The Impact of Furfural on the Quality of Meads
Abstract
:1. Introduction
2. Results
2.1. The Influence of Heating Mead Wort on the Furfural Formation
2.2. Fermentation of Mead Worts Supplemented with Furfural
2.3. Young Meads’ Parameters
3. Discussion
4. Materials and Methods
4.1. Biological Material
4.2. Experimental Design
4.2.1. Effect of Heating on Furfural Concentration
4.2.2. Effect of Furfural Concentration on Mead Fermentation
4.2.3. Control of the Fermentation Process
4.3. Analytical Methods
4.3.1. Physicochemical Parameters
4.3.2. Determination of Furfural and Furfural Alcohol Content Using HS-SPME-GC-MS
Sample Preparation
TOF-MS Chromatographic Separation Conditions
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iglesias, A.; Pascoal, A.; Choupina, A.B.; Carvalho, C.A.; Feás, X.; Estevinho, L.M. Developments in the fermentation process and quality improvement strategies for mead production. Molecules 2014, 19, 12577–12590. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Regulation (EU) No 729/2008 of 28 July 2008 Entering Certain Designations in the Register of Traditional Specialities Guaranteed (Czwórniak (TSG), Dwójniak (TSG), Półtorak (TSG), Trójniak (TSG)); European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Ramalhosa, E.; Gomes, T.; Pereira, A.P.; Dias, T.; Estevinho, L.M. Mead production: Tradition versus modernity. In Advances in Food and Nutrition Research; Jackson, R.S., Ed.; Academic Press: Burlington, VA, USA, 2011; pp. 101–118. [Google Scholar]
- Martini, S.; Ricci, M.; Bonechi, C.; Trabalzini, L.; Santucci, A.; Rossi, C. In vivo 13C-NMR and modelling study of metabolic yield response to ethanol stress in a wild-type strain of Saccharomyces cerevisiae. FEBS Lett. 2004, 564, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Erasmus, D.J.; Cliff, M.; Van Vuuren, H.J.J. Impact of yeast strain on the production of acetic acid, glycerol, and the sensory attributes of icewine. Am. J. Enol. Vitic. 2004, 55, 371–378. [Google Scholar] [CrossRef]
- Sroka, P.; Tuszyński, T. Changes in organic acid contents during mead wort fermentation. Food Chem. 2007, 104, 1250–1257. [Google Scholar] [CrossRef]
- Gupta, J.K.; Sharma, R. Production technology and quality characteristics of mead and fruit-honey wines: A review. Nat. Prod. Radiance 2009, 8, 345–355. [Google Scholar]
- Mendes-Ferreira, A.; Cosme, F.; Barbosa, C.; Falco, V.; Ines, A.; Mendes-Faia, A. Optimization of honey-must preparation ad alcoholic fermentation by Saccharomyces cerevisiae for mead production. Int. J. Food Microbiol. 2010, 144, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Mead production: Effect of nitrogen supplementation on growth, fermentation profile and aroma formation by yeasts in mead fermentation. J. Inst. Brew. 2015, 121, 122–128. [Google Scholar] [CrossRef]
- Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Improvement of mead fermentation by honey-must supplementation. J. Inst. Brew. 2015, 121, 405–410. [Google Scholar] [CrossRef]
- O’Connor-Cox, E.S.C.; Ingledew, W.M. Alleviation of the effects of nitrogen limitation in high gravity worts through increased inoculation rates. J. Ind. Microbiol. 1991, 7, 89–96. [Google Scholar] [CrossRef]
- McConnell, D.S.; Schramm, K.D. Mead success: Ingredients, processes and techniques. Zymurgy 1995, 4, 33–39. [Google Scholar]
- Alvarez-Suarez, J.M.; Tulipani, S.; Romandini, S.; Bertoli, E.; Battino, M. Contribution of honey in nutrition and human health: A review. Med. J. Nutrition. Metab. 2010, 3, 15–23. [Google Scholar] [CrossRef]
- Cabral, M.G.; Viegas, C.A.; Sá-Correia, I. Mechanisms underlying the acquisition of resistance to octanoic-acid-induced-death following exposure of Saccharomyces cerevisiae to mild stress imposed by octanoic acid or ethanol. Arch. Microbiol. 2001, 175, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Sroka, P.; Satora, P. The influence of hydrocolloids on mead wort fermentation. Food Hydrocoll. 2017, 63, 233–239. [Google Scholar] [CrossRef]
- Sroka, P.; Satora, P.; Tarko, T.; Duda-Chodak, A. The influence of yeast immobilization on selected parameters of young meads. J. Inst. Brew. 2017, 123, 289–295. [Google Scholar] [CrossRef]
- Roldán, A.; Muiswinkel, G.C.J.; Lasanta, C.; Palacios, V.; Caro, I. Influence of pollen addition on mead elaboration: Physicochemical and sensory characteristics. Food Chem. 2011, 126, 574–582. [Google Scholar] [CrossRef]
- Qureshi, N.; Tamhane, D.V. Production of mead by immobilized cells of Hansenula anomala. Appl. Microbiol. Biotechnol. 1987, 27, 27–30. [Google Scholar] [CrossRef]
- Pereira, A.P.; Mendes-Ferreira, A.; Estevinho, L.M.; Mendes-Faia, A. Mead’s production: Fermentative performance of yeasts entrapped in different concentrations of alginate. J. Inst. Brew. 2014, 120, 575–580. [Google Scholar]
- Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Effect of Saccharomyces cerevisiae cells immobilisation on mead production. LWT 2014, 56, 21–30. [Google Scholar] [CrossRef]
- Bednarek, M.; Szwengiel, A. Distinguishing between saturated and unsaturated meads based on their chemical characteristics. LWT 2020, 133, 109962. [Google Scholar] [CrossRef]
- Kretavičius, J.; Kurtinaitienė, B.; Račys, J.; Čeksterytė, V. Inactivation of glucose oxidase during heat-treatment de-crystallization of honey. Žemdirbystė=Agriculture 2010, 97, 115–122. [Google Scholar]
- Lambert, R.J.; Stratford, M. Weak-acid preservatives: Modelling microbial inhibition and response. J. Appl. Microbiol. 1999, 86, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Czabaj, S.; Kawa-Rygielska, J.; Kucharska, A.Z.; Kliks, J. Effects of mead wort heat treatment on the mead fermentation process and antioxidant activity. Molecules 2017, 22, 803. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, M.; Granvogl, M. Effect of wort boiling on volatiles formation and sensory properties of mead. Molecules 2022, 27, 710. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.; Łukasiewicz, M.; Duda-Chodak, A.; Zięć, G. 5-Hydroxymethyl-2-furfural (HMF)—Heat-induced formation, occurrence in food and biotransformation—A Review. Pol. J. Food Nutr. Sci. 2013, 63, 207–225. [Google Scholar] [CrossRef]
- Abalos, D.; Vejarano, R.; Morata, A.; González, C.; Suárez-Lepe, J.A. The use of furfural as a metabolic inhibitor for reducing the alcohol content of model wines. Eur. Food Res. Technol. 2011, 232, 663–669. [Google Scholar] [CrossRef]
- Boyer, L.J.; Vega, J.L.; Klasson, K.T.; Clausen, E.C.; Gaddy, J.L. The effects of furfural on ethanol production by Saccharomyces cerevisiae in batch culture. Biomass Bioenergy 1992, 3, 41–48. [Google Scholar] [CrossRef]
- Klinke, H.B.; Thomsen, A.B.; Ahring, B.K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 2004, 66, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, N.; Bhatnagar, R.; Viswanathan, L. Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur. J. Microbiol. Biotechnol. 1981, 11, 226–228. [Google Scholar] [CrossRef]
- Pienkos, T.; Zhang, M. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 2009, 16, 743–762. [Google Scholar] [CrossRef]
- Chandel, A.K.; Silva, S.S.; Singh, O.V. Detoxification of lignocellulose hydrolysates: Biochemical and metabolic engineering toward white biotechnology. Bioenerg. Res. 2013, 6, 388–401. [Google Scholar] [CrossRef]
- Modig, T.; Liden, G.; Taherzadeh, M.J. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 2002, 363, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, E.; Almeida, J.S.; Hahn-Hagerdal, B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol. Bioeng. 1998, 62, 447–454. [Google Scholar] [CrossRef]
- Allen, S.A.; Clark, W.; McCaffery, J.M.; Cai, Z.; Lanctot, A.; Slininger, P.J.; Liu, Z.L.; Gorsich, S.W. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 2010, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Ask, M.; Bettiga, M.; Mapelli, V.; Olsson, L. The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol. Biofuels 2013, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Srimeena, N.; Gunasekaran, S.; Murugesan, R. Screening of yeast from honey for mead production. Madras Agric. J. 2013, 100, 858–861. [Google Scholar]
- Almeida, J.R.M.; Bertilsson, M.; Gorwa-Grauslund, M.F.; Gorsich, S.; Lidén, G. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 2009, 82, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Villa, G.P.; Bartoli, R.; Lopez, R.; Guerra, M.; Enrique, M.; Penas, M.; Rodriquez, E.; Redondo, D.; Iglesias, I.; Diaz, M. Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae. Acta Biotechnol. 1992, 12, 509–512. [Google Scholar] [CrossRef]
- Villegas, M.E.; Villa, P.; Guerra, M.; Rodríguez, E.; Redondo, D.; Martínez, A. Conversion of furfural into furfuryl alcohol by Saccharomyces cerevisiae. Acta. Biotechnol. 1992, 12, 351–354. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Gustaffson, L.; Niklasson, C.; Lidén, G. Conversion of furfural on aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J. Biosci. Bioeng. 1999, 87, 169–174. [Google Scholar] [CrossRef]
- Mochizuki, N.; Kitabatake, K. Analysis of 1-(2-furyl)propane-1,2-diol, a furfural metabolite in beer. J. Ferment. Bioeng. 1997, 83, 401–403. [Google Scholar] [CrossRef]
- Murata, M.; Totsuka, H.; Ono, H. Browning of furfural and amino acids, and a novel yellow compound, furpipate, formed from lysine and furfural. Biosci. Biotechnol. Biochem. 2007, 71, 1717–1723. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Niklasson, C.; Lidén, G. Acetic acid—Friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae? Chem. Eng. Sci. 1997, 52, 2653–2659. [Google Scholar] [CrossRef]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z.; Piórecki, N. Characteristics of biologically active compounds in Cornelian cherry meads. Molecules 2018, 23, 2024. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2023. [Google Scholar]
- Plutowska, B.; Chmiel, T.; Dymerski, T.; Wardencki, W. A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food Chem. 2011, 126, 1288–1298. [Google Scholar] [CrossRef]
Amount of Furfural Added to the Wort (mg/L) | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 5 | 10 | 50 | 100 | ||
Ethanol | (% v/v) | 13.0 ± 0.4 a 1 | 13.4 ± 0.2 ab | 14.3 ± 0.3 b | 13.7 ± 0.4 ab | 13.6 ± 0.2 ab | 13.6 ± 0.7 ab | 13.6 ± 0.8 ab |
Extract | (g/L) | 158 ± 3 a | 152 ± 8 a | 146 ± 5 a | 152 ± 2 a | 157 ± 1 a | 147 ± 13 a | 163 ± 9 a |
Titratable acidity | (g/L) | 3.4 ± 0.1 a | 3.4 ± 0.1 a | 3.6 ± 0.1 a | 3.6 ± 0.1 a | 3.7 ± 0.1 a | 3.6 ± 0.1 a | 3.6 ± 0.1 a |
pH | 3.32 ± 0.04 a | 3.37 ± 0.03 a | 3.34 ± 0.03 a | 3.46 ± 0.11 a | 3.52 ± 0.04 a | 3.38 ± 0.01 a | 3.38 ± 0.01 a | |
Volatile acidity | (g/L) | 1.3 ± 0.1 a | 1.2 ± 0.1 a | 1.4 ± 0.1 a | 1.4 ± 0.1 a | 1.4 ± 0.1 a | 1.2 ± 0.2 a | 1.3 ± 0.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sroka, P.; Tarko, T.; Duda, A. The Impact of Furfural on the Quality of Meads. Molecules 2024, 29, 29. https://doi.org/10.3390/molecules29010029
Sroka P, Tarko T, Duda A. The Impact of Furfural on the Quality of Meads. Molecules. 2024; 29(1):29. https://doi.org/10.3390/molecules29010029
Chicago/Turabian StyleSroka, Paweł, Tomasz Tarko, and Aleksandra Duda. 2024. "The Impact of Furfural on the Quality of Meads" Molecules 29, no. 1: 29. https://doi.org/10.3390/molecules29010029
APA StyleSroka, P., Tarko, T., & Duda, A. (2024). The Impact of Furfural on the Quality of Meads. Molecules, 29(1), 29. https://doi.org/10.3390/molecules29010029