Chemical Constituents with Anti-Proliferative Activity on Pulmonary Arterial Smooth Muscle Cells from the Roots of Anthriscus sylvestris (L.) Hoffm.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Characterization
2.2. Biological Activity
3. Experimental
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Computational Analysis
3.5. MTT Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bos, R.; Koulman, A.; Woerdenbag, H.J.; Quax, W.J.; Pras, N. Volatile components from Anthriscus sylvestris (L.) Hoffm. J. Chromatogr. A 2002, 966, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.S.; Kwon, O.K.; Park, B.Y.; Oh, S.R.; Ahn, K.S.; Chang, M.J.; Oh, W.K.; Kim, J.C.; Min, B.S.; Kim, Y.C. Lignans and coumarins from the roots of Anthriscus sylvestris and their increase of caspase-3 activity in HL-60 cells. Biol. Pharm. Bull. 2007, 30, 1340–1343. [Google Scholar] [CrossRef] [PubMed]
- Kozawa, M.; Baba, K.; Matsuyama, Y.; Kido, T.; Sakai, M.; Takemoto, T. Components of the root of Anthriscus sylvestris Hoffm. II. Insecticidal Activity. Chem. Pharm. Bull. 1982, 30, 2885–2888. [Google Scholar] [CrossRef]
- Du, C.; Lei, B.; Ning, N.; Fan, J.; Zhang, X.; Ma, C.; Jiang, H. A new phenylpropanoid ester from the roots of Anthriscus sylvestris and its chemotaxonomic significance. Biochem. Sys. Ecol. 2020, 93, 104144. [Google Scholar] [CrossRef]
- Orčić, D.; Berežni, S.; Škorić, D.D.; Mimica Dukić, N. Comprehensive study of Anthriscus sylvestris lignans. Phytochemistry 2021, 192, 112958. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, E.; Abad, A.; Montenegro, G.; Del-Olmo, E.; López-Pérez, J.L.; San Feliciano, A. Analgesic and anti-inflammatory activity of podophyllotoxin derivatives. Pharm. Biol. 2013, 51, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.J.; Kim, J.R.; Jin, U.H.; Choi, H.S.; Chang, Y.C.; Lee, Y.C.; Kim, S.H.; Lee, I.S.; Moon, T.C.; Chang, H.W.; et al. Deoxypodophyllotoxin, flavolignan, from Anthriscus sylvestris Hoffm. inhibits migration and MMP-9 via MAPK pathways in TNF-alpha-induced HASMC. Vascul. Pharmacol. 2009, 51, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Lee, E.; Jin, M.; Yook, J.; Quan, Z.; Ha, K.; Moon, T.; Kim, M.; Kim, K.; Lee, S. Deoxypodophyllotoxin (DPT) inhibits eosinophil recruitment into the airway and Th2 cytokine expression in an OVA-induced lung inflammation. Planta Med. 2006, 72, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Sitbon, O.; Simonneau, G. Treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2004, 351, 1425–1436. [Google Scholar] [CrossRef]
- Cao, Y.Y.; Ba, H.X.; Li, Y.; Tang, S.Y.; Luo, Z.Q.; Li, X.H. Regulatory effects of prohibitin 1 on proliferation and apoptosis of pulmonary arterial smooth muscle cells in monocrotaline-induced PAH rats. Life Sci. 2020, 250, 117548. [Google Scholar] [CrossRef]
- Ye, B.; Peng, X.; Su, D.; Liu, D.; Huang, Y.; Huang, Y.; Pang, Y. Effects of YM155 on the proliferation and apoptosis of pulmonary artery smooth muscle cells in a rat model of high pulmonary blood flow-induced pulmonary arterial hypertension. Clin. Exp. Hypertens. 2022, 44, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Cao, Y.G.; Niu, Y.; Zheng, Y.J.; Chen, X.; Ren, Y.J.; Fan, X.L.; Li, X.D.; Ma, X.Y.; Zheng, X.K.; et al. Diarylpentanoids and phenylpropanoids from the roots of Anthriscus sylvestris (L.) Hoffm. Phytochemistry 2023, 216, 113865. [Google Scholar] [CrossRef]
- Li, X.; Huang, T.; Song, Y.; Qi, Y.; Li, L.; Li, Y.; Xiao, Q.; Zhang, Y. Co(III)-catalyzed annulative vinylene transfer via C-H activation: Three-step total synthesis of 8-oxopseudopalmatine and oxopalmatine. Org. Lett. 2020, 22, 5925–5930. [Google Scholar] [CrossRef]
- Madala, H.B.; Gadi, R.K.; Ruchir, K.; Maddi, S.R. Ni-Catalyzed regio- and stereoselective addition of arylboronic acids to terminal alkynes with a directing group tether. Chem. Commun. 2017, 53, 3894–3897. [Google Scholar]
- Ito, H.; Koreishi, M.; Tokuda, H.; Nishino, H.; Yoshida, T. Cypellocarpins A-C, phenol glycosides esterified with oleuropeic acid from Eucalyptus cypellocarpa. J. Nat. Prod. 2000, 63, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, E.; Fujii, M.; Kato, K.; Ida, Y.; Akita, H. Chemoenzymatic synthesis of naturally occurring benzyl 6-O-glycosyl-beta-D-glucopyranosides. Chem. Pharm. Bull. 2005, 53, 1058–1061. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, X.; Wu, Y.; Li, Y.; Guo, F. Meroterpenes from Psoralea corylifolia against Pyricularia oryzae. Planta. Med. 2014, 80, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Du, X.; Tang, W.; Zhou, Y.; Zuo, J.; Feng, H.; Li, Y. Synthesis and structure-immunosuppressive activity relationships of bakuchiol and its derivatives. Bioorg. Med. Chem. 2008, 16, 2403–2411. [Google Scholar] [CrossRef] [PubMed]
- Shikishima, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O.K.; Ashurmetov, O. Terpenoids and γ-pyrone derivatives from Prangos tschimganica. Phytochemistry 2001, 57, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Jiang, H.X.; Gao, K. One novel nortriterpene and other constituents from Eupatorium fortune Turcz. Biochem. Syst. Ecol. 2013, 47, 1–4. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Gong, L.M.; Wu, L.L.; She, S.Q.; Liao, Y.; Zheng, H.; Zhao, Z.F.; Liu, G.; Yan, S. Immunomodulatory effects of fermented fig (Ficus carica L.) fruit extracts on cyclophosphamide-treated mice. J. Funct. Foods. 2020, 75, 104219. [Google Scholar] [CrossRef]
- Yan, L.; Jin, H.Z.; Nie, L.Y.; Qin, J.J.; Fu, J.J.; Zhang, W.D. Chemical Constituents from Inula nervosa Wall. Nat. Prod. Res. Dev. 2011, 23, 258–261. [Google Scholar]
- Kitajima, J.; Ishikawa, T.; Tanaka, Y.; Ono, M.; Ito, Y.; Nohara, T. Water-soluble constituents of Fennel. V. glycosides of aromatic compounds. Chem. Pharm. Bull. 1998, 46, 1587–1590. [Google Scholar] [CrossRef]
- Smarrito, C.M.; Munari, C.; Robert, F.; Barron, D. A novel efficient and versatile route to the synthesis of 5-O-feruloylquinic acids. Org. Biomol. Chem. 2008, 6, 986–987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Su, Y.F.; Gao, Y.H.; Yan, S.L. Chemical constituents from roots of Pteroxygonum giraldii. Chin. Tradit. Herbal. Drugs. 2013, 51, 16–18. [Google Scholar]
- Lee, E.J.; Kim, J.S.; Kim, H.P.; Lee, J.H.; Kang, S.S. Phenolic constituents from the flower buds of Lonicera japonica and their 5-lipoxygenase inhibitory activities. Food. Chem. 2010, 120, 134–139. [Google Scholar] [CrossRef]
- Kim, H.S.; Oh, H.N.; Kwak, A.W.; Kim, E.; Lee, M.H.; Seo, J.H.; Cho, S.S.; Yoon, G.; Chae, J.I.; Shim, J.H. Deoxypodophyllotoxin inhibits cell growth and induces apoptosis by blocking EGFR and MET in gefitinib-resistant non-small cell lung cancer. J. Microbiol. Biotechnol. 2021, 31, 559–569. [Google Scholar] [CrossRef]
- Kwak, A.W.; Lee, M.H.; Yoon, G.; Cho, S.S.; Choi, J.S.; Chae, J.I.; Shim, J.H. Deoxypodophyllotoxin, a lignan from Anthriscus sylvestris, induces apoptosis and cell cycle arrest by inhibiting the EGFR signaling pathways in esophageal squamous cell carcinoma cells. Int. J. Mol. Sci. 2020, 21, 6854. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
Position | 1 | 2 | ||||
---|---|---|---|---|---|---|
δH (J in Hz) | δC (Type) | HMBC (H→C) | δH (J in Hz) | δC (Type) | HMBC (H→C) | |
1 | 132.3 (C) | 133.9 (C) | ||||
2 | 6.62 (brs) | 100.9 (CH) | 3, 4, 6, 8 | 6.52 (brs) | 100.5 (CH) | 1, 3, 4, 6, 8 |
3 | 150.8 (C) | 150.6 (C) | ||||
4 | 136.8 (C) | 135.9 (C) | ||||
5 | 145.0 (C) | 144.9 (C) | ||||
6 | 6.56 (brs) | 108.8 (CH) | 2, 4, 5, 8 | 6.47 (brs) | 108.0 (CH) | 1, 2, 4, 5, 8 |
7 | 5.88 (s) | 102.7 (CH2) | 3, 4 | 5.87 (s) | 102.5 (CH2) | 3, 4 |
8 | 6.47 (d, 15.9) | 134.6 (CH) | 2, 9, 10 | 6.27 (d, 15.8) | 133.6 (CH) | 1, 2, 6, 9, 10 |
9 | 6.29 (dt, 15.9, 5.8) | 122.6 (CH) | 1, 10 | 6.17 (dt, 15.8, 5.8) | 125.6 (CH) | 1, 10, 11 |
10 | 5.07 (d, 5.8) | 55.8 (CH2) | 8, 9, 11 | 2.76 (m) 2.68 (dd, 14.3, 7.2) | 43.0 (CH2) | 8, 9, 11, 12 |
11 | 8.11 (d, 7.6) | 146.4 (CH) | 10, 12, 13, 19 | 5.60 (dd, 7.2, 5.8) | 70.4 (CH) | 9, 12, 13 |
12 | 6.36 (d, 7.6) | 110.2 (CH) | 11, 18 | 153.3 (C) | ||
13 | 141.6 (C) | 7.70 (d, 4.6) | 119.1 (CH) | 11, 14, 15 | ||
14 | 7.80 (overlap) | 133.9 (CH) | 8.82 (d, 4.6) | 151.0 (CH) | 12, 13, 15, 20 | |
15 | 8.35 (dd, 7.8, 1.3) | 127.1 (CH) | 13, 14 | 127.0 (C) | ||
16 | 7.47 (t, 7.8) | 125.4 (CH) | 15, 17, 18 | 8.20 (d, 8.4) | 124.7 (CH) | 12, 15, 17, 20 |
17 | 7.80 (overlap) | 118.2 (CH) | 7.78 (t, 8.4) | 130.6 (CH) | 17, 20 | |
18 | 127.8 (C) | 7.64 (t, 8.4) | 127.9 (CH) | 16, 17 | ||
19 | 180.3 (C) | 8.05 (d, 8.4) | 129.9 (CH) | 18, 20 | ||
20 | 148.7 (C) | |||||
5-OCH3 | 3.82 (s) | 57.2 (CH3) | 5 | 3.82 (s) | 57.2 (CH3) | 5 |
Position | 8 | 9 | ||||
---|---|---|---|---|---|---|
δH (J in Hz) | δC (Type) | HMBC (H→C) | δH (J in Hz) | δC (Type) | HMBC (H→C) | |
1 | 133.7 (C) | 133.8 (C) | ||||
2 | 7.52 (brs) | 111.9 (CH) | 1, 3, 4, 6, 7 | 137.0 (C) | ||
3 | 152.1 (C) | 136.3 (C) | ||||
4 | 144.5 (C) | 137.5 (C) | ||||
5 | 154.7 (C) | 6.94 (d, 7.7) | 127.9 (CH) | 1, 10 | ||
6 | 7.33 (brs) | 107.3 (CH) | 1, 2, 4, 5, 7 | 7.06 (d, 7.7) | 128.5 (CH) | 4, 7 |
7 | 201.9 (C) | 4.89 (overlap) 4.58 (d, 11.2) | 70.9 (CH2) | 1, 2, 6, 1′ | ||
8 | 3.02 (d, 7.2) | 32.5 (CH2) | 7, 9 | 2.28 (s) | 15.7 (CH3) | 1, 2, 3 |
9 | 1.15 (t, 7.1) | 8.7 (CH3) | 7, 8 | 2.18 (s) | 15.7 (CH3) | 3, 4 |
10 | 3.89 (s) | 61.6 (CH3) | 4, 5 | 2.25 (s) | 20.9 (CH3) | 4, 5 |
11 | 3.88 (s) | 56.7 (CH3) | 4, 5 | |||
1′ | 4.95 (d, 7.4) | 103.0 (CH) | 3, 3′ | 4.25 (d, 7.8) | 102.6 (CH) | 7, 5′ |
2′ | 3.50 (m) | 74.9 (CH) | 3′, 4′ | 3.18 (m) | 75.0 (CH) | 1′ |
3′ | 3.46 (m) | 78.5 (CH) | 4′ | 3.31 (m) | 78.1 (CH) | 4′ |
4′ | 3.33 (m) | 71.4 (CH) | 3′, 5′ | 3.29 (m) | 71.8 (CH) | 3′, 5′ |
5′ | 3.47 (m) | 78.1 (CH) | 4′ | 3.35 (m) | 76.9 (CH) | 4′ |
6′ | 3.91 (overlap) 3.67 (m) | 62.5 (CH2) | 4′, 5′ | 4.01 (dd, 11.2, 1.6) 3.62 (dd, 11.2, 6.3) | 69.8 (CH2) | 4′, 1′′ |
1′′ | 4.79 (d, 1.2) | 102.2 (CH) | 6′, 5′′ | |||
2′′ | 3.88 (dd, 3.3, 1.2) | 72.2 (CH) | 3′′ | |||
3′′ | 3.70 (m) | 72.4 (CH) | 2′′, 5′′ | |||
4′′ | 3.40 (m) | 74.0 (CH) | 6′′ | |||
5′′ | 3.70 (m) | 68.1 (CH) | 3′′ | |||
6′′ | 1.28 (d, 6.2) | 18.1 (CH3) | 3′′, 5′′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Cao, Y.; Zheng, Y.; Niu, Y.; Chen, L.; Chen, X.; Ma, X.; Li, X.; Zheng, X.; Feng, W. Chemical Constituents with Anti-Proliferative Activity on Pulmonary Arterial Smooth Muscle Cells from the Roots of Anthriscus sylvestris (L.) Hoffm. Molecules 2024, 29, 2547. https://doi.org/10.3390/molecules29112547
Liu Y, Cao Y, Zheng Y, Niu Y, Chen L, Chen X, Ma X, Li X, Zheng X, Feng W. Chemical Constituents with Anti-Proliferative Activity on Pulmonary Arterial Smooth Muscle Cells from the Roots of Anthriscus sylvestris (L.) Hoffm. Molecules. 2024; 29(11):2547. https://doi.org/10.3390/molecules29112547
Chicago/Turabian StyleLiu, Yanling, Yangang Cao, Yajuan Zheng, Ying Niu, Lan Chen, Xu Chen, Xinyi Ma, Xiangda Li, Xiaoke Zheng, and Weisheng Feng. 2024. "Chemical Constituents with Anti-Proliferative Activity on Pulmonary Arterial Smooth Muscle Cells from the Roots of Anthriscus sylvestris (L.) Hoffm." Molecules 29, no. 11: 2547. https://doi.org/10.3390/molecules29112547
APA StyleLiu, Y., Cao, Y., Zheng, Y., Niu, Y., Chen, L., Chen, X., Ma, X., Li, X., Zheng, X., & Feng, W. (2024). Chemical Constituents with Anti-Proliferative Activity on Pulmonary Arterial Smooth Muscle Cells from the Roots of Anthriscus sylvestris (L.) Hoffm. Molecules, 29(11), 2547. https://doi.org/10.3390/molecules29112547