Rhodamine 6G/Transition Metal Dichalcogenide Hybrid Nanoscrolls for Enhanced Optoelectronic Performance
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Preparation of MoS2 and R6G/MoS2 Nanosheets
3.2. Preparation of MoS2 Nanoscrolls and R6G/MoS2 Nanoscrolls
3.3. Characterization of MoS2 and R6G/MoS2 Nanosheets and Nanoscrolls
3.4. Device Fabrication and Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J.; Han, W.; Liu, K.; Li, H.; Zhai, T. 2D Metal Chalcogenides for IR Photodetection. Small 2019, 15, 1901347. [Google Scholar] [CrossRef]
- Kim, M.; Bae, G.; Kim, K.N.; Jo, H.-K.; Song, D.; Ji, S.; Jeon, D.; Ko, S.; Lee, S.J.; Choi, S.; et al. Perovskite Quantum Dot-Induced Monochromatization for Broadband Photodetection of Wafer-Scale Molybdenum Disulfide. NPG Asia Mater. 2022, 14, 89. [Google Scholar] [CrossRef]
- Youngblood, N.; Chen, C.; Koester, S.J.; Li, M. Waveguide-Integrated Black Phosphorus Photodetector with High Responsivity and Low Dark Current. Nat. Photonics 2015, 9, 247–252. [Google Scholar] [CrossRef]
- Liu, S.; Nie, C.; Zhou, D.; Shen, J.; Feng, S. Direct Growth of Vertical Structure MoS2 Nanosheets Array Film via CVD Method for Photodetection. Physica E Low Dimens. Syst. Nanostruct. 2020, 117, 113592. [Google Scholar] [CrossRef]
- Xie, Y.; Liang, F.; Wang, D.; Chi, S.; Yu, H.; Lin, Z.; Zhang, H.; Chen, Y.; Wang, Y.; Wu, Y. Room-Temperature Ultrabroadband Photodetection with MoS2 by Electronic-Structure Engineering Strategy. Adv. Mater. 2018, 30, 1804858. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Du, J.; Duan, J.; Duan, Y.; Tang, Q. Photoactivated Transition Metal Dichalcogenides to Boost Electron Extraction for All-Inorganic Tri-Brominated Planar Perovskite Solar Cells. J. Mater. Chem. A 2020, 8, 7784–7791. [Google Scholar] [CrossRef]
- Svatek, S.A.; Bueno-Blanco, C.; Lin, D.-Y.; Kerfoot, J.; Macías, C.; Zehender, M.H.; Tobías, I.; García-Linares, P.; Taniguchi, T.; Watanabe, K.; et al. High Open-Circuit Voltage in Transition Metal Dichalcogenide Solar Cells. Nano Energy 2021, 79, 105427. [Google Scholar] [CrossRef]
- Kang, S.B.; Kwon, K.C.; Choi, K.S.; Lee, R.; Hong, K.; Suh, J.M.; Im, M.J.; Sanger, A.; Choi, I.Y.; Kim, S.Y.; et al. Transfer of Ultrathin Molybdenum Disulfide and Transparent Nanomesh Electrode onto Silicon for Efficient Heterojunction Solar Cells. Nano Energy 2018, 50, 649–658. [Google Scholar] [CrossRef]
- Sumesh, C.K. Towards Efficient Photon Management in Nanostructured Solar cells: Role of 2D Layered Transition Metal Dichalcogenide Semiconductors. Sol. Energy Mater. Sol. Cells 2019, 192, 16–23. [Google Scholar] [CrossRef]
- Pathak, V.M.; Patel, K.D.; Pathak, R.J.; Srivastava, R. Improved Photoconversion from MoSe2 Based PEC Solar Cells. Sol. Energy Mater. Sol. Cells 2002, 73, 117–123. [Google Scholar] [CrossRef]
- Li, G.; Zhang, D.; Yu, Y.; Huang, S.; Yang, W.; Cao, L. Activating MoS2 for PH-Universal Hydrogen Evolution Catalysis. J. Am. Chem. Soc. 2017, 139, 16194–16200. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Sun, Z.; Hu, Y. Synthesis, Stabilization and Applications of 2-Dimensional 1T Metallic MoS2. J. Mater. Chem. A 2018, 6, 23932. [Google Scholar] [CrossRef]
- Joyner, J.; Oliveira, E.F.; Yamaguchi, H.; Kato, K.; Vinod, S.; Galvao, D.S.; Salpekar, D.; Roy, S.; Martinez, U.; Tiwar, C.S.; et al. Graphene Supported MoS2 Structures with High Defect Density for an Efficient HER Electrocatalysts. ACS Appl. Mater. Interfaces 2022, 12, 12629–12638. [Google Scholar] [CrossRef]
- Koudakan, P.A.; Wei, C.; Mosallanezhad, A.; Liu, B.; Fang, Y.; Hao, X.; Qian, Y.; Wang, G. Constructing Reactive Micro-Environment in Basal Plane of MoS2 for PH-Universal Hydrogen Evolution Catalysis. Small 2022, 18, 2107974. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Luo, M.; Wang, Z.; Liu, P.; Song, S.; Wang, X.; Chen, M. The Atomic Origin of Nickel-doping-induced Catalytic Enhancement in MoS2 for Electrochemical Hydrogen Production. Nanoscale 2019, 11, 7123–7128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liao, X.; Pan, X.; Yan, M.; Li, Y.; Tian, X.; Zhao, Y.; Xu, L.; Mai, L. Superior Hydrogen Evolution Reaction Performance in 2H-MoS2 to that of 1T Phase. Small 2019, 15, 1900964. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ringe, S.; Wu, C.; Chen, W.; Yang, A.; Chen, H.; Tang, M.; Zhou, G.; Hwang, H.Y.; Chan, K.; et al. A Two-Dimensional MoS2 Catalysis Transistor by Solid-State Ion Gating Manipulation and Adjustment (SIGMA). Nano Lett. 2019, 19, 7293–7300. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yan, M.; Zhao, K.; Liao, X.; Wang, P.; Pan, X.; Yang, W.; Mai, L. Field Effect Enhanced Hydrogen Evolution Reaction of MoS2 Nanosheets. Adv. Mater. 2017, 29, 1604464. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Wang, L.; Fan, H.; Zhao, Y.; Wei, C.; Pei, C.; Song, Q.; Huang, X.; Li, H. Wrapping Plasmonic Silver Nanoparticles inside One-Dimensional Nanoscrolls of Transition-Metal Dichalcogenides for Enhanced Photoresponse. Inorg. Chem. 2021, 60, 4226–4235. [Google Scholar] [CrossRef]
- Wang, H.; Zeng, Y.; Meng, F.; Cao, R.; Liu, Y.; Guo, Z.; Fan, S.; Yang, Y.; Wageh, S.; Al-Hartomy, O.A.; et al. Interlayer Sensitized van der Waals Heterojunction Photodetector with Enhanced Performance. Nano Res. 2023, 16, 10537–10544. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, W.; Qiu, Y.; Hu, P. Effects of Organic Molecules with Different Structures and Absorption Bandwidth on Modulating Photoresponse of MoS2 Photodetector. ACS Appl. Mater. Interfaces 2016, 8, 23362–23370. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, Y.; Huang, Z.; Chen, Y.; Wu, Z.; Liang, X.; Liu, X.; Wang, C.; Zhao, H.; Shi, X. Supersensitive and Broadband Photodetectors Based on High Concentration of Er3+/Yb3+ Co-doped WS2 Monolayer. Adv. Opt. Mater. 2023, 12, 2302229. [Google Scholar] [CrossRef]
- Tao, Y.; Yu, X.; Li, J.; Liang, H.; Zhang, Y.; Huang, W.; Wang, Q. Bright Monolayer Tungsten Disulfide via Exciton and Trion Chemical Modulations. Nanoscale 2018, 10, 6294. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Sun, F.; Hong, W.; Jian, C.; Ju, Q.; He, X.; Cai, Q.; Liu, W. Growth Modulation of Nonlayered 2D-MnTe and MnTe/WS2 Heterojunctions for High-performance Photodetectors. J. Mater. Chem. C 2023, 11, 1464–1469. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Q.; Zhou, X.; Li, L.; Su, J.; Wang, F.; Zhai, T. Self-Powered Photovoltaic Photodetector Established on Lateral Monolayer MoS2-WS2 Heterostructures. Nano Energy 2018, 51, 45–53. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Huang, L.; Wang, X.; Jiang, W.; Wang, Z.; Wang, P.; Wu, B.; Lin, T.; Shen, H.; et al. Ferroelectric-Tuned van der Waals Heterojunction with Band Alignment Evolution. Nat. Commun. 2021, 12, 4030. [Google Scholar] [CrossRef]
- Hong, W.; Shim, G.W.; Yang, S.Y.; Jung, D.Y.; Choi, S. Improved Electrical Contact Properties of MoS2-Graphene Lateral Heterostructure. Adv. Funct. Mater. 2018, 29, 1807550. [Google Scholar] [CrossRef]
- Singh, H.K.; Aggarwal, S.; Agrawal, D.C.; Kulria, P.; Tripathi, S.K.; Avasthi, D.K. Study of Swift Heavy Ion Irradiation Effect on Rhodamine 6G Dye for Dye Sensitize Solar Cell Application. Vacuum 2013, 87, 21–25. [Google Scholar] [CrossRef]
- Rahul; Singh, P.K.; Bhattacharya, B.; Khan, Z.H. Environment Approachable Dye Sensitized Solar Cell Using Abundant Natural Pigment Based Dyes with Solid Polymer Electrolyte. Optik 2018, 165, 186–194. [Google Scholar] [CrossRef]
- Luo, Q.; Feng, G.; Song, Y.; Zhang, E.; Yuan, J.; Fa, D.; Sun, Q.; Lei, S.; Hu, W. 2D-Polyimide Film Sensitizeed Monolayer MoS2 Phototransistor Enabled Near-Infrared Photodetection. Nano Res. 2022, 15, 8428–8434. [Google Scholar] [CrossRef]
- Yu, S.H.; Lee, Y.; Jang, S.K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J.Y.; Kim, H.; Hwang, E.; Lee, S.; et al. Dye-Sensitized MoS2 Photodetector with Enhanced Spectral Photoresponse. ACS Nano 2014, 8, 8285–8291. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, H.; Kim, S.; Whang, D.; Cho, J.H. Photogating in the Graphene-Dye-Graphene Sandwich Heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 23474–23481. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, Z.; Kim, H.J.; Wang, Y.; Xu, B.; Pan, R.; Chang, Y.J.; Di, Z.; Zhou, P.; Mei, Y. Rolling up MoSe2 Nanomembranes as a Sensitive Tubular Photodetector. Small 2019, 15, 1902528. [Google Scholar] [CrossRef]
- Chu, X.S.; Li, D.O.; Green, A.A.; Wang, Q. Formation of MoO3 and WO3 Nanoscrolls From MoS2 and WS2 with Atmospheric Air Plasma. J. Mater. Chem. C 2017, 5, 11301–11309. [Google Scholar] [CrossRef]
- Wu, Z.; Li, F.; Ye, H.; Huang, X.; Li, H. Decorating MoS2 Nanoscrolls with Solution-Processed PbI2 Nanocrystals for Improved Photosensitivity. ACS Appl. Nano Mater. 2022, 5, 15892–15901. [Google Scholar] [CrossRef]
- Cui, X.; Kong, Z.; Gao, E.; Huang, D.; Hao, Y.; Shen, H.; Di, C.; Xu, Z.; Zheng, J.; Zhu, D. Rolling up Transition Metal Dichalcogenide Nanoscrolls via one Drop of Ethanol. Nat. Commun. 2018, 9, 1301. [Google Scholar] [CrossRef]
- Lai, Z.; Chen, Y.; Tan, C.; Zhang, X.; Zhang, H. Self-Assembly of Two-Dimensional Nanosheets into One-Dimensional Nanostructures. Chem 2016, 1, 59–77. [Google Scholar] [CrossRef]
- Su, J.; Li, X.; Xu, M.; Zhang, J.; Liu, X.; Zheng, X.; Shi, Y.; Zhang, Q. Enhancing Photodetection Ability of MoS2 Nanoscrolls via Interface Engineering. ACS Appl. Mater. Interfaces 2023, 15, 3307–3316. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wei, P.; Wang, L.; Wang, X.; Chen, B.; He, Q.; Yue, Q.; Zhang, J.; Zhao, W.; Wang, J.; et al. Transforming Monolayer Transition-Metal Dichalcogenide Nanosheets into One-Dimensional Nanoscrolls with High Photosensitivity. ACS Appl. Mater. Interfaces 2018, 10, 13011–13018. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, F.; Feng, W.; Yang, H.; Hu, Y.; Zhang, J.; Xiao, H.; Li, Z.; Hu, P. High-Responsivity Photodetector Based on Scrolling Monolayer MoS2 Hybridized with Carbon Quantum Dots. Nanotechnology 2021, 33, 105301. [Google Scholar] [CrossRef]
- Mikhelashvili, V.; Shneider, Y.; Sherman, A.; Yofis, S.; Ankonina, G.; Eyal, O.; Khanonkin, I.; Eisenstein, G. Highly Sensitive Photo-Detectors for the Ultra-violet Wavelength Range Based on a Dielectric Stack and a Silicon on Insulator Substrate. Appl. Phys. Lett. 2019, 114, 073504. [Google Scholar] [CrossRef]
- Mikhelashvili, V.; Yofis, S.; Shacham, A.; Khanonkin, I.; Eyal, O.; Eisenstein, G. High Performance Metal-Insulator-Semiconductor-Insulator-Mmetal Photodetector Fabricated on a Silicon-on-Oxide Substrate. J. Appl. Phys. 2019, 126, 054501. [Google Scholar] [CrossRef]
- Wu, F.; Li, Q.; Wang, P.; Xia, H.; Wang, Z.; Wang, Y.; Luo, M.; Chen, L.; Chen, F.; Miao, J.; et al. High Efficiency and Fast van der Waals Hetero-Photodiodes with a Unilateral Depletion Region. Nat. Commun. 2019, 10, 4663. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.-Y.; Hsieh, Y.-H.; Chiao, Z.-Y.; Jariwala, D.; Shih, M.-H.; Yen, T.-J.; Hess, O.; Lu, Y.-J. Gate-Tunable Plasmon-Enhanced Photodetection in a Monolayer MoS2 Phototransistor with Ultrahigh Photoresponsivity. Nano Lett. 2021, 21, 3083–3091. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Deng, Z.; Ye, Q.; Zheng, Z.; Yao, J.; Yang, G. Promoting the Performance of 2D Material Photodetectors by Dielectric Engineering. Small Methods 2021, 6, 2101046. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Feng, F.; Cao, G.; Wei, S.; Song, S.; Wang, T.; Yuan, X.; Somekh, M.G. Ultrasensitive Near-Infrared MoTe2 Photodetectors with Monolithically Integrated Fresnel Zone Plate Metalens. Adv. Opt. Mater. 2022, 10, 2200375. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Liang, Z.-Y.; Lin, Y.-C.; Wang, C.-C.; Lin, K.-I.; Suenaga, K.; Chiu, P.-W. Photogating WS2 Photodetectors Using Embedded WSe2 Charge Puddles. ACS Nano 2020, 14, 4559–4566. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wan, J.; Tang, Y.; Wang, C.; Zhang, Y.; Lv, D.; Guo, M.; Ma, Y.; Yang, Y. Boosting the UV–vis–NIR Photodetection Performance of MoS2 through the Cavity Enhancement Effect and Bulk Heterojunction Strategy. ACS Appl. Mater. Interfaces 2024, 16, 29003–29015. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Gu, Q.; Li, S.; Wang, Q.; Zhou, X.; Cheng, G.; Yan, B.; Deng, J.; Gao, F. The study on two different design and fabrication of visible light photodetection based on In2Se3-WS2 heterojunction. Opt. Mater. 2024, 149, 115052. [Google Scholar] [CrossRef]
- Abinaya, R.; Vinoth, E.; Harish, S.; Ponnusamy, S.; Archana, J.; Shimomura, M.; Navaneethan, M. Modulating Fermi energy in few-layer MoS2 via metal passivation with enhanced detectivity for near IR photodetector. J. Mater. Chem. C 2024, 12, 5247–5256. [Google Scholar] [CrossRef]
- You, J.; Jin, Z.; Li, Y.; Kang, T.; Zhang, K.; Wang, W.; Xu, M.; Gao, Z.; Wang, J.; Kim, J.-K.; et al. Epitaxial Growth of 1D Te/2D MoSe2 Mixed-Dimensional Heterostructures for High-Efficient Self-Powered Photodetector. Adv. Funct. 2024, 34, 2311134. [Google Scholar] [CrossRef]
Device | R (A/W) 405 nm | R (A/W) 532 nm | EQE (%) 405 nm | EQE (%) 532 nm | D* (cm·Hz1/2W−1) 405 nm | D* (cm·Hz1/2W−1) 532 nm | μ (cm2V−1s−1) |
---|---|---|---|---|---|---|---|
MoS2 nanosheets | 6.70 × 10−3 | 6.63 × 10−4 | 2.1 | 0.16 | 7.5 × 1010 | 3.49 × 109 | 0.0051 |
5.0 mM R6G/MoS2 nanosheets | 0.81 | 2.35 | 249 | 550 | 1.07 × 1012 | 2.65 × 1011 | 0.46 |
MoS2 nanoscrolls | 1.71 | 1.32 | 524.97 | 98.28 | 4.36 × 1010 | 1.75 × 1010 | 4.34 |
5.0 mM R6G/MoS2 nanoscrolls | 66.07 | 29.80 | 20,261 | 6957 | 1.25 × 1012 | 9.73 × 1010 | 132.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Tang, H.; Yu, S.; Yang, Y.; Li, H. Rhodamine 6G/Transition Metal Dichalcogenide Hybrid Nanoscrolls for Enhanced Optoelectronic Performance. Molecules 2024, 29, 2799. https://doi.org/10.3390/molecules29122799
Ye H, Tang H, Yu S, Yang Y, Li H. Rhodamine 6G/Transition Metal Dichalcogenide Hybrid Nanoscrolls for Enhanced Optoelectronic Performance. Molecules. 2024; 29(12):2799. https://doi.org/10.3390/molecules29122799
Chicago/Turabian StyleYe, Huihui, Hailun Tang, Shilong Yu, Yang Yang, and Hai Li. 2024. "Rhodamine 6G/Transition Metal Dichalcogenide Hybrid Nanoscrolls for Enhanced Optoelectronic Performance" Molecules 29, no. 12: 2799. https://doi.org/10.3390/molecules29122799
APA StyleYe, H., Tang, H., Yu, S., Yang, Y., & Li, H. (2024). Rhodamine 6G/Transition Metal Dichalcogenide Hybrid Nanoscrolls for Enhanced Optoelectronic Performance. Molecules, 29(12), 2799. https://doi.org/10.3390/molecules29122799