Development and Validation of a Sonication-Assisted Dispersive Liquid–Liquid Microextraction Procedure and an HPLC-PDA Method for Quantitative Determination of Zolpidem in Human Plasma and Its Application to Forensic Samples
Abstract
:1. Introduction
2. Results
2.1. Study of Extraction Procedure
2.1.1. Study of the Type and Volume of Extraction and Disperser Solvents
2.1.2. Study of Buffer and pH
2.1.3. Study of Several Variables with Statistical Package
2.1.4. Study of Salt Amount
2.1.5. Study of Sonication
2.2. Choice of Internal Standard
2.3. Chromatographic Separation
2.4. Method Validation
2.4.1. Selectivity
2.4.2. Linearity
2.4.3. Limits of Detection and Quantification
2.4.4. Precision and Accuracy
2.4.5. Recovery
2.4.6. Method Application
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Blood Samples
4.3. Standard Solutions
4.4. Sample Preparation and Extraction
4.5. Instrumentation and Chromatographic Conditions
4.6. Method Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5732, Zolpidem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Zolpidem (accessed on 27 February 2024).
- Nirogi, R.V.S.; Kandikere, V.N.; Shrivasthava, W.; Mudigonda, K. Quantification of zolpidem in human plasma by high-performance liquid chromatography with fluorescence detection. Biomed. Chromatogr. 2006, 20, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Rohrig, T.P.; Moore, C.M. Zolpidem: Forensic Aspects for the Toxicologist and Pathologist. Forensic Sci. Med. Pathol. 2005, 1, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Gunja, N. The Clinical and Forensic Toxicology of Z-drugs. J. Med. Toxicol. 2013, 9, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Eliassen, E.; Kristoffersen, L. Quantitative determination of zopiclone and zolpidem in whole blood by liquid–liquid extraction and UHPLC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 971, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Sakshaug, S.; Handal, M.; Hjellvik, V.; Berg, C.; Ripel, A.; Gustavsen, I.; Mørland, J.; Skurtveit, S. Long-term Use of Z-Hypnotics and Co-medication with Benzodiazepines and Opioids. Basic Clin. Pharmacol. Toxicol. 2017, 120, 292–298. [Google Scholar]
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS). Utilización de Medicamentos Ansiolíticos e Hipnóticos en España. 2021. Available online: https://www.aemps.gob.es/medicamentos-de-uso-humano/observatorio-de-uso-de-medicamentos/informes-ansioliticos-hipnoticos/ (accessed on 18 March 2024).
- Piotrowski, P.; Bocian, S.; Śliwka, K.; Buszewski, B. Simultaneous analysis of zolpidem and its metabolite in whole blood and oral fluid samples by SPE-LC/MS for clinical and forensic purposes. Adv. Med. Sci. 2015, 60, 167–172. [Google Scholar] [CrossRef]
- United Nations Office on Drugs and Crime. Guidelines for the Forensic Analysis of Drugs Facilitating Sexual Assault and Other Criminal Acts; United Nations: Vienna, Austria, 2011; p. 45. [Google Scholar]
- Alimohammadi, Z.; Pourmoslemi, S. Selective extraction of zolpidem from plasma using molecularly imprinted polymer followed by high performance liquid chromatography. Microchem. J. 2021, 162, 105844. [Google Scholar] [CrossRef]
- Tracqui, A.; Kintz, P.; Mangin, P. High-performance liquid chromatographic assay with diode-array detection for toxicological screening of zopiclone, zolpidem, suriclone and alpidem in human plasma. J. Chromatogr. B Biomed. Sci. Appl. 1993, 616, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Krylova, E.A.; Kataev, S.S.; Khomov, Y.A.; Dvorskaya, O.N. Validation of a Gas Chromatography/Mass Spectrometry Method for Quantitative Determination of Zolpidem in Whole Blood. Pharm. Chem. J. 2015, 49, 564–569. [Google Scholar] [CrossRef]
- Jinlei, L.; Wurita, A.; Xuejun, W.; Hongkun, Y.; Jie, G.; Liqin, C. Supramolecular solvent (SUPRASs) extraction method for detecting benzodiazepines and zolpidem in human urine and blood using gas chromatography tandem mass spectrometry. Leg. Med. 2021, 48, 101822. [Google Scholar] [CrossRef] [PubMed]
- Kratzsch, C.; Tenberken, O.; Peters, F.T.; Weber, A.A.; Kraemer, T.; Maurer, H.H. Screening, library-assisted identification and validated quantification of 23 benzodiazepines, flumazenil, zaleplone, zolpidem and zopiclone in plasma by liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization. J. Mass Spectrom. 2004, 39, 856–872. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Kudo, K.; Hayashida, M.; Ikeda, N. Rapid and quantitative screening method for 43 benzodiazepines and their metabolites, zolpidem and zopiclone in human plasma by liquid chromatography/mass spectrometry with a small particle column. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 2652–2657. [Google Scholar] [CrossRef] [PubMed]
- Montenarh, D.; Hopf, M.; Maurer, H.H.; Schmidt, P.; Ewald, A.H. Detection and quantification of benzodiazepines and Z-drugs in human whole blood, plasma, and serum samples as part of a comprehensive multi-analyte LC-MS/MS approach. Anal. Bioanal. Chem. 2014, 406, 803–818. [Google Scholar] [CrossRef] [PubMed]
- De Boeck, M.; Missotten, S.; Dehaen, W.; Tytgat, J.; Cuypers, E. Development and validation of a fast ionic liquid-based dispersive liquid–liquid microextraction procedure combined with LC–MS/MS analysis for the quantification of benzodiazepines and benzodiazepine-like hypnotics in whole blood. Forensic Sci. Int. 2017, 274, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Fisichella, M.; Odoardi, S.; Strano-Rosi, S. High-throughput dispersive liquid/liquid microextraction (DLLME) method for the rapid determination of drugs of abuse, benzodiazepines and other psychotropic medications in blood samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and application to forensic cases. Microchem. J. 2015, 123, 33–41. [Google Scholar]
- Mendes, G.D.; Pereira, T.d.S.; Rodrigues, J.C.; Santos, E.M.; Souza, M.R.; Lopes-Martins, R.A.B.; Antunes, N.d.J.; Moreno, R.A.; De Nucci, G. Comparative bioavailability of two zolpidem hemitartrate formulations in healthy human Brazilian volunteers using high-performance liquid chromatography coupled to tandem mass spectrometry. Biomed. Chromatogr. 2020, 34, e4731. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.C.; Bapuji, A.T.; Rao, V.S.; Himabindu, V.; Ravinder, S. A Rapid and Highly Sensitive UPLC-MS-MS Method for the Quantification of Zolpidem Tartrate in Human EDTA Plasma and its Application to Pharmacokinetic Study. J. Chromatogr. Sci. 2012, 50, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.J.; Roberts, M.; Wood, M.; McMillin, G.A. Sensitive UPLC-MS-MS Assay for 21 Benzodiazepine Drugs and Metabolites, Zolpidem and Zopiclone in Serum or Plasma. J. Anal. Toxicol. 2012, 36, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Vårdal, L.; Wong, G.; Øiestad, M.L.; Pedersen-Bjergaard, S.; Gjelstad, A.; Øiestad, E.L. Rapid determination of designer benzodiazepines, benzodiazepines, and Z-hypnotics in whole blood using parallel artificial liquid membrane extraction and UHPLC-MS/MS. Anal. Bioanal. Chem. 2018, 410, 4967–4978. [Google Scholar] [CrossRef]
- Ares-Fuentes, A.M.; Lorenzo, R.A.; Fernández, P.; Carro, A.M. An analytical strategy for designer benzodiazepines and Z-hypnotics determination in plasma samples using ultra-high performance liquid chromatography/tandem mass spectrometry after microextraction by packed sorbent. J. Pharm. Biomed. Anal. 2020, 194, 113779. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry. 2018. Available online: https://www.fda.gov.files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 19 June 2023).
- Mansour, F.R.; Khairy, M.A. Pharmaceutical and biomedical applications of dispersive liquid–liquid microextraction. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1061–1062, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Cabarcos-Fernández, P.; Álvarez-Freire, I.; Tabernero-Duque, M.J.; Bermejo-Barrera, A.M. Quantitative determination of clozapine in plasma using an environmentally friendly technique. Microchem. J. 2022, 180, 107612. [Google Scholar] [CrossRef]
- Andersen, C.U.; Ahmed, H.; Rædkjær, M.; Hasselstrøm, J.B.; Larsen, M.K. Deaths caused by medication in persons not using illicit narcotic drugs: An autopsy study from Western Denmark. Basic Clin. Pharmacol. Toxicol. 2023, 132, 111–119. [Google Scholar] [CrossRef] [PubMed]
Cnominal a (μg/mL) | Intraday | Interday | |||||
---|---|---|---|---|---|---|---|
Precision (% RSD b) | Accuracy (% Bias) | Recovery (%) | Precision (% RSD) | Accuracy (% Bias) | Recovery (%) | ||
QC1 0.15 | 8.18 | 12.69 | 121.01 | 8.83 | 5.29 | 105.29 | |
QC2 0.40 | 9.36 | 14.92 | 114.92 | 7.80 | 0.84 | 100.84 | |
QC3 0.60 | 7.55 | 14.97 | 116.86 | 1.96 | 1.46 | 101.46 |
Real Cases | Sex | Age (Years) | Cause of Death | Zolpidem Concentration in Plasma (μg/mL) | Other Compounds Detected in Blood (Concentration) | Other Compounds Detected (Sample) |
---|---|---|---|---|---|---|
1 | Male | 55 | Natural | 0.18 | ─ | Trimethoprim (urine) |
2 | Female | 23 | Drug poisoning suicide | >ULOQ | Quetiapine (2.3 µg/mL) Topiramate Flurazepam | Quetiapine, topiramate, flurazepam and zolpidem (urine and gastric contents) |
3 | Female | 76 | Drug poisoning suicide | >ULOQ | Ethyl alcohol (1.22 g/L) Citalopram (0.03 µg/mL) Trazodone (0.99 µg/mL) Lorazepam (0.14 µg/mL) | Ethyl alcohol, benzodiazepines, citalopram, codeine, trazodone, venlafaxine and zolpidem (urine) |
4 | Male | 47 | Drug poisoning suicide | 0.33 | Alprazolam (0.14 µg/mL) Venlafaxine (>ULOQ) Benzoylecgonine (0.04 µg/mL) | Cocaine, benzodiazepines, venlafaxine, THC and zolpidem (urine) |
5 | Male | 51 | Cocaine overdose | <LOQ | Cocaine (4.93 µg/mL) Benzoylecgonine (5.27 µg/mL) | Cocaine, benzodiazepines and ethylglucuronide (urine) |
6 | Female | 60 | Drug poisoning suicide | 0.25 | Ethyl alcohol (0.08 g/L) Quetiapine (2.97 µg/mL) Clozapine (4.8 µg/mL) | Quetiapine, clozapine and zolpidem (urine) |
7 | Male | 81 | Traumatic brain injury | 0.19 | Mirtazapine (0.075 µg/mL) | ─ |
8 | Male | 38 | Drug overdose | <LOQ | Ethyl alcohol (2.47 g/L) Methadone (0.41 µg/mL) Cocaine (0.11 µg/mL) Benzoylecgonine (0.9 µg/mL) Cocaethylene (0.16 µg/mL) | Ethyl alcohol, cocaine, methadone, chlormethiazole and zolpidem (urine) |
9 | Male | 50 | Drug poisoning suicide | None detected | Ethyl alcohol (1.72 g/L) Tramadol (0.74 µg/mL) Pregabalin (1.12 µg/mL) Citalopram (0.04 µg/mL) Gabapentin (25.97 µg/mL) | Ethyl alcohol (vitreous humor). Tramadol, pregabalin, citalopram, gabapentin and zolpidem (gastric contents) |
10 | Male | 77 | Railway suicide | <LOQ | Sertraline (0.29 µg/mL) | ─ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Sellero, I.; Cabarcos-Fernández, P.; Jaureguízar-Rodríguez, M.E.; Álvarez-Freire, I.; Tabernero-Duque, M.J.; Bermejo-Barrera, A.M. Development and Validation of a Sonication-Assisted Dispersive Liquid–Liquid Microextraction Procedure and an HPLC-PDA Method for Quantitative Determination of Zolpidem in Human Plasma and Its Application to Forensic Samples. Molecules 2024, 29, 2490. https://doi.org/10.3390/molecules29112490
Sánchez-Sellero I, Cabarcos-Fernández P, Jaureguízar-Rodríguez ME, Álvarez-Freire I, Tabernero-Duque MJ, Bermejo-Barrera AM. Development and Validation of a Sonication-Assisted Dispersive Liquid–Liquid Microextraction Procedure and an HPLC-PDA Method for Quantitative Determination of Zolpidem in Human Plasma and Its Application to Forensic Samples. Molecules. 2024; 29(11):2490. https://doi.org/10.3390/molecules29112490
Chicago/Turabian StyleSánchez-Sellero, Inés, Pamela Cabarcos-Fernández, María Elena Jaureguízar-Rodríguez, Iván Álvarez-Freire, María Jesús Tabernero-Duque, and Ana María Bermejo-Barrera. 2024. "Development and Validation of a Sonication-Assisted Dispersive Liquid–Liquid Microextraction Procedure and an HPLC-PDA Method for Quantitative Determination of Zolpidem in Human Plasma and Its Application to Forensic Samples" Molecules 29, no. 11: 2490. https://doi.org/10.3390/molecules29112490
APA StyleSánchez-Sellero, I., Cabarcos-Fernández, P., Jaureguízar-Rodríguez, M. E., Álvarez-Freire, I., Tabernero-Duque, M. J., & Bermejo-Barrera, A. M. (2024). Development and Validation of a Sonication-Assisted Dispersive Liquid–Liquid Microextraction Procedure and an HPLC-PDA Method for Quantitative Determination of Zolpidem in Human Plasma and Its Application to Forensic Samples. Molecules, 29(11), 2490. https://doi.org/10.3390/molecules29112490