Chemical Basis for Determining the Allelopathic Potential of Invasive Plant Wall Barley (Hordeum murinum L. subsp. murinum)
Abstract
:1. Introduction
2. Results
2.1. Soil Analysis
2.2. Gas Chromatography Coupled to Mass Spectrometry (GC–MS)
2.3. Germination Capacity
2.4. Biometric Analyses
2.5. Fresh and Dry Masses and Total Water Content
2.6. Electrolyte Leakage
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Soil Analysis
4.3. Gas Chromatography Methods (GC–MS)
4.3.1. Extraction and Derivatization Procedure
4.3.2. Main Parameters
4.4. Preparation of Extracts for Allelopathic Studies
4.5. Seed Preparation and Germination Conditions
- MGT [day]—mean germination time
- GI [unit less]—germination index
- U [bit]—uncertainty of germination process
- T50 [day]—time to 50% germination
4.6. Measurements of Elongation Growth of Studied Seedlings
4.7. Measurements of Fresh and Dry Mass and Total Water Content
4.8. Electrolyte Leakage
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lichtenthaler, H.K. Vegetation stress: An introduction to the stress concept in plants. J. Plant Physiol. 1996, 148, 4–14. [Google Scholar]
- Goldstein, R.; Ferson, S. Responses of plants to interacting stresses (ROPIS); program rationale, design and implications. J. Environ. Qual. 1994, 23, 407–411. [Google Scholar] [CrossRef]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press INC.: Orlando, FL, USA, 1984. [Google Scholar]
- Olofsdotter, M.; Jensen, L.B.; Courtois, B. Improving crop competitive ability using allelopathy—An example from rice. Plant Breed. 2002, 121, 1–9. [Google Scholar] [CrossRef]
- Trezzi, M.M.; Vidal, R.A.; Balbinot, A.A.; von Hertwig Bittencourt, H.; da Silva Souza Filho, A.P. Allelopathy: Driving mechanisms governing its activity in agriculture. J. Plant Interact 2016, 11, 53–60. [Google Scholar] [CrossRef]
- Barabasz-Krasny, B.; Zandi, P.; Puła, J.; Stachurska-Swakoń, A.; Schnug, E.; Danel, A. Allelopathy A Natural Factor Constraining or Supporting the Productivity of Soils? In Soil Constraints and Productivity; Bolan, H.S., Kirkam, M.B., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 301–318. [Google Scholar] [CrossRef]
- Zandi, P.; Darma, A.; Li, Q.; Zhou, X.; Yaosheng, W.; Schnug, E. A review of significance of allelopathy in anticipating negative climate change effects. AUPC Stud. Nat. 2023, 8, 253–275. [Google Scholar] [CrossRef]
- Macias, F.A.; Oliveros-Bastidas, A.; Marin, D.; Carrera, C.; Chinchilla, N.; Molinillo, J.M.G. Plant biocommunicators: Their phytotoxicity, degradation studies and potential use as herbicide models. Phytochem. Rev. 2008, 7, 179–194. [Google Scholar] [CrossRef]
- Macias, F.A.; Durán, A.G.; Molinillo, J.M.G. Allelopathy: The chemical language of plants. In Progress in the Chemistry of Organic Natural Products 112. Progress in the Chemistry of Organic Natural Products; Springer: Cham, Switzerland, 2020; Volume 112, pp. 1–84. [Google Scholar] [CrossRef]
- Hussain, W.S.; Abbas, M. Application of allelopathy in crop production. In Agricultural Development in Asia-Potential Use of Nano-Materials and Nano-Technology; Asaduzzaman, M., Afroz, M., Eds.; IntechOpen: London, UK, 2022; pp. 1–10. [Google Scholar] [CrossRef]
- Zandi, P.; Barabasz-Krasny, B.; Stachurska-Swakoń, A.; Puła, J.; Możdżeń, K. Allelopathic effect of invasive Canadian goldenrod (Solidago canadensis L.) on early growth of red clover (Trifolium pratense L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 2060–2071. [Google Scholar] [CrossRef]
- Barabasz-Krasny, B.; Możdżeń, K.; Sołtys-Lelek, A.; Stachurska-Swakoń, A. The allelopathic potential of Cirsium oleraceum (L.) Scop. into the fodder meadow plants. Not. Bot. Horti. Agrobo. 2017, 45, 255–261. [Google Scholar] [CrossRef]
- Chen, B.M.; Liao, H.X.; Chen, W.B.; Wei, H.J.; Peng, S.L. Role of allelopathy in plant invasion and control of invasive plants. Allelopathy J. 2017, 41, 155–166. [Google Scholar] [CrossRef]
- Hierro, J.L.; Callaway, R.M. Allelopathy and exotic plant invasion. Plant Soil 2003, 256, 29–39. [Google Scholar] [CrossRef]
- Metson, A.J.; Saunders, W.M.H.; Nott, J.H. Some chemical properties of soils from areas of barley grass (Hordeum murinum L.) infestation. N. Z. J. Agr. Res. 1971, 14, 334–351. [Google Scholar] [CrossRef]
- Błońska, A.; Kompała-Bąba, A. Spektrum fitocenotyczno-siedliskowe Hordeum murinum (Poaceae) na obszarze Wyżyny Śląskiej w porównaniu z wybranymi regionami Polski [Phytosociological and ecological spectrum of occurrence of Hordeum murinum (Poaceae) in the Silesian Upland in comparison to chosen regions of Poland]. Fragm. Flor. Geobot. Polon. 2009, 16, 325–338. [Google Scholar]
- Tokarska-Guzik, B. Trawy inwazyjne. In Księga Polskich Traw; Frey, L., Ed.; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2007; pp. 361–387. [Google Scholar]
- Davison, A.W. The ecology of Hordeum murinum L. II. The ruderal habitat. J. Ecol. 1971, 59, 493–506. [Google Scholar] [CrossRef]
- Sudnik-Wójcikowska, B. Flora Miasta Warszawy i Jej Przemiany w Ciągu XIX i XX wieku. 1: s. 242, 2: s. 435; Wydawnictwo Uniwersytetu Warszawskiego: Warszawa, Poland, 1987. [Google Scholar]
- Verloove, F.; Vercruysse, W. Some notes on the Hordeum murinum complex in Belgium. Dumortiera 2020, 116, 26–32. [Google Scholar] [CrossRef]
- Rychlewski, J. Hordeum murinum L. In Further Studies in Chromosome Numbers of Polish Angiosperms, 12th ed.; Skalińska, M., Pogan, E., Czapik, R., Eds.; Polish Botanical Society: Warsaw, Poland, 1957. [Google Scholar]
- Linde-Laursen, I.; Bothmer, R.; von Jacobson, N. Giemsa C-banded karyotypes of Hordeum marinum and H. murinum. Genome 1989, 32, 629–639. [Google Scholar] [CrossRef]
- Blattner, F. Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae). Jpn. J. Breed. 2009, 59, 471–480. [Google Scholar] [CrossRef]
- Booth, T.A.; Richards, A.J. Studies in the Hordeum murinum aggregate 1. Morphology. Bot. J. Linn. Soc. 1976, 72, 149–159. [Google Scholar] [CrossRef]
- Giles, E.; Lefkovitch, L.P. A taxonomic investigation of the Hordeum murinum complex (Poaceae). Pl. Syst. Evol. 1986, 153, 181–197. [Google Scholar] [CrossRef]
- Jacobsen, N.; von Bothmer, R. Taxonomy in the Hordeum murinum complex (Poaceae). Nordic J. Bot. 1995, 15, 449–458. [Google Scholar] [CrossRef]
- Jakob, S.S.; Blattner, F.R. Two extinct diploid progenitors were involved in allopolyploid formation in the Hordeum murinum (Poaceae: Triticeae) taxon complex. Mol. Phylogenet. Evol. 2010, 55, 650–659. [Google Scholar] [CrossRef]
- Mizianty, M. Variability and structure of natural populations of Hordeum murinum L. based on morphology. Plant Syst. Evol. 2006, 261, 139–150. [Google Scholar] [CrossRef]
- Eliáš, P. Über die Verbreitung und Variabilität des Hordeetum murini in der Westslowakei. Folia Geobot. Phytotax. 1979, 14, 337–353. [Google Scholar] [CrossRef]
- Roy, D.B.; Hill, M.O.; Rothery, P. Effects of urban land cover on the local species pool in Britain. Ecography 1999, 22, 507–515. [Google Scholar] [CrossRef]
- Swain, T. Secondary compounds as protective agents. Ann. Rev. Plant Physiol. 1977, 28, 479–501. [Google Scholar] [CrossRef]
- Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of terpenes and recent advances in plant protection. Int. J. Mol. Sci. 2021, 22, 5710. [Google Scholar] [CrossRef] [PubMed]
- Ostrumow, S.A. Wprowadzenie do Ekologii Biochemicznej (Introduction to Biochemical Ecology); Wydawnictwo Naukowe PWN: Warszawa, Poland, 1992. [Google Scholar]
- Blum, U. Allelopathic interactions involving phenolic acids. J. Nematol. 1996, 28, 259. [Google Scholar] [PubMed]
- Serajchi, M.; Schellenberg, M.P.; Lamb, E.G. The potential of seven native north American forage species to suppress weeds through allelopathy. Can. J. Plant Sci. 2017, 97, 881–890. [Google Scholar] [CrossRef]
- Callaway, R.M.; Ridenour, W.M. Novel Weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2004, 2, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Levačić, D.; Perković, L.; Vuković, N.; Jelaska, S.D. Bohemian Knotweed Reynoutria × bohemica Chrtek et Chrtková Seems Not to Rely Heavily on Allelopathy for Its Persistence in Invaded Sites in the Southwest Part of the Zagreb, Croatia. Plants 2023, 12, 2222. [Google Scholar] [CrossRef]
- Perera, P.C.D.; Chmielowiec, C.; Szymura, T.H.; Szymura, M. Effects of extracts from various parts of invasive Solidago species on the germination and growth of native grassland plant species. PeerJ 2023, 11, e15676. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kurniadie, D. The Invasive Mechanisms of the Noxious Alien Plant Species Bidens pilosa. Plants 2024, 13, 356. [Google Scholar] [CrossRef]
- Baghestani, A.; Lemieux, C.; Leroux, G.D.; Baziramakenga, R.; Simard, R.R. Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Sci. 1999, 47, 498–504. [Google Scholar] [CrossRef]
- Gioria, M.; Hulme, P.E.; Richardson, D.M.; Pyšek, P. Why Are Invasive Plants Successful? Annu. Rev. Plant Biol. 2023, 74, 635–670. [Google Scholar] [CrossRef]
- Bertholdsson, N.O. Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res. 2004, 44, 78–86. [Google Scholar] [CrossRef]
- Chon, S.U.; Kim, Y.M. Herbicidal potential and quantification of suspected allelochemicals from four grass crop extracts. J. Agron. Crop Sci. 2004, 190, 145. [Google Scholar] [CrossRef]
- Moore, B.D.; Andrew, R.L.; Kulheim, C.; Foley, W. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol. 2013, 201, 733–750. [Google Scholar] [CrossRef]
- Toravane, S.; Mokat, D.N. Allelopathic effects of weed Neanotis montholonii on seed germination and metabolism of mungbean and rice. Allelopathy J. 2020, 49, 151–164. [Google Scholar] [CrossRef]
- Zhang, D.; Ye, Y.; Li, J.; Dong, L. Allelopathic pathways, isolation and identification of an allelopathic substance from Solidago canadensis L. Allelopathy J. 2014, 33, 201–212. [Google Scholar]
- Li, X.J.; Xia, Z.C.; Kong, C.H.; Xu, X.H. Mobility and microbial activity of allelochemicals in soil. J. Agric. Food Chem. 2013, 61, 5072–5079. [Google Scholar] [CrossRef]
- Andriana, Y.; Xuan, T.D. Contribution of phenolic acids and dimethyl sulfone to the allelopathic effect of invasive Tridax procumbens. Pesquisa Agropecuária Tropical. 2021, 50, e64792. [Google Scholar] [CrossRef]
- Chen, J.J.; Duh, C.Y.; Chen, I.S. Cytotoxic chromenes from Myriactis humilis. Planta Med. 2005, 71, 370–372. [Google Scholar] [CrossRef]
- Deng, S.; Chen, S.N.; Yao, P.; Nikolic, D.; van Breemen, R.B.; Bolton, J.L.; Fong, H.H.; Farnsworth, N.R.; Pauli, G.F. Serotonergic activity-guided phytochemical investigation of the roots of Angelica sinensis. J. Nat. Prod. 2006, 69, 536–541. [Google Scholar] [CrossRef]
- Komakech, R.; Kang, Y.; Lee, J.-H.; Omujal, F. A Review of the Potential of Phytochemicals from Prunus africana (Hook f.) Kalkman Stem Bark for Chemoprevention and Chemotherapy of Prostate Cancer. Evid. Based. Complement. Alternat. Med. 2017, 2017, 3014019. [Google Scholar] [CrossRef]
- Kang, J.G.; Hur, J.H.; Choi, S.J.; Choi, G.J.; Cho, K.Y.; Ten, L.N.; Park, K.H.; Kang, K.Y. Antifungal Activities of N-Arylbenzenesulfonamides against Phytopathogens and Control E‹cacy on Wheat Leaf Rust and Cabbage Club Root Diseases. Biosci. Biotechnol. Biochem. 2002, 66, 2677–2682. [Google Scholar] [CrossRef]
- Angelini, P.; Girometta, C.; Tirillini, B.; Moretti, S.; Covino, S.; Cipriani, M.; D’Ellena, E.; Angeles, G.; Federici, E.; Savino, E.; et al. A comparative study of the antimicrobial and antioxidant activities of Inonotus hispidus fruit and their mycelia extracts. Int. J. Food Prop. 2019, 22, 768–783. [Google Scholar] [CrossRef]
- Ghosh, S.; Derle, A.; Ahire, M.; More, P.; Jagtap, S.; Phadatare, S.D.; Patil, A.B.; Jabgunde, A.M.; Sharma, G.K.; Shinde, V.S.; et al. Phytochemical Analysis and Free Radical Scavenging Activity of Medicinal Plants Gnidia glauca and Dioscorea bulbifera. PLoS ONE 2013, 8, e82529. [Google Scholar] [CrossRef]
- Chung, I.M.; Ahmad, A.; Kim, S.J.; Naik, P.M.; Nagella, P. Composition of the essential oil constituents from leaves and stems of Korean Coriandrum sativum and their immunotoxicity activity on the Aedes aegypti L. Immunopharmacol. Immunotoxicol. 2012, 34, 152–156. [Google Scholar] [CrossRef]
- Venuti, I.; Ceruso, M.; D’Angelo, C.; Casillo, A.; Pepe, T. Antimicrobial activity evaluation of pure compounds obtained from Pseudoalteromonas haloplanktis against Listeria monocytogenes: Preliminary results. Ital. J. Food Saf. 2022, 11, 10320. [Google Scholar] [CrossRef]
- Inderjit. Plant phenolics in allelopathy. Botanical Rev. 1996, 62, 186–202. [Google Scholar] [CrossRef]
- Hura, T.; Dubert, F.; Dąbkowska, T.; Stupnicka-Rodzynkiewicz, E.; Stokłosa, A.; Lepiarczyk, A. Quantitative analysis of phenolics in selected crop species and biological activity of these compounds evaluated by sensitivity of Echinochloa crus-galli. Acta Physiol. Plant. 2006, 28, 537–545. [Google Scholar] [CrossRef]
- Deng, N.; Zheng, B.; Li, T.; Liu, R.H. Assessment of the phenolic profiles, hypoglycemic activity, and molecular mechanism of different highland barley (Hordeum vulgare L.) varieties. Int. J. Mol. Sci. 2020, 21, 1175. [Google Scholar] [CrossRef]
- Horvat, D.; Šimić, G.; Drezner, G.; Lalić, A.; Ledenčan, T.; Tucak, M.; Plavšić, H.; Andrić, L.; Zdunić, Z. Phenolic acid profiles and antioxidant activity of major cereal crops. Antioxidants 2020, 9, 527. [Google Scholar] [CrossRef]
- Ferreres, F.; Krskova, Z.; Goncalves, R.F.; Valentao, P.; Pereira, J.A.; Dusek, J.; Martin, J.; Andrade, P.B. Free water-soluble phenolics profiling in barley (Hordeum vulgare L.). J. Agric. Food Chem. 2009, 57, 2405–2409. [Google Scholar] [CrossRef]
- Hättenschwiler, S.; Vitousek, P.M. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol. 2000, 15, 238–243. [Google Scholar] [CrossRef]
- Chomel, M.; Fernandez, C.; Bousquet-Mélou, A.; Gers, C.; Monnier, Y.; Santonja, M.; Gauquelin, T.; Gros, R.; Lecareux, C.; Baldy, V. Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J. Ecol. 2014, 102, 411–424. [Google Scholar] [CrossRef]
- Tava, A.; Pecio, Ł.; Lo Scalzo, R.; Stochmal, A.; Pecetti, L. Phenolic content and antioxidantactivity in Trifolium germplasm from different environments. Molecules 2019, 24, 298. [Google Scholar]
- Puig, C.G.; Valencia-Gredilla, F.; Pardo-Muras, M.; Souto, X.C.; Recasens, G.J.; Pedrol, N. Predictive phytotoxic value of water-soluble allelochemicals in plant extracts for choosing a cover crop or mulch for specific weed control. Ital. J. Agron. 2022, 16, 1872. [Google Scholar] [CrossRef]
- Mazur, A. The role of seed coat in the germination and early stages of growth of bean (Phaseolus vulgaris L.) in the presence of chickweed (Stellaria media (L.) Vill.). AUPC Stud. Nat. 2019, 4, 103–118. [Google Scholar] [CrossRef]
- Hamidi, D.; Ghadiri, H.; Bahrani, M.J.; Moradshahi, A.; Reza, H. Allelopathic effects of wild barley (Hordeum spontaneum Koch) extracts on growth of five wheat (Triticum aestivum L.) cultivars. Int. J. Environ. Sci. 2014, 40, 149–152. [Google Scholar]
- Balogun, O.S.; Ajayi, O.S.; Adeleke, A.J. Hexahydrofarnesyl Acetone-Rich Extractives from Hildegardia barteri. J. Herbs Spices Med. Plants 2017, 23, 393–400. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Quisenberry, S.S.; Moellenbeck, D.J. 6,10,14-Trimethylpentadecan-2-one: A Bermuda grass phagostimulant to fall armyworm (Lepidoptera: Noctuidae). J. Chem. Ecol. 1992, 18, 673–682. [Google Scholar] [CrossRef]
- Lucero, J.E.; Faist, A.M.; Lortie, C.J.; Callaway, R.M. Risk of Facilitated Invasion Depends Upon Invader Identity, Not Environmental Severity, Along an Aridity Gradient. Front. Ecol. Evol. 2022, 10, 886690. [Google Scholar] [CrossRef]
- Woods, M.J.; Bauer, J.T.; Schaeffer, D.; McEwan, R.W. Pyrus calleryana extracts reduce germination of native grassland species, suggesting the potential for allelopathic effects during ecological invasion. PeerJ 2023, 11, e15189. [Google Scholar] [CrossRef] [PubMed]
- Minden, V.; Verhoeven, K.; Venterink, O.H. Adaptive plasticity and fitness costs of endangered, nonendangered, and invasive plants in response to variation in nitrogen and phosphorus availabilities. Ecol. Evol. 2023, 13, e10075. [Google Scholar] [CrossRef] [PubMed]
- Jabran, K.; Doğan, M. Elevated CO2, temperature and nitrogen levels impact growth and development of invasive weeds in the Mediterranean Region. J. Sci. Food Agric. 2020, 100, 4893–4900. [Google Scholar] [CrossRef]
- Minczewski, J.; Marczenko, Z. Chemia analityczna. In T. 3: Analiza instrumentalna; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1987; pp. 265–306. [Google Scholar]
- Hermanowicz, W.; Dożańska, W.; Dojlido, J.; Koziorowski, B. Fizyczno-Chemiczne Badanie Wody i Ścieków; Arkady: Warszawa, Poland, 1976; pp. 27–28. [Google Scholar]
- Bulska, E.; Krata, A. Instrumentalne metody spektralne stosowane w analizie próbek środowiskowych. In Z problematyki Funkcjonowania Krajobrazów Nizinnych; Richling, A., Lechnio, J., Eds.; Wyd. Wydział Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego: Warszawa, Poland, 2005; pp. 55–76. [Google Scholar]
- das Graças, A.; Korn, M.; da Boa Morte, E.S.; dos Santos, D.C.M.B.; Castro, J.T.; Barbosa, J.T.P.; Teixeira, A.P.; Fernandes, A.P.; Welz, B.; dos Santos, W.P.C.; et al. Sample preparation for the determination of metals in food samples using spectroanalytical methods—A review. Appl. Spectrosc. Rev. 2008, 43, 67–92. [Google Scholar] [CrossRef]
- Al-Owaisi, M.; Al-Hadiwi, N.; Khan, S.A. GC–MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) Fiori leaves. Asian Pac. J. Trop. Biomed. 2014, 4, 964–970. [Google Scholar] [CrossRef]
- Khan, R.; Khan, M.A.; Waqas, M.; Khan, A.M.; Hussain, Z.; Khan, A.; Raza, M.A. Allelopathic potential of Silybum marianum L. against the seed germination of edible legumes. Pak. J. Weed Sci. Res. 2011, 17, 293. [Google Scholar]
- AOSA (Association of Official Seed Analysis). Seed vigour testing. In Handbook on Seed Testing; Anmol Publications Pvt. Ltd.: New Delhi, India, 1983. [Google Scholar]
- Orchard, T. Estimating the parameters of plant seedling emergence. Seed Sci. Technol. 1977, 5, 61–69. [Google Scholar]
- Ranal, M.A.; Santana, D.G. How and why to measure the germination process? Revista Brasil. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef]
- Coolbear, P.; Francis, A.; Grierson, D. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. J. Exper. Bot. 1984, 35, 1609–1617. [Google Scholar] [CrossRef]
- Lipniak, K.; Kliszcz, A. Allelopathic effect of goosefoot on germination and early stage growth of triticale and radish. AUPC Stud. Nat. 2020, 5, 110–128. [Google Scholar] [CrossRef]
- Szafraniec, R.; Możdżeń, K.; Barabasz-Krasny, B.; Zandi, P.; Wang, Y. Influence of volatile peppermint (Mentha ×piperita L.) compounds on germination and seedling of radish (Raphanus sativus L. var. radicula Pers.) growth. Not. Bot. Horti Agrobot. Cluj Napoca 2019, 47, 1277–1284. [Google Scholar] [CrossRef]
pH in H2O | NaCl [g/dm3] | Content of Available Nutrients [mg/dm3 of Soil] | ||||||
---|---|---|---|---|---|---|---|---|
N-NO3 Nitrate | N-NH4 Ammonium | P | K | Ca | Mg | Cl | ||
7.21 | 0.40 | 14 | 46 | 140 | 250 | 2500 | 142 | 28 |
No. | Compound | Ear—Relative Percentage [%] | Retention Time [min] | Stalk with Leaves—Relative Percentage [%] | Retention Time [min] |
---|---|---|---|---|---|
Aldehydes: | |||||
1. | 5-Hydroxyfurfural | 1.0 | 9.26 | 0.5 | 9.24 |
2. | Pentadecanal | 0.5 | 15.38 | 0.4 | 15.36 |
Alkanes and alkenes: | |||||
3. | Hexadecane | 0.8 | 11.56 | 0.4 | 11.56 |
4. | Nonadecane | 0.8 | 14.03 | <0.1 | 14.01 |
5. | Neophytadiene | 4.6 | 16.70 | 5.1 | 16.70 |
6. | Heneicosane | 1.3 | 19.24 | 0.2 | 19.24 |
7. | Tricosane | 2.1 | 21.02 | 0.6 | 21.02 |
8. | Tetracosene | 3.6 | 25.90 | 3.9 | 25.92 |
9. | Stigmasta-3,5-diene | 0.6 | 26.59 | 0.5 | 26.59 |
10. | Squalene | <0.1 | 25.31 | 1.2 | 25.31 |
Carboxylic acids and lactones: | |||||
11. | Benzoic acid | 1.0 | 8.26 | 0.2 | 8.26 |
12. | n-Tetradecanoic acid | 1.1 | 15.84 | 0.5 | 15.84 |
13. | n-Hexadecanoic acid | 22.7 | 19.93 | 18.8 | 19.99 |
14. | Linoelaidic acid | 38.1 | 19.62 | 25.6 | 19.67 |
15. | (R)-5,6,7,7a-Tetrahydro-4,4,7a-trimethyl-2(4H)-benzofuranone | <0.1 | 13.39 | 0.4 | 13.39 |
16. | 6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one | <0.1 | 16.08 | 0.4 | 16.08 |
Phenols and alcohols: | |||||
17. | Vanillin | 0.5 | 11.66 | 0.4 | 11.66 |
18. | 2,4-Ditertbutylphenol | 1.6 | 13.01 | 0.4 | 13.03 |
19. | Cyclodecanol | 1.4 | 15.15 | 1.0 | 15.15 |
20. | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 1.6 | 16.97 | 1.6 | 16.97 |
21. | 1-Hexacosanol | 1.0 | 26.40 | 7.3 | 26.40 |
22. | Butylated hydroxytoluene | <0.1 | 14.00 | 0.4 | 14.04 |
23. | Phytol | <0.1 | 19.20 | 1.8 | 19.24 |
24. | Behenic alcohol | 3.6 | 25.92 | 3.9 | 25.92 |
Sterols: | |||||
25. | Campesterol | 1.8 | 31.40 | 4.4 | 31.40 |
26. | γ-Sitosterol | 4.6 | 33.32 | 8.2 | 33.35 |
27. | β-Sitosterol | 3.3 | 32.54 | 7.8 | 32.58 |
28. | 3-β-Cholestan-4-en-3-ol | <0.1 | 29.50 | 0.6 | 29.50 |
29. | 3-β-Ergost-5-en-3-ol | 1.0 | 30.75 | 2.4 | 30.75 |
Others: | |||||
30. | N-butylbenzenesulfonamide (NBBS) | 0.8 | 16.21 | 0.2 | 16.21 |
31. | Diphenyl sulfone (DDS) | 0.5 | 17.73 | <0.1 | 17.73 |
32. | 6,10,14-Trimethylpentadecan-2-one (TMP) | <0.1 | 17.79 | 1.1 | 17.79 |
Extract Type (%) | MGT | U | GI | T50 | ||||
---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | |
Ear | ||||||||
Control | 2.27 b ±0.38 | 10.93 b ±0.12 | 1.71 a ±0.56 | 3.05 a ±0.04 | 13.64 a ±3.80 | 8.92 a ±0.68 | 1.69 b ±0.15 | 10.63 b ±0.07 |
2.5 | 2.96 a ±0.13 | 11.02 b ±0.30 | 1.88 a ±0.15 | 2.97 ab ±0.12 | 6.98 b ±0.39 | 6.65 ab ±2.35 | 2.34 a ±0.17 | 10.68 b ±0.26 |
5 | 3.02 a ±0.47 | 11.26 ab ±0.25 | 1.80 a ±0.04 | 2.92 ab ±0.11 | 6.55 b ±1.32 | 5.83 b ±0.60 | 2.31 a 0.17 | 10.98 ab ±0.30 |
7.5 | 2.76 ab ±0.15 | 11.75 a ±0.52 | 1.59 a ±0.21 | 2.67 b ±0.29 | 4.64 b ±1.70 | 2.31 c ±0.87 | 2.16 a ±0.20 | 11.47 a 0.45 |
Stalk with leaves | ||||||||
Control | 2.27 c ±0.38 | 10.93 b ±0.12 | 1.71 a ±0.56 | 3.05 a ±0.04 | 13.64 a ±3.80 | 8.92 a ±0.68 | 1.69 c ±0.15 | 10.63 b ±0.07 |
2.5 | 2.64 bc ±0.20 | 11.00 b ±0.16 | 1.93 a ±0.16 | 3.01 a ±0.04 | 7.96 b ±0.76 | 7.10 ab ±1.80 | 2.14 bc ±0.40 | 10.67 b ±0.18 |
5 | 3.02 ab ±0.38 | 11.18 ab ±0.48 | 1.71 a ±0.48 | 2.96 ab ±0.15 | 6.24 b ±0.20 | 5.92 b ±1.96 | 2.53 ab ±0.24 | 10.94 ab ±0.54 |
7.5 | 3.46 a ±0.47 | 11.87 a ±0.66 | 1.70 a 0.34 | 2.62 b ±0.35 | 3.99 b ±2.04 | 2.28 c ±0.84 | 2.91 a ±0.25 | 11.65 a ±0.64 |
Extract Type (%) | Fresh Mass (g) | Dry Mass (g) | Total Water Content (%) | |||
---|---|---|---|---|---|---|
A | B | A | B | A | B | |
Ear | ||||||
Control | 0.0059 b ±0.0010 | 0.0059 a ±0.0000 | 0.0010 ab ±0.0001 | 0.0003 c ±0.0000 | 83.1933 a ±3.2783 | 94.5942 a ±0.2602 |
2.5 | 0.0073 a ±0.0013 | 0.0057 a ±0.0013 | 0.0010 a ±0.0002 | 0.0005 ab ±0.0001 | 85.8796 a ±2.8015 | 91.9138 b ±1.0159 |
5 | 0.0059 b ±0.0004 | 0.0053 ab ±0.0009 | 0.0008 ab ±0.0001 | 0.0005 a ±0.0001 | 85.7143 a ±2.0797 | 89.9071 c ±2.8838 |
7.5 | 0.0043 c ±0.0007 | 0.0046 b ±0.0006 | 0.0007 b ±0.0002 | 0.0004 bc ±0.0001 | 83.3605 a ±3.1469 | 91.5094 bc ±0.5973 |
Stalk with leaves | ||||||
Control | 0.0059 a ±0.0010 | 0.0059 a ±0.0000 | 0.0010 a ±0.0001 | 0.0003 b ±0.0000 | 83.1933 a ±3.2783 | 94.5942 a ±0.2602 |
2.5 | 0.00572 a ±0.0005 | 0.0052 b ±0.0012 | 0.0010 a ±0.0001 | 0.0006 a ±0.0001 | 82.3205 a ±3.0180 | 88.5846 b ±1.3340 |
5 | 0.00492 a ±0.0005 | 0.0045 c ±0.0020 | 0.00082 ab ±0.0001 | 0.0006 a ±0.0001 | 83.3782 a ±1.6657 | 85.5712 c ±4.1885 |
7.5 | 0.00244 b ±0.0009 | 0.0043 c ±0.0002 | 0.00064 b ±0.0003 | 0.0006 a ±0.0000 | 69.3282 a ±19.1781 | 86.1026 c ±0.2433 |
Extracts | Festuca rubra | Trifolium repens cv. Grassland Huia | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ear | Stalk with Leaves | Ear | Stalk with Leaves | ||||||||||
Parameter | 2.5% | 5% | 7.5% | 2.5% | 5% | 7.5% | 2.5% | 5% | 7.5% | 2.5% | 5% | 7.5% | |
GP | |||||||||||||
MGT | |||||||||||||
U | |||||||||||||
GI | |||||||||||||
T50 | |||||||||||||
Length (whole seedling) | |||||||||||||
FM | |||||||||||||
DM | |||||||||||||
TWC | |||||||||||||
EL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barabasz-Krasny, B.; Tatoj, A.; Chyc, M.; Gruszka, W.; Zandi, P.; Stachurska-Swakoń, A. Chemical Basis for Determining the Allelopathic Potential of Invasive Plant Wall Barley (Hordeum murinum L. subsp. murinum). Molecules 2024, 29, 2365. https://doi.org/10.3390/molecules29102365
Barabasz-Krasny B, Tatoj A, Chyc M, Gruszka W, Zandi P, Stachurska-Swakoń A. Chemical Basis for Determining the Allelopathic Potential of Invasive Plant Wall Barley (Hordeum murinum L. subsp. murinum). Molecules. 2024; 29(10):2365. https://doi.org/10.3390/molecules29102365
Chicago/Turabian StyleBarabasz-Krasny, Beata, Agnieszka Tatoj, Marek Chyc, Wojciech Gruszka, Peiman Zandi, and Alina Stachurska-Swakoń. 2024. "Chemical Basis for Determining the Allelopathic Potential of Invasive Plant Wall Barley (Hordeum murinum L. subsp. murinum)" Molecules 29, no. 10: 2365. https://doi.org/10.3390/molecules29102365
APA StyleBarabasz-Krasny, B., Tatoj, A., Chyc, M., Gruszka, W., Zandi, P., & Stachurska-Swakoń, A. (2024). Chemical Basis for Determining the Allelopathic Potential of Invasive Plant Wall Barley (Hordeum murinum L. subsp. murinum). Molecules, 29(10), 2365. https://doi.org/10.3390/molecules29102365