Magnetic Persimmon Leaf Composite: Preparation and Application in Magnetic Solid-Phase Extraction of Pesticides in Water Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Fe3O4/Persimmon Leaf Magnetic Composite
2.1.1. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.1.2. X-ray Diffraction (XRD) Analysis
2.1.3. Vibrating Sample Magnetometer (VSM) Analysis
2.1.4. Specific Surface Area and Pore Structure (BET) Analysis
2.1.5. Scanning Electron Microscopy (SEM) Analysis
2.2. Adsorbent Performance
2.3. Study of Effective Parameters on Experimental
2.3.1. Adsorbent Amount
2.3.2. Extraction Time
2.3.3. Desorption Solvent Type and Volume
2.3.4. Aspiration Cycles in Desorption
2.3.5. Ionic Strength
2.3.6. Sample Solution pH
2.3.7. Reusability
2.4. Adsorption Isotherms
2.5. Method Validation
2.6. Application of MSPE Based on Fe3O4/Persimmon Leaf Magnetic Composite to Real Water Samples
2.7. Comparison of the Developed Method with Previously Reported Methods
3. Materials and Methods
3.1. Reagents and Materials
3.2. Instrumentation
3.3. Preparation of Persimmon Leaf Particles
3.4. Preparation of Fe3O4/Persimmon Leaf Magnetic Composites
3.5. Preparation of Standard Solution and Water Samples
3.6. MSPE Procedure
3.7. Chromatographic Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trimnell, D.; Shasha, B.S.; Doane, W.M. Release of trifluralin from starch xanthide encapsulated formulations. J. Agric. Food Chem. 1981, 29, 637–640. [Google Scholar] [CrossRef]
- Zeglen, S.; Pronos, J.; Merler, H. Silvicultural management of white pines in western North America. For. Pathol. 2010, 40, 347–368. [Google Scholar] [CrossRef]
- Nowak, J.T.; McCravy, W.K.; Fettig, J.C.; Berisford, C.W. Susceptibility of adult hymenopteran parasitoids of the Nantucket pine tip moth (Lepidoptera: Tortricidae) to broad-spectrum and biorational insecticides in a laboratory study. J. Econ. Entomol. 2001, 94, 1122–1127. [Google Scholar] [CrossRef]
- Celeiro, M.; Facorro, R.; Dagnac, T.; Llompart, M. Simultaneous determination of trace levels of multiclass fungicides in natural waters by solid—Phase microextraction—Gas chromatography-tandem mass spectrometry. Anal. Chim. Acta 2018, 1020, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Celeiro, M.; Vazquez, L.; Sergazina, M.; Docampo, S.; Dagnac, T.; Vilar, V.J.P.; Llompart, M. Turning cork by-products into smart and green materials for solid-phase extraction—Gas chromatography tandem mass spectrometry analysis of fungicides in water. J. Chromatogr. A 2020, 1628, 461437. [Google Scholar] [CrossRef]
- Xie, W.; Zhao, J.; Zhu, X.; Chen, S.; Yang, X. Pyrethroid bioaccumulation in wild fish linked to geographic distribution and feeding habit. J. Hazard. Mater. 2022, 430, 128470. [Google Scholar] [CrossRef]
- Cui, J.; Tian, S.; Gu, Y.; Wu, X.; Wang, L.; Wang, J.; Chen, X.; Meng, Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. Chemosphere 2023, 340, 139825. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Song, X.; Li, F.; Yan, T.; Tian, F.; Ren, L.; Jiang, C.; Wang, Q.; Zhang, S. Research progress in the sample pretreatment techniques and advanced quick detection methods of pesticide residues. Process Saf. Environ. Prot. 2022, 165, 610–622. [Google Scholar] [CrossRef]
- Lin, S.; Zhao, Z.; Lv, Y.; Shen, S.; Liang, S. Recent advances in porous organic frameworks for sample pretreatment of pesticide and veterinary drug residues: A review. Analyst 2021, 146, 7394–7417. [Google Scholar] [CrossRef]
- Ötles, S.; Kartal, C. Solid-phase extraction (SPE): Principles and applications in food samples. Acta Sci. Pol. Technol. Aliment. 2016, 15, 5–15. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Cui, X.; Pan, C.; Zhang, A.; Chen, F. A review of sample preparation methods for the pesticide residue analysis in foods. Open Chem. 2012, 10, 900–925. [Google Scholar] [CrossRef]
- Wierucka, M.; Biziuk, M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. TrAC Trends Anal. Chem. 2014, 59, 50–58. [Google Scholar] [CrossRef]
- Wu, A.; Zhao, X.; Wang, J.; Tang, Z.; Zhao, T.; Niu, L.; Yu, W.; Yang, C.; Fang, M.; Lv, H.; et al. Application of solid-phase extraction based on magnetic nanoparticle adsorbents for the analysis of selected persistent organic pollutants in environmental water: A review of recent advances. Crit. Rev. Environ. Sci. Technol. 2021, 51, 44–112. [Google Scholar] [CrossRef]
- Jalili, V.; Barkhordari, A.; Ghiasvand, A. A comprehensive look at solid-phase microextraction technique: A review of reviews. Microchem. J. 2020, 152, 104319. [Google Scholar] [CrossRef]
- Kataoka, H. Current developments and future trends in solid-phase microextraction techniques for pharmaceutical and biomedical analyses. Anal. Sci. 2011, 27, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Fedotov, P.S.; Malofeeva, G.I.; Savonina, E.Y.; Spivakov, B.Y. Solid-phase extraction of organic substances: Unconventional methods and approaches. J. Anal. Chem. 2019, 74, 205–212. [Google Scholar] [CrossRef]
- Kataoka, H.; Nakayama, D. Online in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry for automated analysis of four sulfated steroid metabolites in saliva samples. Molecules 2022, 27, 3225. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Namiegnik, J.; Plotka-Wasylka, J. Direct solid phase microextraction combined with gas chromatography–mass spectrometry for the determination of biogenic amines in wine. Talanta 2018, 183, 276–282. [Google Scholar] [CrossRef]
- Ishizaki, A.; Ozawa, K.; Kataoka, H. Simultaneous analysis of carcinogenic N-nitrosamine impurities in metformin tablets using on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2023, 1710, 464416. [Google Scholar] [CrossRef]
- Da Silva Sousa, J.; Do Nascimento, H.O.; De Oliveira Gomes, H.; Do Nascimento, R.F. Pesticide residues in groundwater and surface water: Recent advances in solid-phase extraction and solid-phase microextraction sample preparation methods for multiclass analysis by gas chromatography-mass spectrometry. Microchem. J. 2021, 168, 106359. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Y.; Yan, M.; Wang, Q.; Xu, H.; Wang, X.; Zhou, H.; Hao, Y.; Wang, M. Fabrication of iron oxide@MOF-808 as a sorbent for magnetic solid phase extraction of benzoylurea insecticides in tea beverages and juice samples. J. Chromatogr. A 2020, 1615, 460766. [Google Scholar] [CrossRef] [PubMed]
- Safarik, I.; Safarikova, M. Use of magnetic techniques for the isolation of cells. J. Chromatogr. B Biomed. Sci. Appl. 1999, 722, 33–53. [Google Scholar] [CrossRef] [PubMed]
- Spietelun, A.; Marcinkowski, L.; De La Guardia, M.; Namiesnik, J. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J. Chromatogr. A. 2013, 1321, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wang, L.; Hu, L.; Li, Y.; Luo, D.; Mei, S. Recent applications of magnetic composites as extraction adsorbents for determination of environmental pollutants. TrAC Trends Anal. Chem. 2019, 119, 115611. [Google Scholar] [CrossRef]
- Li, M.; Liu, W.; Meng, X.; Li, S.; Wang, Q.; Guo, Y.; Wu, Y.; Hao, L.; Yang, X.; Wang, Z.; et al. Facile synthesis of magnetic hypercrosslinked polymer for the magnetic solid-phase extraction of benzoylurea insecticides from honey and apple juice samples. Food Chem. 2022, 395, 133596. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.H.; Yahaya, N.; Mohamad, S.; Kamaruzaman, S.; Osman, H.; Nishiyama, N.; Hirota, Y. Synthesis of oil palm empty fruit bunch-based magnetic-carboxymethyl cellulose nanofiber composite for magnetic solid-phase extraction of organophosphorus pesticides in environmental water samples. Microchem. J. 2022, 183, 108045. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, D.; Li, Q.; Chen, W.; Li, Q.; Zhang, Q.; Liang, N. Dummy-surface molecularly imprinted polymers based on magnetic graphene oxide for selective extraction and quantification of pyrethroids pesticides in fruit juices. Microchem. J. 2020, 159, 105411. [Google Scholar] [CrossRef]
- Dong, J.; Feng, Z.A.; Kang, S.S.; An, M.; Wu, G.D. Magnetic solid-phase extraction based on magnetic amino modified multiwalled carbon nanotubes for the fast determination of seven pesticide residues in water samples. Anal. Methods 2020, 12, 2747–2756. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, C.; Liu, C.; Li, X.; Cai, Y.; Wang, M.; Chu, D.; Liu, L.; Meng, T.; Chen, Z. Magnetic tubular nickel@silica-graphene nanocomposites with high preconcentration capacity for organothiophosphate pesticide removal in environmental water: Fabrication, magnetic solid-phase extraction, and trace detection. J. Hazard. Mater. 2023, 457, 131788. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Zhang, Z.; Wu, Q.; Wang, Z. Magnetic biomass activated carbon-based solid-phase extraction coupled with high performance liquid chromatography for the determination of phenylurea herbicides in bottled rose juice and water samples. Food Anal. Methods. 2016, 9, 80–87. [Google Scholar] [CrossRef]
- Xie, C.; Wei, S.; Chen, D.; Lan, W.; Yan, Z.; Wang, Z. Preparation of magnetic ion imprinted polymer with waste beer yeast as functional monomer for Cd (II) adsorption and detection. RSC Adv. 2019, 9, 23474–23483. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Bai, J.; He, P.; Zeng, J. One pot synthesis of nanofiber-coated magnetic composites as magnetic dispersive solid-phase extraction adsorbents for rapid determination of tetracyclines in aquatic food products. Molecules 2023, 28, 7421. [Google Scholar] [CrossRef] [PubMed]
- Karrat, A.; Amine, A. Solid-phase extraction combined with a spectrophotometric method for determination of Bisphenol-A in water samples using magnetic molecularly imprinted polymer. Microchem. J. 2021, 168, 106496. [Google Scholar] [CrossRef]
- Senosy, I.A.; Lu, Z.; Zhou, D.; Abdelrahman, T.M.; Chen, M.; Zhuang, L.; Liu, X.; Cao, Y.; Li, J.; Yang, Z. Construction of a magnetic solid-phase extraction method for the analysis of azole pesticides residue in medicinal plants. Food Chem. 2022, 386, 132743. [Google Scholar] [CrossRef] [PubMed]
- Ahorsu, R.; Medina, F.; Constantí, M. Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: A review. Energies 2018, 11, 3366. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Doval Miñarro, M.D.; Angosto, J.M.; Fernández-Lledó, J.; Obón, J.M. Adsorptive and surface characterization of mediterranean agrifood processing wastes: Prospection for pesticide removal. Agronomy 2021, 11, 561. [Google Scholar] [CrossRef]
- Vieira, Y.; Dos Santos, J.M.N.; Georgin, J.; Oliveira, M.L.S.; Pinto, D.; Dotto, G.L. An overview of forest residues as promising low-cost adsorbents. Gondwana Res. 2022, 110, 393–420. [Google Scholar] [CrossRef]
- Schwantes, D.; Goncalves, A.C.; Fuentealba, D.; Carneiro, M.F.H.; Tarley, C.R.T.; Prete, M.C. Removal of chlorpyrifos from water using biosorbents derived from cassava peel, crambe meal, and pinus bark. Chem. Eng. Res. Des. 2022, 188, 142–165. [Google Scholar] [CrossRef]
- Borukhova, S. Biomass for sustainable applications: Pollution remediation and energy. Green Process. Synth. 2014, 3, 305–306. [Google Scholar] [CrossRef]
- Behbahan, A.K.; Mahdavi, V.; Roustaei, Z.; Bagheri, H. Preparation and evaluation of various banana-based biochars together with ultra-high performance liquid chromatography-tandem mass spectrometry for determination of diverse pesticides in fruiting vegetables. Food Chem. 2021, 360, 130085. [Google Scholar] [CrossRef] [PubMed]
- Nazir, N.A.M.; Raoov, M.; Mohamad, S. Spent tea leaves as an adsorbent for micro-solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from water and food samples prior to GC-FID analysis. Microchem. J. 2020, 159, 105581. [Google Scholar] [CrossRef]
- Hang, N.; Yang, Y.; Zang, Y.; Zhao, W.; Tao, J.; Li, S. Magnetic cork composites as biosorbents in dispersive solid-phase extraction of pesticides in water samples. Anal. Methods 2023, 15, 3510–3521. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Moon, H.K.; Kim, J.K. Antioxidant properties of Korean major persimmon (Diospyros Kaki) leaves. Food Sci. Biotechnol. 2018, 27, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.R.; Han, A.R.; Lim, T.G.; Kang, J.H.; Hong, H.D. Discrimination of structural and immunological features of polysaccharides from persimmon leaves at different maturity stages. Molecules 2019, 24, 356. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.L.; Lin, J.T.; Lin, H.L.; Liao, P.L.; Wu, P.J.; Yang, D.J. Phenolic compositions and antioxidant properties of leaves of eight persimmon varieties harvested in different periods. Food Chem. 2019, 289, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Choi, H.J. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution. J. Environ. Manag. 2018, 209, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.W.; Choi, H.J. Application of hybrid bead, persimmon leaf and chitosan for the treatment of aqueous solution contaminated with toxic heavy metal ions. Water Sci. Technol. 2018, 78, 837–847. [Google Scholar] [CrossRef]
- Bacelo, H.A.M.; Santos, S.C.R.; Botelho, C.M.S. Tannin-based biosorbents for environmental applications—A review. Chem. Eng. J. 2016, 303, 575–587. [Google Scholar] [CrossRef]
- Pangeni, B.; Paudyal, H.; Inoue, K.; Ohto, K.; Kawakita, H.; Alam, S. Preparation of natural cation exchanger from persimmon waste and its application for the removal of cesium from water. Chem. Eng. J. 2014, 242, 109–116. [Google Scholar] [CrossRef]
- Mohammadkhani, F.; Montazer, M.; Latifi, M. Microwave absorption characterization and wettability of magnetic nano iron oxide/recycled PET nanofibers web. J. Text. Inst. 2019, 110, 989–999. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, W.; Hang, N.; Zhao, W.; Lu, P.; Li, S. On-site sample pretreatment: Natural deep eutectic solvent-based multiple air-assisted liquid–liquid microextraction. J. Chromatogr. A 2022, 1675, 463136. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wu, P.; Liu, J.; Rehman, S.; Ahmed, Z.; Ruan, B.; Zhu, N. Batch interaction of emerging tetracycline contaminant with novel phosphoric acid activated corn straw porous carbon: Adsorption rate and nature of mechanism. Environ. Res. 2020, 181, 108899. [Google Scholar] [CrossRef] [PubMed]
- Afshin, S.; Rashtbari, Y.; Vosough, M.; Dargahi, A.; Fazlzadeh, M.; Behzad, A.; Yousefi, M. Application of box–behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe3O4 loaded on activated carbon prepared from alga: Kinetics and equilibrium study. J. Water Process Eng. 2021, 42, 102113. [Google Scholar] [CrossRef]
- Niri, M.V.; Mahvi, A.H.; Alimohammadi, M.; Shirmardi, M.; Golastanifar, H.; Mohammadi, M.J.; Naeimabadi, A.; Khishdost, M. Removal of natural organic matter (NOM) from an aqueous solution by NaCl and surfactant-modified clinoptilolite. J. Water Health 2015, 13, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Marrakchi, F.; Yuan, C.; Cheng, X.; Jiang, D.; Zafar, F.F.; Fu, Y.; Wang, S. Adsorption modeling, thermodynamics, and DFT simulation of tetracycline onto mesoporous and high-surface-area NaOH-activated macroalgae carbon. J. Hazard. Mater. 2022, 425, 127887. [Google Scholar] [CrossRef]
- López-Feria, S.; Cárdenas, S.; Valcárcel, M. One step carbon nanotubes-based solid-phase extraction for the gas chromatographic–mass spectrometric multiclass pesticide control in virgin olive oils. J. Chromatogr. A 2009, 1216, 7346–7350. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Mohebbi, A.; Izadyar, M.; Mogaddam, M.R.A.; Pezhhanfar, S. Facile preparation of nitrogen–doped amorphous carbon nanocomposite as an efficient sorbent in dispersive solid phase extraction. Int. J. Environ. Anal. Chem. 2023, 103, 1020–1038. [Google Scholar] [CrossRef]
- Singh, M.; Pandey, A.; Singh, S.; Singh, S.P. Iron nanoparticles decorated hierarchical carbon fiber forest for the magnetic solid-phase extraction of multi-pesticide residues from water samples. Chemosphere 2021, 282, 131058. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, R.; Xiao, R.; Wu, Q.; Wang, C.; Wang, Z. Preparation of a magnetic porous carbon with hierarchical structures from waste biomass for the extraction of some carbamates. J. Sep. Sci. 2017, 40, 2451–2458. [Google Scholar] [CrossRef]
Langmuir Model | Freundlich Model | ||||||
---|---|---|---|---|---|---|---|
Qm (mg g−1) | KL (L mg−1) | RL | R2 | KF (mg g−1 L1/n mg−1/n) | 1/n | R2 | |
Trifluralin | 73.75 | 0.4209 | 0.008–0.192 | 0.9780 | 21.00 | 0.279 | 0.9074 |
Triadimefon | 58.07 | 0.0903 | 0.036–0.525 | 0.9742 | 9.42 | 0.362 | 0.8880 |
Permethrin | 65.35 | 0.1346 | 0.024–0.427 | 0.9453 | 20.21 | 0.223 | 0.8643 |
Fenvalerate | 63.82 | 0.1926 | 0.017–0.342 | 0.9480 | 13.46 | 0.329 | 0.8763 |
Analyte | Linear Range (μg L−1) | Linear Equation | R2 | LOD (μg L−1) | LOQ (μg L−1) | RSD (%) Intra-Day (n = 3) | RSD (%) Inter-Day (n = 6) | Extraction Recovery (%) |
---|---|---|---|---|---|---|---|---|
Trifluralin | 0.75–100 | y = 341.33 + 216.54 | 0.9994 | 0.25 | 0.75 | 3.1 | 4.3 | 90 |
Triadimefon | 1.15–100 | y = 414.38 + 192.73 | 0.999 | 0.38 | 1.15 | 4.3 | 4.2 | 80 |
Permethrin | 3.4–1500 | y = 79.979 + 223.08 | 0.9998 | 1.1 | 3.4 | 3.3 | 3.3 | 85 |
Fenvalerate | 2.2–1500 | y = 80.694 + 880.11 | 0.9996 | 0.73 | 2.2 | 2.7 | 4.5 | 87 |
Analyte | Spiked Level (μg L−1) | Olympic Forest Park | Chaoyang Park | BFU Campus | |||
---|---|---|---|---|---|---|---|
RR (%) | RSD (%) | RR (%) | RSD (%) | RR (%) | RSD (%) | ||
Trifluralin | 20 | 82 | 4.1 | 82 | 1.4 | 84 | 2.3 |
200 | 82 | 8.0 | 81 | 4.0 | 81 | 5.2 | |
300 | 91 | 3.1 | 89 | 2.8 | 86 | 3.7 | |
Triadimefon | 20 | 83 | 4.7 | 83 | 4.6 | 86 | 6.4 |
200 | 80 | 2.0 | 80 | 3.2 | 81 | 2.3 | |
300 | 89 | 3.5 | 88 | 1.5 | 92 | 5.1 | |
Permethrin | 20 | 89 | 4.5 | 82 | 7.1 | 83 | 4.6 |
200 | 93 | 5.3 | 93 | 3.4 | 95 | 3.1 | |
300 | 89 | 5.1 | 85 | 2.5 | 88 | 2.5 | |
Fenvalerate | 20 | 88 | 4.4 | 82 | 2.6 | 91 | 6.7 |
200 | 93 | 2.8 | 93 | 2.8 | 94 | 2.2 | |
300 | 86 | 3.3 | 91 | 5.8 | 86 | 4.1 |
Method | Detection | Extraction Solvents | Sample | LOD (μg L−1) | Total Sample Preparation (min) | Extraction Recovery (%) | References |
---|---|---|---|---|---|---|---|
SPE a | GC-MS | Carbon nanotubes | Olive oil | 1.5–3.0 | 45 | 79–105 | [58] |
DSPE–DLLME b | GC–FID | L-cysteine and sorbitol | Fruit juice | 0.49–0.98 | 7 | 68-92 | [59] |
MSPE c | GC-ECD | Carbon nanofibers | Water | 1.44–5.15 | 16 | 70.0–120.6 | [60] |
MSPE | HLPC | Magnetic corn stalk biochar | Water and zucchini | 0.03 (ng/g); 0.2–0.5 (ng/g) | 20 | 86–113 | [61] |
MSPE | GC-ECD | Magnetic cork composites | Water | 0.3–2.02 | 15 | 46–84 | [44] |
MSPE | GC-ECD | Magnetic persimmon leaf composites | Water | 0.25–1.1 | 10 | 80–94 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, Y.; Hang, N.; Sui, J.; Duan, S.; Zhao, W.; Tao, J.; Li, S. Magnetic Persimmon Leaf Composite: Preparation and Application in Magnetic Solid-Phase Extraction of Pesticides in Water Samples. Molecules 2024, 29, 45. https://doi.org/10.3390/molecules29010045
Zang Y, Hang N, Sui J, Duan S, Zhao W, Tao J, Li S. Magnetic Persimmon Leaf Composite: Preparation and Application in Magnetic Solid-Phase Extraction of Pesticides in Water Samples. Molecules. 2024; 29(1):45. https://doi.org/10.3390/molecules29010045
Chicago/Turabian StyleZang, Yuyue, Na Hang, Jiale Sui, Senlin Duan, Wanning Zhao, Jing Tao, and Songqing Li. 2024. "Magnetic Persimmon Leaf Composite: Preparation and Application in Magnetic Solid-Phase Extraction of Pesticides in Water Samples" Molecules 29, no. 1: 45. https://doi.org/10.3390/molecules29010045
APA StyleZang, Y., Hang, N., Sui, J., Duan, S., Zhao, W., Tao, J., & Li, S. (2024). Magnetic Persimmon Leaf Composite: Preparation and Application in Magnetic Solid-Phase Extraction of Pesticides in Water Samples. Molecules, 29(1), 45. https://doi.org/10.3390/molecules29010045