Ultrafast Microwave-Assisted Synthesis of Porous NiCo Layered Double Hydroxide Nanospheres for High-Performance Supercapacitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Electrochemical Properties
3. Materials and Methods
3.1. Materials
3.2. Synthesis of NiCo-LDH
3.3. Preparation of NiCo-LDH Electrodes
3.4. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deepika, C.; Yuvakkumar, R.; Ravi, G.; Arunmetha, S. Facile synthesis of chromium oxide composite carbon (Cr2O3/C) nanostructures by solvothermal route for high performance supercapacitor applications. Mater. Lett. 2024, 362, 136158–136161. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Khizar, A.; Shaheen, M.; Afzal, A.M.; Ahmad, Z.; Wabaidur, S.M.; Al-Ammar, E.A. Pyridine 3,5-dicarboxylate-based metal-organic frameworks as an active electrode material for battery-supercapacitor hybrid energy storage devices. RSC Adv. 2024, 14, 2205–2213. [Google Scholar] [CrossRef] [PubMed]
- Tharani, S.; Prithiba, A. Sustainable biomass conversion into activated carbon for supercapacitor devices: A promising approach toward renewable energy storage. Energy Source Part A 2024, 46, 1165–1176. [Google Scholar]
- Kang, S.; Kim, B.; Lee, S.; Baek, J.; Yoo, J. Tailoring porosity of starch-derived biocarbon for enhanced supercapacitor performance. Mater. Technol. 2024, 39, 2338628–2338635. [Google Scholar] [CrossRef]
- Awitdrus, A.; Agustino, A.; Simanjuntak, A.C.; Farma, R.; Iwantono, I.; Deraman, M. A novel separator material derived from discarded disposable medical mask waste for supercapacitor applications. Energ. Source Part A 2024, 46, 5497–5507. [Google Scholar] [CrossRef]
- Yang, H.Z. A Review of Supercapacitor-based Energy Storage Systems for Microgrid Applications. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018. [Google Scholar]
- Yang, X.; Tian, Y.R.; Sarwar, S.; Zhang, M.M.; Zhang, H.P.; Luo, J.J.; Zhang, X.Y. Comparative evaluation of PPyNF/CoO and PPyNT/CoO nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach. Electrochim. Acta 2019, 311, 230–243. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Q.; Wei, T.; Fan, Z.J. Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Adv. Energy Mater. 2014, 4, 1300816–1300858. [Google Scholar] [CrossRef]
- Zhu, P.J.; Su, F.Y.; Xie, L.J.; Li, X.M.; Li, Y.F.; Chen, C.M. Oxygen-enriched vacancies Co3O4/NiCo2O4 heterojunction hollow nanocages with enhanced electrochemical properties for supercapacitors. Appl. Surf. Sci. 2024, 657, 159732–159741. [Google Scholar] [CrossRef]
- Zheng, X.; Sun, Y.H.; Jin, S.J.; Xu, M.X.; Ding, Y.Y.; Chen, F.; Yang, T.; Zhang, Q.; Zheng, X.Y.; Chen, H. Sulfidation of ZIF-Derived Core-Shell NiCo LDH/Ni MOF Heterostructure toward Supercapacitor Electrodes with Enhanced Performance. Batteries 2022, 8, 241–251. [Google Scholar] [CrossRef]
- Wang, J.L.; Liang, J.; Lin, Y.C.; Shao, K.J.; Chang, X.; Qian, L.J.; Li, Z.; Hu, P.Z. Nanowire stacked bimetallic metal-organic frameworks for asymmetric supercapacitor. Chem. Eng. J. 2022, 446, 137368–137376. [Google Scholar] [CrossRef]
- Zhang, P.; Mu, J.H.; Kong, X.J.; Wang, X.W.; Wong, S.I.; Sunarso, J.; Xing, W.; Zhou, J.; Zhao, Y.; Zhuo, S.P. Novel Electrode Materials and Redox-Active Electrolyte for High-Performance Supercapacitor. Chemelectrochem 2022, 9, e20210164–e20210170. [Google Scholar] [CrossRef]
- Kumar, N.; Pradhan, L.; Jena, B.K. Recent progress on novel current collector electrodes for energy storage devices: Supercapacitors. Wires Energy Environ. 2022, 11, e415–e438. [Google Scholar] [CrossRef]
- Xing, H.N.; Lan, Y.Y.; Zong, Y.; Sun, Y.; Zhu, X.H.; Li, X.H.; Zheng, X.L. Ultrathin NiCo-layered double hydroxide nanosheets arrays vertically grown on Ni foam as binder-free high-performance supercapacitors. Inorg. Chem. Commun. 2019, 101, 125–129. [Google Scholar] [CrossRef]
- Zhang, X.T.; Lu, Q.F.; Guo, E.Y.; Feng, J.S.; Wei, M.Z.; Ma, J.Y. NiCo layer double hydroxide/biomass-derived interconnected porous carbon for hybrid supercapacitors. J. Energy Storage 2021, 38, 102514–102521. [Google Scholar] [CrossRef]
- Nyongombe, G.E.; Kabongo, G.L.; Noto, L.L.; Dhlamini, M.S. Up-scalable synthesis of highly crystalline electroactive Ni-Co LDH nanosheets for supercapacitor applications. Int. J. Electrochem. Sci. 2020, 15, 4494–4502. [Google Scholar] [CrossRef]
- Owusu, K.A.; Wang, Z.Y.; Saad, A.; Boakye, F.O.; Mushtaq, M.A.; Tahir, M.; Yasin, G.; Liu, D.Q.; Peng, Z.C.; Cai, X.K. Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin NiCo-LDH Nanosheets Bifunctional Flexible Supercapacitor Electrodes. Energy Environ. Mater. 2023, 7, e12545–e12554. [Google Scholar] [CrossRef]
- Hou, L.Y.; Du, Q.H.; Su, L.; Di, S.L.; Ma, Z.P.; Chen, L.; Shao, G.J. Ni-Co layered double hydroxide with self-assembled urchin like morphology for asymmetric supercapacitors. Mater. Lett. 2019, 237, 262–265. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, W.; Tian, Y.H.; Yang, S.X.; Zhang, Q.; Lei, D.; Zhao, Y.Y. Nanosheet-assembled NiCo-LDH hollow spheres as high-performance electrodes for supercapacitors. J. Colloid Interface Sci. 2022, 606, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Song, F.X.; Chen, Q.L. Composites of NiCo Layered Double Hydroxide Nanosheets and Co3S4 Nanoparticles for Asymmetric Supercapacitors. Acs Appl. Nano Mater. 2023, 6, 10804–10816. [Google Scholar] [CrossRef]
- Su, W.; Wu, F.; Fang, L.; Hu, J.; Liu, L.L.; Guan, T.; Long, X.M.; Luo, H.J.; Zhou, M. NiCo-LDH nanowires@nanosheets core-shell structure grown on carbon fiber cloth for high performance flexible supercapacitor electrode. J. Alloys Compd. 2019, 799, 15–25. [Google Scholar] [CrossRef]
- Jiao, Z.C.; Chen, Y.Q.; Du, M.; Demir, M.; Yan, F.X.; Xia, W.M.; Zhang, Y.; Wang, C.; Gu, M.M.; Zhang, X.X.; et al. 3D hollow NiCo LDH nanocages anchored on 3D CoO sea urchin-like microspheres: A novel 3D/3D structure for hybrid supercapacitor electrodes. J. Colloid Interface Sci. 2023, 633, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.X.; Zou, Y.J.; Xu, F.; Xiang, C.L.; Peng, H.L.; Zhang, J.; Sun, L.X. Morphological control and electrochemical performance of NiCoO@NiCo layered double hydroxide as an electrode for supercapacitors. J. Energy Storage 2021, 41, 102862–102870. [Google Scholar] [CrossRef]
- Han, E.S.; Han, Y.J.; Zhu, L.Z.; Yang, P.J.; Du, X.J. Polyvinyl pyrrolidone-assisted synthesis of flower-like nickel-cobalt layered double hydroxide on Ni foam for high-performance hybrid supercapacitor. Ionics 2018, 24, 2705–2715. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G.; Sun, H.; Lu, F.; Yu, M.; Lian, J. Morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system. J. Power Sources 2013, 238, 150–156. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhang, X.; Xu, Z.T.; Sun, X.Z.; Ma, Y.W. Ethylene Glycol Intercalated Cobalt/Nickel Layered Double Hydroxide Nanosheet Assemblies with Ultrahigh Specific Capacitance: Structural Design and Green Synthesis for Advanced Electrochemical Storage. Acs Appl. Mater. Interfaces 2015, 7, 19601–19610. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.Q.; Tan, G.M.; Deng, Z.T.; Liu, J.H.; Gui, D.Y. Preparation of Hierarchical Porous Carbon Aerogels by Microwave Assisted Sol-Gel Process for Supercapacitors. Polymers 2019, 11, 429. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.H.; Sun, S.C.; Luo, J.; Ma, R.; Lin, J.H.; Fang, L.; Zhang, P.X.; Chen, Y. Few-layer graphene prepared via microwave irradiation of black sesame for supercapacitor applications. Chem. Eng. J. 2021, 425, 130664–130674. [Google Scholar] [CrossRef]
- Tian, Y.R.; Du, H.S.; Zhang, M.M.; Zheng, Y.Y.; Guo, Q.P.; Zhang, H.P.; Luo, J.J.; Zhang, X.Y. Microwave synthesis of MoS/MoO@CNT nanocomposites with excellent cycling stability for supercapacitor electrodes. J. Mater. Chem. C 2019, 7, 9545–9555. [Google Scholar] [CrossRef]
- Varadwaj, G.B.B.; Nyamori, V.O. Layered double hydroxide- and graphene-based hierarchical nanocomposites: Synthetic strategies and promising applications in energy conversion and conservation. Nano Res. 2016, 9, 3598–3621. [Google Scholar] [CrossRef]
- Li, J.; Wei, M.; Chu, W.; Wang, N. High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chem. Eng. J. 2017, 316, 277–287. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Li, J.; Yang, Y.; Luo, B.; Zhang, X.; Fong, E.L.E.; Chu, W.; Huang, K.M. Unique 3D flower-on-sheet nanostructure of NiCo LDHs: Controllable microwave-assisted synthesis and its application for advanced supercapacitors. J. Alloys Compd. 2019, 788, 1029–1036. [Google Scholar] [CrossRef]
- Kasai, A.; Fujihara, S. Layered single-metal hydroxide/ethylene glycol as a new class of hybrid material. Inorg. Chem. 2006, 45, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Mavis, B.; Akinc, M. Cyanate intercalation in nickel hydroxide. Chem. Mater. 2006, 18, 5317–5325. [Google Scholar] [CrossRef]
- Zhu, G.X.; Xi, C.Y.; Shen, M.Q.; Bao, C.L.; Zhu, J. Nanosheet-Based Hierarchical Ni(CO)(OH) Microspheres with Weak Crystallinity for High-Performance Supercapacitor. Acs Appl. Mater. Interfaces 2014, 6, 17208–17214. [Google Scholar] [CrossRef]
- Zou, W.R.; Guo, W.X.; Liu, X.Y.; Luo, Y.L.; Ye, Q.L.; Xu, X.T.; Wang, F. Anion Exchange of Ni-Co Layered Double Hydroxide (LDH) Nanoarrays for a High-Capacitance Supercapacitor Electrode: A Comparison of Alkali Anion Exchange and Sulfuration. Chem.-Eur. J. 2018, 24, 19309–19316. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.M.; Lian, M.; Wang, Q.G. A high-performance asymmetric supercapacitors based on hydrogen bonding nanoflower-like polypyrrole and NiCo(OH) electrode materials. Electrochim. Acta 2019, 295, 655–661. [Google Scholar] [CrossRef]
- Zhai, D.M.; Wen, J.; Ding, Q.Y.; Feng, Y.Y.; Yang, W. Hierarchical design of NiCo-LDH NFs@Co(OH)2 nanosheets supercapacitor electrode material with boosted electrochemical performance. Int. J. Hydrogen Energy 2023, 48, 10108–10117. [Google Scholar] [CrossRef]
- Ramasamy, V.; Thenpandiyan, E.; Suresh, G.; Sathishpriya, T.; Sagadevan, S. A novel and simple approach of rare earth ions (Y3+ and La3+) decorated nano calcium carbonate/polyethylene glycol for photocatalytic degradation of organic pollutants in wastewater. Opt. Mater. 2023, 142, 114130–114144. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Yang, N.; Yang, L.; Wang, W.L.; Fang, X.; He, Q. NiCo-MOF Nanospheres Created by the Ultra-Fast Microwave Method for Use in High-Performance Supercapacitors. Molecules 2023, 28, 5613. [Google Scholar] [CrossRef]
- Liu, X.; Ye, L.; Du, Y.Q.; Zhao, L.J. Metal organic framework derived core-shell hollow CoS@NiCo-LDH as advanced electrode for high-performance supercapacitor. Mater. Lett. 2020, 258, 126812–126816. [Google Scholar] [CrossRef]
- Li, S.J.; Luo, Y.; Wang, C.; Wu, M.X.; Xue, Y.H.; Yang, J.H.; Li, L. A novel hierarchical core-shell structure of NiCoO@NiCo-LDH nanoarrays for higher-performance flexible all-solid-state supercapacitor electrode materials. J. Alloys Compd. 2022, 920, 165986–165998. [Google Scholar] [CrossRef]
Sample | Electrolyte | Specific Capacitance | Ref. |
---|---|---|---|
NiCo-LDH hollow spheres | 6 M KOH | 1962 F g−1 at 1 A g−1 | [19] |
NiCo-LDH/Co3S4 | 6 M KOH | 728.1 C−1 at 1 A g−1 | [20] |
NiCo-LDH | 6 M KOH | 724.9 C g−1 at 1 A g−1 | [24] |
3D flower-on-sheet nanostructure of NiCo LDHs | 6 M KOH | 1187.2 F g−1 at 1 A g−1 | [32] |
PPy@NiCo(OH)2 | 6 M KOH | 1469.25 F g−1 at 1A g−1 | [37] |
NiCo-LDH NFs@Co(OH)2 nanosheets | 2 M KOH | 858.9 F g−1 at 0.5 A g−1 | [38] |
core-shell hollow CoSx@NiCo-LDH | 3 M KOH | 680.8 C g−1 at 1 A g−1 | [41] |
Porous NiCO-LDH nanospheres | 2 M KOH | 2156 F g−1 at 1 A g−1 | This work |
NiCO-LDH-4:6 | NiCO-LDH-5:5 | NiCO-LDH-6:4 | |
---|---|---|---|
Rs (Ω) | 0.99 | 0.964 | 1.07 |
Rct (Ω) | 0.203 | 0.138 | 0.283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; He, Q.; Hu, L.; Wang, W.; Chen, W.; Fang, X.; Liu, J. Ultrafast Microwave-Assisted Synthesis of Porous NiCo Layered Double Hydroxide Nanospheres for High-Performance Supercapacitors. Molecules 2024, 29, 2546. https://doi.org/10.3390/molecules29112546
Yang X, He Q, Hu L, Wang W, Chen W, Fang X, Liu J. Ultrafast Microwave-Assisted Synthesis of Porous NiCo Layered Double Hydroxide Nanospheres for High-Performance Supercapacitors. Molecules. 2024; 29(11):2546. https://doi.org/10.3390/molecules29112546
Chicago/Turabian StyleYang, Xing, Qing He, Longbo Hu, Wanglong Wang, Wenmiao Chen, Xing Fang, and Jun Liu. 2024. "Ultrafast Microwave-Assisted Synthesis of Porous NiCo Layered Double Hydroxide Nanospheres for High-Performance Supercapacitors" Molecules 29, no. 11: 2546. https://doi.org/10.3390/molecules29112546
APA StyleYang, X., He, Q., Hu, L., Wang, W., Chen, W., Fang, X., & Liu, J. (2024). Ultrafast Microwave-Assisted Synthesis of Porous NiCo Layered Double Hydroxide Nanospheres for High-Performance Supercapacitors. Molecules, 29(11), 2546. https://doi.org/10.3390/molecules29112546