.; Olah, G.A. Copper-Mediated Difluoromethylation of (Hetero)aryl Iodides and beta-Styryl Halides with Tributyl(difluoromethyl)stannane. Angew. Chem. Int. Ed. 2012, 51, 12090–12094. [Google Scholar] [CrossRef]
- Prakash, G.K.S.; Chacko, S. Novel Nucleophilic and Electrophilic Fluoroalkylation Methods. Curr. Opin. Drug Discov. Devel. 2008, 11, 793–802. [Google Scholar]
- Erickson, J.A.; McLoughlin, J.I. Hydrogen Bond Donor Properties of the Difluoromethyl Group. J. Org. Chem. 1995, 60, 1626–1631. [Google Scholar] [CrossRef]
- Levi, N.; Amir, D.; Gershonov, E.; Zafrani, Y. Recent Progress on the Synthesis of CF2H-Containing Derivatives. Synthesis 2019, 51, 4549–4567. [Google Scholar]
- Gewehr, M.; Gladwin, R.J.; Brahm, L. Pesticidal Mixtures. U.S. Patent 2012/0245031 A1, 27 September 2012. [Google Scholar]
- Pérez, R.A.; Sánchez-Brunete, C.; Miguel, E.; Tadeo, J.L. Analytical Methods for the Determination in Soil of Herbicides Used in Forestry by GC–NPD and GC/MS. J. Agric. Food Chem. 1998, 46, 1864–1869. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem. Rev. 2016, 116, 422–518. [Google Scholar] [CrossRef]
- Meanwell, N.A. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J. Med. Chem. 2011, 54, 2529–2591. [Google Scholar] [CrossRef]
- Prakash, G.K.; Yudin, S.A.K. Perfluoroalkylation with Organosilicon Reagents. Chem. Rev. 1997, 97, 757–786. [Google Scholar] [CrossRef]
- Fujihira, Y.; Liang, Y.; Ono, M.; Hirano, K.; Kagawa, T.; Shibata, N. Synthesis of trifluoromethyl ketones by nucleophilic trifluoromethylation of esters under a fluoroform/KHMDS /triglyme system. Beilstein J. Org. Chem. 2021, 17, 431–438. [Google Scholar] [CrossRef]
- Mu, B.-S.; Gao, Y.; Yang, F.-M.; Wu, W.-B.; Zhang, Y.; Wang, X.; Yu, J.-S.; Zhou, J. The Bifunctional Silyl Reagent Me2(CH2Cl)SiCF3 Enables Highly Enantioselective Ketone Trifluoromethylation and Related Tandem Processes. Angew. Chem. Int. Ed. 2022, 61, e202208861. [Google Scholar] [CrossRef]
- Chang, W.; Lei, Z.; Yang, Y.; Dai, S.; Feng, J.; Yang, J.; Zhang, Z. Tandem Reaction of Azide with Isonitrile and TMSCnFm(H): Access to N-Functionalized C-Fluoroalkyl Amidine. Org. Lett. 2023, 25, 1392–1396. [Google Scholar] [CrossRef]
- Liu, X.; Xu, C.; Wang, M.; Liu, Q. Trifluoromethyltrimethylsilane: Nucleophilic Trifluoromethylation and Beyond. Chem. Rev. 2015, 115, 683–730. [Google Scholar] [CrossRef]
- Levin, V.V.; Dilman, A.D. One-pot synthesis of α-trifluoromethylstyrenes from aryl ketones and the Ruppert–Prakash reagent. Mendeleev Commun. 2021, 31, 684–685. [Google Scholar] [CrossRef]
- Hagiwara, T.; Fuchikami, T. Difluoroalkylation of Carbonyl Compounds with (1,1-Difluoroalkyl)silane Derivatives. Synlett 1995, 7, 717–718. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, W.; Zheng, J.; Hu, J. Efficient and Direct Nucleophilic Difluoromethylation of Carbonyl Compounds and Imines with Me3SiCF2H at Ambient or Low Temperature. Org. Lett. 2011, 13, 5342–5345. [Google Scholar] [CrossRef]
- Du, G.-F.; Wang, Y.; Gu, C.-Z.; Dai, B.; He, L. Organocatalytic Direct Difluoromethylation of Aldehydes and Ketones with TMSCF2H. RSC Adv. 2015, 5, 35421–35424. [Google Scholar] [CrossRef]
- Obijalska, E.; Utecht, G.; Kowalski, M.K.; Mlostoń, G.; Rachwalski, M. Nucleophilic Addition of (Difluoromethyl)trimethylsilane to Selected α-Imino Ketones and Aryl Diketones. Tetrahedron Lett. 2015, 56, 4701–4703. [Google Scholar] [CrossRef]
- Michurin, O.M.; Radchenko, D.S.; Komarov, I.V. Direct Nucleophilic Difluoromethylation of Enolizable Ketones with CHF2TMS/HMPA. Tetrahedron 2016, 72, 1351–1356. [Google Scholar] [CrossRef]
- Dong, T.; Nie, J.; Zhang, C.-P. A Convenient, Transition Metal-free Synthesis of Difluoromethyl Selenoethers from Organic Selenocyanates and TMSCF2H. Tetrahedron 2018, 74, 5642–5649. [Google Scholar] [CrossRef]
- Miele, M.; Citarella, A.; Micale, N.; Holzer, W.; Pace, V. Direct and Chemoselective Synthesis of Tertiary Difluoroketones via Weinreb Amide Homologation with a CHF2-Carbene Equivalent. Org. Lett. 2019, 21, 8261–8265. [Google Scholar] [CrossRef]
- Miele, M.; D’Orsi, R.; Sridharan, V.; Holzer, W.; Pace, V. Highly Chemoselective Difluoromethylative Homologation of Iso(thio) cyanates: Expeditious Access to Unprecedented α,α-Difluoro(thio)amides. Chem. Commun. 2019, 55, 12960–12963. [Google Scholar]
- Howard, J.L.; Schotten, C.; Alston, S.T.; Browne, D.L. Preparation of Difluoromethylthioethers through Difluoromethylation of Disulfides Using TMSCF2H. Chem. Commun. 2016, 52, 8448–8451. [Google Scholar] [CrossRef]
- Hu, J.; Ni, C. (Difluoromethyl)trimethylsilane. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Wang, X.; Pan, S.; Luo, Q.; Wang, Q.; Ni, C.; Hu, J. Controllable Single and Double Difluoromethylene Insertions into C–Cu Bonds: Copper-Mediated Tetrafluoroethylation and Hexafluoropropylation of Aryl Iodides with TMSCF2H and TMSCF2Br. J. Am. Chem. Soc. 2022, 144, 12202–12211. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Prakash, G.K.S. Silicon-Based Reagents for Difluoromethylation and Difluoromethylenation Reactions. Synthesis 2017, 49, 3394–3406. [Google Scholar] [CrossRef]
- Chen, D.; Gao, X.; Song, S.; Kou, M.; Ni, C.; Hu, J. Progress in the study of difluoromethylation reactions with TMSCF2H reagent. Sci. Sin. Chim. 2023, 53, 375–387. [Google Scholar] [CrossRef]
- Chen, D.; Ni, C.; Zhao, Y.; Cai, X.; Li, X.; Xiao, P.; Hu, J. Bis(difluoromethyl)trimethylsilicate Anion: A Key Intermediate in Nucleophilic Difluoromethylation of Enolizable Ketones with Me3SiCF2H. Angew. Chem. Int. Ed. 2016, 55, 12632–12636. [Google Scholar] [CrossRef]
- Besset, T.; Poisson, T.; Pannecoucke, X. 1,4-Addition of the CF3 Group, Perfluoroalkyl Groups and Functionalized Difluoromethylated Moieties: An Overview. J. Fluor. Chem. 2015, 178, 225–240. [Google Scholar] [CrossRef]
- Shen, X.; Ni, C.; Hu, J. Nucleophilic Fluoroalkylation of α,β-Unsaturated Carbonyl Compounds with α-Fluorinated Sulfones: Investigation of the Reversibility of 1,2-Additions and the Formation of 1,4-Adducts. Helv. Chim. Acta 2012, 95, 2043–2051. [Google Scholar] [CrossRef]
- Ni, C.; Zhang, L.; Hu, J. Fluoroalkylation of α,β-Enones, Arynes, and Activated Alkynes with Fluorinated Sulfones: Probing the Hard/Soft Nature of Fluorinated Carbanions. J. Org. Chem. 2008, 73, 5699–5713. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J. Highly Enantioselective Organocatalytic Asymmetric Mukaiyama-aldol Reaction of Difluoroenoxysilanes with β,γ-Unsaturated α-Ketoesters. Acta Chim. Sin. 2012, 70, 1451–1456. [Google Scholar] [CrossRef]
- Chu, W.-D.; Zhang, L.-F.; Bao, X.; Zhao, X.-H.; Zeng, C.; Du, J.-Y.; Zhang, G.-B.; Wang, F.-X.; Ma, X.-Y.; Fan, C.-A. Asymmetric Catalytic 1,6-Conjugate Addition/Aromatiztion of para-Quinone Methides: Enantioselective Introduction of Functionalized Diarylmethine Stereogenic Centers. Angew. Chem. Int. Ed. 2013, 52, 9229–9233. [Google Scholar] [CrossRef]
- Caruana, L.; Kniep, F.; Johansen, T.K.; Poulsen, P.H.; Jørgensen, K.A. A New Organocatalytic Concept for Asymmetric α-Alkylation of Aldehydes. J. Am. Chem. Soc. 2014, 136, 15929–15932. [Google Scholar] [CrossRef]
- Venkatesh, R.; Shankar, G.; Narayanan, A.C.; Modi, G.; Sabiah, S.; Kandasamy, J. Multicomponent Synthesis of S-Benzyl Dithiocarbamates from para-Quinone Methides and Their Biological Evaluation for the Treatment of Alzheimer’s Disease. J. Org. Chem. 2022, 87, 6730–6741. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Recent Developments in 1,6-Addition Reactions of para-Quinone Methides (p-QMs). Org. Chem. Front. 2020, 7, 1743–1778. [Google Scholar] [CrossRef]
- Singh, T.; Upreti, G.C.; Arora, S.; Chauhan, H.; Singh, A. Visible Light-Mediated Carbamoylation of para-Quinone Methides. J. Org. Chem. 2023, 88, 2784–2791. [Google Scholar] [CrossRef]
- Ke, M.; Song, Q. Copper-Catalyzed 1,6-Hydrodifluoro-acetylation of para-Quinone Methides at Ambient Temperature with Bis(pinacolato)diboron as Reductant. Adv. Synth. Catal. 2017, 359, 384–389. [Google Scholar] [CrossRef]
- Zhao, Y.-N.; Luo, Y.-C.; Wang, Z.-Y.; Xu, P.-F. A New Approach to Access Difluoroalkylated Diarylmethanes via Visible-Light Photo- catalytic Cross-Coupling Reactions. Chem. Commun. 2018, 54, 3993–3996. [Google Scholar] [CrossRef]
- Wu, Q.-Y.; Ao, G.-Z.; Liu, F. Redox-Neutral Tri-/Difluoromethylation of para-Quinone Methides with Sodium Sulfinates. Org. Chem. Front. 2018, 5, 2061–2064. [Google Scholar] [CrossRef]
- Ghosh, K.G.; Chandu, P.; Mondal, S.; Sureshkumar, D. Visible-Light Mediated Trifluoromethylation of p-Quinone Methides by 1,6-Conjugate Addition Using Pyrylium Salt as Organic Photocatalyst. Tetrahedron 2019, 75, 4471–4478. [Google Scholar] [CrossRef]
- Qu, C.-H.; Song, G.-T.; Tang, D.-Y.; Shao, J.-W.; Li, H.-y.; Xu, Z.-G.; Chen, Z.-Z. Microwave-Assisted Copper Catalysis of α-Difluorinated gem-Diol toward Difluoroalkyl Radical for Hydrodifluoroalkylation of para-Quinone Methides. J. Org. Chem. 2020, 85, 12785–12796. [Google Scholar] [CrossRef]
- Hao, Y.-J.; Hu, X.-S.; Yu, J.-S.; Zhou, F.; Zhou, Y.; Zhou, J. An Efficient Fe(III)-Catalyzed 1,6-Conjugate Addition of para-Quinone Methides with Fluorinated Silyl Enol Ethers toward β,β-Diaryl α-Fluorinated Ketones. Tetrahedron 2018, 74, 7395–7398. [Google Scholar] [CrossRef]
- Naret, T.; Bignon, J.; Bernadat, G.; Benchekroun, M.; Levaique, H.; Lenoir, C.; Dubois, J.; Pruvost, A.; Saller, F.; Borgel, D.; et al. A Fluorine Scan of a Ttubulin Polymerization Inhibitor isoCombretastatin A-4: Design, Synthesis, Molecular Modelling, and Biological Evaluation. Eur. J. Med. Chem. 2018, 143, 473–490. [Google Scholar] [CrossRef]
- Messaoudi, S.; Hamze, A.; Provot, O.; Tréguier, B.; Rodrigo De Losada, J.; Bignon, J.; Liu, J.-M.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.; et al. Discovery of Isoerianin Analogues as Promising Anticancer Agents. ChemMedChem 2011, 6, 488–497. [Google Scholar] [CrossRef]
- Abu-El-Haj, S.; Fahmy, M.A.H.; Fukuto, T.R. Insecticidal Activity of 1,1,1- Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) analogs. J. Agric. Food Chem. 1979, 27, 258–261. [Google Scholar] [CrossRef]
- Jarava-Barrera, C.; Parra, A.; López, A.; Cruz-Acosta, F.; Collado-Sanz, D.; Cárdenas, D.J.; Tortosa, M. Copper-Catalyzed Borylative Aromatization of p-Quinone Methides: Enantioselective Synthesis of Dibenzylic Boronates. ACS Catal. 2016, 6, 442–446. [Google Scholar] [CrossRef]
Entry | Initiator (equiv) | T (°C) | Solvent | Yield (%) b |
---|---|---|---|---|
1 | CsF (0.2)/18-crown-6 (0.2) | rt | THF | 0 |
2 | TBAF (0.2) | −15 to rt | DMF | 30 |
3 | CsF (0.2) | −15 to rt | DMF | 33 |
4 | TBAF (0.2) | −30 | DMF | 17 |
5 | TMAF (0.2) | −15 to rt | DMF | 30 |
6 | KF (0.2) | −30 | DMF | trace |
7 | TBAF (0.2) | rt | DMF | 20 |
8 | CsF(1.0) | −30 | DMF | 36 |
9 | CsF (1.0)/18-crown-6 (0.2) | −30 | DMF | 51 |
10 | CsF (0.2)/18-crown-6 (0.1) | −30 | DMF | 42 |
11 | CsF (0.2)/18-crown-6 (0.1) | −15 to rt | DMF | 52 |
12 | CsF (1.0)/18-crown-6 (1.0) | −15 to rt | DMF | 60 |
13 | CsF (1.5)/18-crown-6 (1.5) | −15 to rt | DMF | 70 |
14 | CsF (2.0)/18-crown-6 (2.0) | −15 to rt | DMF | 60 |
15 | KF (1.5)/18-crown-6 (1.5) | −15 to rt | DMF | 12 |
2a, 70% | 2b, 70% | 2c, 46% | 2d, 49% | 2e, 78% |
2f, 86% | 2g, 63% | 2h, 68% | 2i, 60% | 2j, 40% |
2k, 67% | 2l, 61% | 2m, 23% | 2n, 62% |
3a, 66% | 3b, 85% | 3c, 61% | 3d, 82% | 3e, 57% |
3f, 86% | 3g, 61% | 3h, 45% | 3i, 55% | 3j, 78% |
3k, 30% |
5a, 88% | 5b, 67% | 5c, 70% | 5d, 73% | 5e, 60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Huang, L.; Liang, M.; Chen, X.; Cao, D.; Xiao, P.; Ni, C.; Hu, J. 1,6-Nucleophilic Di- and Trifluoromethylation of para-Quinone Methides with Me3SiCF2H/Me3SiCF3 Facilitated by CsF/18-Crown-6. Molecules 2024, 29, 2905. https://doi.org/10.3390/molecules29122905
Chen D, Huang L, Liang M, Chen X, Cao D, Xiao P, Ni C, Hu J. 1,6-Nucleophilic Di- and Trifluoromethylation of para-Quinone Methides with Me3SiCF2H/Me3SiCF3 Facilitated by CsF/18-Crown-6. Molecules. 2024; 29(12):2905. https://doi.org/10.3390/molecules29122905
Chicago/Turabian StyleChen, Dingben, Ling Huang, Mingyu Liang, Xiaojing Chen, Dongdong Cao, Pan Xiao, Chuanfa Ni, and Jinbo Hu. 2024. "1,6-Nucleophilic Di- and Trifluoromethylation of para-Quinone Methides with Me3SiCF2H/Me3SiCF3 Facilitated by CsF/18-Crown-6" Molecules 29, no. 12: 2905. https://doi.org/10.3390/molecules29122905
APA StyleChen, D., Huang, L., Liang, M., Chen, X., Cao, D., Xiao, P., Ni, C., & Hu, J. (2024). 1,6-Nucleophilic Di- and Trifluoromethylation of para-Quinone Methides with Me3SiCF2H/Me3SiCF3 Facilitated by CsF/18-Crown-6. Molecules, 29(12), 2905. https://doi.org/10.3390/molecules29122905