In Situ-Initiated Poly-1,3-dioxolane Gel Electrolyte for High-Voltage Lithium Metal Batteries
Abstract
:1. Introduction
2. Results
2.1. Characterizations and Electrochemical Properties of P-DOL
2.2. Electrochemical Performances and Li+ Plating/Stripping Behavior
2.3. Full Cell Performance of P-DOL
3. Materials and Methods
3.1. Materials
3.2. Preparation of Electrolyte
3.3. Electrochemical Measurements
3.4. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, P.; Deng, X.; Zhang, Y.; Li, J.; Hua, H.; Huang, B.; Zhang, P.; Zhao, J. Bifunctional Localized High-Concentration Electrolyte for the Fast Kinetics of Lithium Batteries at Low Temperatures. ACS Appl. Mater. Interfaces 2023, 15, 31020–31031. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, B.; Shen, Y.; Wu, J.; Zhao, Z.; Zhong, C.; Hu, W. Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. Adv. Sci. 2021, 8, 2101111. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, Z.; Shi, Y.; Qi, F.; Gao, X.; Yang, H.; Cheng, H.; Li, F. Ion-Dipole Chemistry Drives Rapid Evolution of Li Ions Solvation Sheath in Low-Temperature Li Batteries. Adv. Energy Mater. 2021, 11, 2100935. [Google Scholar] [CrossRef]
- Wu, D.; Chen, L.; Li, H.; Wu, F. Solid-State Lithium Batteries-from Fundamental Research to Industrial Progress. Prog. Mater. Sci. 2023, 139, 101182. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Y.; Yang, J.; Tang, M.; Zhang, C.; Zhu, Q.; Wang, S.; Li, Y.; Hu, P.; Wang, H. An Ultrafast and Stable Li-Metal Battery Cycled at −40 °C. Adv. Funct. Mater. 2023, 33, 2212349. [Google Scholar] [CrossRef]
- Qin, M.; Zeng, Z.; Wu, Q.; Yan, H.; Liu, M.; Wu, Y.; Zhang, H.; Lei, S.; Cheng, S.; Xie, J. Dipole–Dipole Interactions for Inhibiting Solvent Co-Intercalation into a Graphite Anode to Extend the Horizon of Electrolyte Design. Energy Environ. Sci. 2023, 16, 546–556. [Google Scholar] [CrossRef]
- Su, H.; Liu, P.; Liu, Y.; Liu, S.; Zhong, Y.; Xia, X.; Wang, X.; Tu, J. Fine-Tuning Li+ Solvation Structure Enabled by Steric Effect and Solvating Chemistry of the Anion for Practical Electrolyte Engineering. Nano Energy 2023, 115, 108722. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, S.; Li, J.; Huang, L.; Zhang, X.; Xie, B.; Zhuang, X.; Cui, Z.; Fan, X.; Xu, G.; et al. Transformed Solvation Structure of Noncoordinating Flame-Retardant Assisted Propylene Carbonate Enabling High Voltage Li-Ion Batteries with High Safety and Long Cyclability. Adv. Energy Mater. 2023, 13, 2300684. [Google Scholar] [CrossRef]
- Yi, X.; Li, X.; Zhong, J.; Wang, Z.; Guo, H.; Peng, W.; Duan, J.; Wang, D.; Wang, J.; Yan, G. Uncovering the Redox Shuttle Degradation Mechanism of Ether Electrolytes in Sodium-Ion Batteries and Its Inhibition Strategy. Small 2023, 19, 2304162. [Google Scholar] [CrossRef] [PubMed]
- Li, A.-M.; Borodin, O.; Pollard, T.P.; Zhang, W.; Zhang, N.; Tan, S.; Chen, F.; Jayawardana, C.; Lucht, B.L.; Hu, E.; et al. Methylation Enables the Use of Fluorine-Free Ether Electrolytes in High-Voltage Lithium Metal Batteries. Nat. Chem. 2024. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yu, R.; Weng, S.; Zhang, Q.; Wang, X.; Guo, X. Tailoring Polymer Electrolyte Ionic Conductivity for Production of Low- Temperature Operating Quasi-All-Solid-State Lithium Metal Batteries. Nat. Commun. 2023, 14, 482. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L.A. Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries. Nat. Rev. Mater. 2020, 5, 229–252. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L.M.; Armand, M.; Zhou, Z. Single Lithium-Ion Conducting Solid Polymer Electrolytes: Advances and Perspectives. Chem. Soc. Rev. 2017, 46, 797–815. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, L.; Zhou, Y.; Liang, Z.; Tavajohi, N.; Li, B.; Li, T. Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li-Based Rechargeable Batteries. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2021, 8, 2003675. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Sun, Q.; Wang, S.; Zhou, Y.; Song, D.; Zhang, H.; Shi, X.; Zhang, L. Li Salt Initiated In-Situ Polymerized Solid Polymer Electrolyte: New Insights via in-Situ Electrochemical Impedance Spectroscopy. Chem. Eng. J. 2022, 429, 132483. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, C.; Chen, M.; Liu, X.; Yin, L.; You, Y.; Lu, J. Electrophilically Trapping Water for Preventing Polymerization of Cyclic Ether Towards Low-Temperature Li Metal Battery. Angew. Chem. Int. Ed. 2023, 62, e202300238. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.-H.; Hsiao, Y.-H.; Hsu, C.-H.; Kuo, P.-L. Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode. ACS Appl. Mater. Interfaces 2016, 8, 15216–15224. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Sun, Y.; Wang, S.; An, Q.; Duan, L.; Zhao, G.; Wang, C.; Doyle-Davis, K.; Guo, H.; Sun, X. Highly Adaptable SEI/CEI Interfacial Layers Enabling Remarkable Performance of High-Nickel Solid-State Batteries. Mater. Today 2023, 64, 21–30. [Google Scholar] [CrossRef]
- Nie, L.; Chen, S.; Zhang, M.; Gao, T.; Zhang, Y.; Wei, R.; Zhang, Y.; Liu, W. An In-Situ Polymerized Interphase Engineering for High-Voltage All-Solid-State Lithium-Metal Batteries. Nano Res. 2024, 17, 2687–2692. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Anothumakkool, B.; Kurungot, S.; Winter, M.; Nair, J.R. In Situ Polymerization Process: An Essential Design Tool for Lithium Polymer Batteries. Energy Environ. Sci. 2021, 14, 2708–2788. [Google Scholar] [CrossRef]
- Peng, H.; Long, T.; Peng, J.; Chen, H.; Ji, L.; Sun, H.; Huang, L.; Sun, S. Molecular Design for In-Situ Polymerized Solid Polymer Electrolytes Enabling Stable Cycling of Lithium Metal Batteries. Adv. Energy Mater. 2024, 2400428. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; He, X. Toward Practical Solid-State Polymer Lithium Batteries by In Situ Polymerization Process: A Review. Adv. Energy Mater. 2023, 13, 2300798. [Google Scholar] [CrossRef]
- Sun, M.; Zeng, Z.; Peng, L.; Han, Z.; Yu, C.; Cheng, S.; Xie, J. Ultrathin Polymer Electrolyte Film Prepared by in Situ Polymerization for Lithium Metal Batteries. Mater. Today Energy 2021, 21, 100785. [Google Scholar] [CrossRef]
- Dong, S.; Sheng, L.; Wang, L.; Liang, J.; Zhang, H.; Chen, Z.; Xu, H.; He, X. Challenges and Prospects of All-Solid-State Electrodes for Solid-State Lithium Batteries. Adv. Funct. Mater. 2023, 33, 2304371. [Google Scholar] [CrossRef]
- Gao, X.; Xing, Z.; Wang, M.; Nie, C.; Shang, Z.; Bai, Z.; Dou, S.X.; Wang, N. Comprehensive Insights into Solid-State Electrolytes and Electrode-Electrolyte Interfaces in All-Solid-State Sodium-Ion Batteries. Energy Storage Mater. 2023, 60, 102821. [Google Scholar] [CrossRef]
- Sang, J.; Tang, B.; Pan, K.; He, Y.-B.; Zhou, Z. Current Status and Enhancement Strategies for All-Solid-State Lithium Batteries. Acc. Mater. Res. 2023, 4, 472–483. [Google Scholar] [CrossRef]
- Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L. Interfaces in Solid-State Lithium Batteries. Joule 2018, 2, 1991–2015. [Google Scholar] [CrossRef]
- Bonnick, P.; Muldoon, J. The Quest for the Holy Grail of Solid-State Lithium Batteries. Energy Environ. Sci. 2022, 15, 1840–1860. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L.A. Solid-State Polymer Electrolytes with in-Built Fast Interfacial Transport for Secondary Lithium Batteries. Nat. Energy 2019, 4, 365–373. [Google Scholar] [CrossRef]
- Randau, S.; Weber, D.A.; Kötz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffée, E.; Adermann, T.; Kulisch, J.; Zeier, W.G.; et al. Benchmarking the Performance of All-Solid-State Lithium Batteries. Nat. Energy 2020, 5, 259–270. [Google Scholar] [CrossRef]
- Zeng, Z.; Cheng, J.; Li, Y.; Zhang, H.; Li, D.; Liu, H.; Ji, F.; Sun, Q.; Ci, L. Composite Cathode for All-Solid-State Lithium Batteries: Progress and Perspective. Mater. Today Phys. 2023, 32, 101009. [Google Scholar] [CrossRef]
- Li, J.; Ji, Y.; Song, H.; Chen, S.; Ding, S.; Zhang, B.; Yang, L.; Song, Y.; Pan, F. Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries. Nano-Micro Lett. 2022, 14, 191. [Google Scholar] [CrossRef] [PubMed]
- Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Mao, M.; Huang, B.; Li, Q.; Wang, C.; He, Y.-B.; Kang, F. In-Situ Construction of Hierarchical Cathode Electrolyte Interphase for High Performance LiNi0.8Co0.1Mn0.1O2/Li Metal Battery. Nano Energy 2020, 78, 105282. [Google Scholar] [CrossRef]
- Mateva, R.; Wegner, G.; Lieser, G. Growth of Polyoxymethylene Crystals during Cationic Polymerization of Trioxane in Nitrobenzene. J. Polym. Sci. Polym. Lett. Ed. 1973, 11, 369–376. [Google Scholar] [CrossRef]
- Liu, F.-Q.; Wang, W.-P.; Yin, Y.-X.; Zhang, S.-F.; Shi, J.-L.; Wang, L.; Zhang, X.-D.; Zheng, Y.; Zhou, J.-J.; Li, L.; et al. Upgrading Traditional Liquid Electrolyte via in Situ Gelation for Future Lithium Metal Batteries. Sci. Adv. 2018, 4, eaat5383. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, S.; Li, Z.; Peng, C.; Li, Y.; Feng, W. In-Situ Generation of Fluorinated Polycarbonate Copolymer Solid Electrolytes for High-Voltage Li-Metal Batteries. Energy Storage Mater. 2022, 45, 474–483. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, W.; Huang, C.; Shen, Z.; Wang, X.; Guo, J.; Li, S.; Mao, S.; Lu, Y. In-Situ Polymerization with Dual-Function Electrolyte Additive toward Future Lithium Metal Batteries. Mater. Today Energy 2022, 26, 100984. [Google Scholar] [CrossRef]
- Yuan, B.; Luo, G.; Liang, J.; Cheng, F.; Zhang, W.; Chen, J. Self-Assembly Synthesis of Solid Polymer Electrolyte with Carbonate Terminated Poly(Ethylene Glycol) Matrix and Its Application for Solid State Lithium Battery. J. Energy Chem. 2019, 38, 55–59. [Google Scholar] [CrossRef]
- Kondo, Y.; Abe, T.; Yamada, Y. Kinetics of Interfacial Ion Transfer in Lithium-Ion Batteries: Mechanism Understanding and Improvement Strategies. ACS Appl. Mater. Interfaces 2022, 14, 22706–22718. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Hu, L.; Li, Q.; Sun, Y.; Duan, Q.; Jiang, Y.; Xu, Y.; Yi, J.; Zhao, B.; Zhang, J. An Optimizing Hybrid Interface Architecture for Unleashing the Potential of Sulfide-Based All-Solid-State Battery. Energy Storage Mater. 2023, 63, 103009. [Google Scholar] [CrossRef]
- Yang, G.; Hou, W.; Zhai, Y.; Chen, Z.; Liu, C.; Ouyang, C.; Liang, X.; Paoprasert, P.; Hu, N.; Song, S. Polymeric Concentrated Electrolyte Enables Simultaneous Stabilization of Electrode/Electrolyte Interphases for Quasi-solid-state Lithium Metal Batteries. EcoMat 2023, 5, e12325. [Google Scholar] [CrossRef]
- Mc Carthy, K.; Gullapalli, H.; Ryan, K.M.; Kennedy, T. Review—Use of Impedance Spectroscopy for the Estimation of Li-Ion Battery State of Charge, State of Health and Internal Temperature. J. Electrochem. Soc. 2021, 168, 080517. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, S.; Gao, X.; Chen, X.; Cong, L.; Liu, J.; Xie, H.; Yu, C.; Liu, Y. In-Situ Polymerized Carbonate Induced by Li-Ga Alloy as Novel Artificial Interphase on Li Metal Anode. Chin. Chem. Lett. 2023, 34, 108151. [Google Scholar] [CrossRef]
- Zhu, X.; Mo, Y.; Chen, J.; Liu, G.; Wang, Y.; Dong, X. A Weakly-Solvated Ether-Based Electrolyte for Fast-Charging Graphite Anode. Chin. Chem. Lett. 2023, 35, 109146. [Google Scholar] [CrossRef]
- Hu, T.; Guo, Y.; Meng, Y.; Zhang, Z.; Yu, J.; Cai, J.; Yang, Z. Uniform Lithium Deposition Induced by Copper Phthalocyanine Additive for Durable Lithium Anode in Lithium-Sulfur Batteries. Chin. Chem. Lett. 2024, 35, 108603. [Google Scholar] [CrossRef]
- Yang, K.; Li, L.; Xiao, Y.; Zhang, Q.; Xi, C.; Li, B.; Yu, Y.; Yang, C. Congener-Derived Template to Construct Lithiophilic Organic-Inorganic Layer/Interphase for High Volumetric Capacity Dendrite-Free Li Metal Batteries. Chin. Chem. Lett. 2024, 35, 108451. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, R.; Wang, Z.; Xing, X.; Liu, Y.; Deng, B.; Yang, T. Electrolyte Additive Maintains High Performance for Dendrite-Free Lithium Metal Anode. Chin. Chem. Lett. 2020, 31, 1217–1220. [Google Scholar] [CrossRef]
- Wu, H.; Tang, B.; Du, X.; Zhang, J.; Yu, X.; Wang, Y.; Ma, J.; Zhou, Q.; Zhao, J.; Dong, S.; et al. LiDFOB Initiated In Situ Polymerization of Novel Eutectic Solution Enables Room-Temperature Solid Lithium Metal Batteries. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2020, 7, 2003370. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Yu, S.; Lee, C.; Lee, H. Comparative Study on Lithium Borates as Corrosion Inhibitors of Aluminum Current Collector in Lithium Bis(Fluorosulfonyl)Imide Electrolytes. J. Power Sources 2015, 296, 197–203. [Google Scholar] [CrossRef]
- Yu, J.; Lin, X.; Liu, J.; Yu, J.T.T.; Robson, M.J.; Zhou, G.; Law, H.M.; Wang, H.; Tang, B.Z.; Ciucci, F. In Situ Fabricated Quasi-Solid Polymer Electrolyte for High-Energy-Density Lithium Metal Battery Capable of Subzero Operation. Adv. Energy Mater. 2022, 12, 2102932. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, Q.; Liu, X.; Zheng, J.; Stalin, S.; Zhang, Q.; Archer, L.A. Rechargeable Lithium Metal Batteries with an In-Built Solid-State Polymer Electrolyte and a High Voltage/Loading Ni-Rich Layered Cathode. Adv. Mater. 2020, 32, 1905629. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, M.; Zhang, Y.; Liu, Z.; Zhang, Y.; Zhai, Y.; Xie, H.; Liu, Y. In Situ-Initiated Poly-1,3-dioxolane Gel Electrolyte for High-Voltage Lithium Metal Batteries. Molecules 2024, 29, 2454. https://doi.org/10.3390/molecules29112454
Xin M, Zhang Y, Liu Z, Zhang Y, Zhai Y, Xie H, Liu Y. In Situ-Initiated Poly-1,3-dioxolane Gel Electrolyte for High-Voltage Lithium Metal Batteries. Molecules. 2024; 29(11):2454. https://doi.org/10.3390/molecules29112454
Chicago/Turabian StyleXin, Mingyang, Yimu Zhang, Zhenhua Liu, Yuqing Zhang, Yutong Zhai, Haiming Xie, and Yulong Liu. 2024. "In Situ-Initiated Poly-1,3-dioxolane Gel Electrolyte for High-Voltage Lithium Metal Batteries" Molecules 29, no. 11: 2454. https://doi.org/10.3390/molecules29112454
APA StyleXin, M., Zhang, Y., Liu, Z., Zhang, Y., Zhai, Y., Xie, H., & Liu, Y. (2024). In Situ-Initiated Poly-1,3-dioxolane Gel Electrolyte for High-Voltage Lithium Metal Batteries. Molecules, 29(11), 2454. https://doi.org/10.3390/molecules29112454