Effect of pH on the Poly(acrylic acid)/Poly(vinyl alcohol)/Lysozyme Complexes Formation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Interactions Investigation by Turbidimetry
2.2. Complexes Investigation by FTIR
2.3. Zeta Potential Data
2.4. PAA–PVA Interactions Investigation by Rheological Measurements
2.5. Lys–PAA and Lys–PVA Interactions Investigation by Molecular Dynamics Simulation
3. Experimental Section
3.1. Materials
3.2. Samples Preparation
3.3. Analysis Methods
3.4. Preparation of Structures for Simulation
3.5. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, G.M.; Lin, S.J.; Yang, C.C. Preparation and Characterization of PVA/PAA Membranes for Solid Polymer Electrolytes. J. Membr. Sci. 2006, 275, 127–133. [Google Scholar] [CrossRef]
- Pahnavar, Z.; Ghaemy, M.; Naji, L.; Hasantabar, V. Self-Extinguished and Flexible Cation Exchange Membranes Based on Modified K-Carrageenan/PVA Double Network Hydrogels for Electrochemical Applications. Int. J. Biol. Macromol. 2023, 231, 123253. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Z.; Liu, L.; Gao, M.; Han, Z. A Stable Metal-Organic Framework Nanofibrous Membrane as Photocatalyst for Simultaneous Removal of Methyl Orange and Formaldehyde from Aqueous Solution. Colloids Surf. A Physicochem. Eng. 2021, 617, 126359. [Google Scholar] [CrossRef]
- Choudhury, R.R.; Gohil, J.M.; Dutta, K. Eco-Friendly Method for Preparation of Cross-Linked PVA/PAA Thin Films and Membranes Thereof for Water Treatment. Iran. Polym. J. 2022, 31, 1537–1550. [Google Scholar] [CrossRef]
- Moon, Y.-E.; Jung, G.; Yun, J.; Kim, H.-I. Poly(Vinyl Alcohol)/Poly(Acrylic Acid)/TiO2/Graphene Oxide Nanocomposite Hydrogels for pH-Sensitive Photocatalytic Degradation of Organic Pollutants. Mater. Sci. Eng. B 2013, 178, 1097–1103. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, D.; Wang, J. Green Fabrication of Thermally Cross-Linkable 2-Hydroxypropyl-β-Cyclodextrin/ Poly(Acrylic Acid)/Poly(Vinyl Alcohol) Nanofibrous Membrane for Effective Removal of Levofloxacin Hydrochloride. Colloids Surf. A Physicochem. Eng. 2023, 672, 131783. [Google Scholar] [CrossRef]
- Wi, H.; Kim, H.; Oh, D.; Bae, S.; Hwang, Y. Surface Modification of Poly(Vinyl Alcohol) Sponge by Acrylic Acid to Immobilize Prussian Blue for Selective Adsorption of Aqueous Cesium. Chemosphere 2019, 226, 173–182. [Google Scholar] [CrossRef]
- Seeponkai, N.; Khammuang, K.; Fuggate, P.; Seephonkai, P. Physical Properties and Ion Permeability of Crosslinking Hydrogel Membrane Based on Poly(Vinyl Alcohol) for Soilless Cultivation. J. Appl. Polym. Sci. 2023, 140, e53311. [Google Scholar] [CrossRef]
- Kim, H.J.; Charoensri, K.; Ko, J.A.; Park, H.J. Effects of Layered Double Hydroxides on Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Films for Green Food Packaging Applications. Prog. Org. Coat. 2022, 163, 106634. [Google Scholar] [CrossRef]
- Chee, B.S.; de Lima, G.G.; de Lima, T.A.M.; Seba, V.; Lemarquis, C.; Pereira, B.L.; Bandeira, M.; Cao, Z.; Nugent, M. Effect of Thermal Annealing on a Bilayer Polyvinyl Alcohol/Polyacrylic Acid Electrospun Hydrogel Nanofibres Loaded with Doxorubicin and Clarithromycin for a Synergism Effect against Osteosarcoma Cells. Mater. Today Chem. 2021, 22, 100549. [Google Scholar] [CrossRef]
- Dalei, G.; Das, S. Polyacrylic Acid-Based Drug Delivery Systems: A Comprehensive Review on the State-of-Art. J. Drug Deliv. Sci. Technol. 2022, 78, 103988. [Google Scholar] [CrossRef]
- Mannarino, M.M.; Bassett, M.; Donahue, D.T.; Biggins, J.F. Novel High-Strength Thromboresistant Poly(Vinyl Alcohol)-Based Hydrogel for Vascular Access Applications. J. Biomater. Sci. Polym. Ed. 2020, 31, 601–621. [Google Scholar] [CrossRef]
- Khandaker, M. Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Hydrogel in a Dc Electric Field: Swelling, Shape Change, and Actuation Characteristics. Int. J. Mater. Sci. 2013, 3, 133–138. [Google Scholar] [CrossRef]
- Kim, U.; Carty, W.M. Effect of Polymer Molecular Weight on Adsorption and Suspension Rheology. J. Ceram. Soc. Jpn. 2016, 124, 484–488. [Google Scholar] [CrossRef]
- Swift, T.; Swanson, L.; Geoghegan, M.; Rimmer, S. The pH-Responsive Behaviour of Poly(Acrylic Acid) in Aqueous Solution Is Dependent on Molar Mass. Soft Matter 2016, 12, 2542–2549. [Google Scholar] [CrossRef]
- Bizley, S.C.; Williams, A.C.; Khutoryanskiy, V.V. Thermodynamic and Kinetic Properties of Interpolymer Complexes Assessed by Isothermal Titration Calorimetry and Surface Plasmon Resonance. Soft Matter 2014, 10, 8254–8260. [Google Scholar] [CrossRef]
- Yekymov, E.; Attia, D.; Levi-Kalisman, Y.; Bitton, R.; Yerushalmi-Rozen, R. Charge Regulation of Poly(Acrylic Acid) in Solutions of Non-Charged Polymer and Colloids. Polymers 2023, 15, 1121. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, M.; Faisal, M.; Si, Y.; Guo, Y. Selective Protein Complexation and Coacervation by Polyelectrolytes. Adv. Colloid Interface Sci. 2017, 239, 158–167. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, Y.; Wan, Y.; Wu, B.; Liu, J.; Zhang, X.; Hu, W.; Cohen Stuart, M.A.; Wang, J. Protein Separation by Sequential Selective Complex Coacervation. J. Colloid Interface Sci. 2023, 650, 2065–2074. [Google Scholar] [CrossRef]
- Kotova, S.; Kostjuk, S.; Rochev, Y.; Efremov, Y.; Frolova, A.; Timashev, P. Phase Transition and Potential Biomedical Applications of Thermoresponsive Compositions Based on Polysaccharides, Proteins and DNA: A Review. Int. J. Biol. Macromol. 2023, 249, 126054. [Google Scholar] [CrossRef]
- García-Briones, G.S.; Laga, R.; Černochová, Z.; Arjona-Ruiz, C.; Janoušková, O.; Šlouf, M.; Pop-Georgievski, O.; Kubies, D. Polyelectrolyte Nanoparticles Based on Poly[N-(2-Hydroxypropyl)Methacrylamide-Block-Poly(N-(3-Aminopropyl)Methacrylamide] Copolymers for Delivery of Heparin-Binding Proteins. Eur. Polym. J. 2023, 191, 111976. [Google Scholar] [CrossRef]
- Okagu, O.D.; Jin, J.; Udenigwe, C.C. Impact of Succinylation on Pea Protein-Curcumin Interaction, Polyelectrolyte Complexation with Chitosan, and Gastrointestinal Release of Curcumin in Loaded-Biopolymer Nano-Complexes. J. Mol. Liq. 2021, 325, 115248. [Google Scholar] [CrossRef]
- Nazarzadeh Zare, E.; Khorsandi, D.; Zarepour, A.; Yilmaz, H.; Agarwal, T.; Hooshmand, S.; Mohammadinejad, R.; Ozdemir, F.; Sahin, O.; Adiguzel, S.; et al. Biomedical Applications of Engineered Heparin-Based Materials. Bioact. Mater. 2024, 31, 87–118. [Google Scholar] [CrossRef]
- Seyrek, E.; Dubin, P.L.; Tribet, C.; Gamble, E.A. Ionic Strength Dependence of Protein-Polyelectrolyte Interactions. Biomacromolecules 2003, 4, 273–282. [Google Scholar] [CrossRef]
- Hergli, E.; Aschi, A. Polycation-Globular Protein Complex: Ionic Strength and Chain Length Effects on the Structure and Properties. e-Polymers 2019, 19, 120–128. [Google Scholar] [CrossRef]
- da Silva, F.L.B.; Jönsson, B. Polyelectrolyte–Protein Complexation Driven by Charge Regulation. Soft Matter 2009, 5, 2862–2868. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, K.; Si, Y.; Guo, X.; Xu, Y. Protein−Polyelectrolyte Interaction: Thermodynamic Analysis Based on the Titration Method. Polymers 2019, 11, 82. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Van der Bruggen, B. Polyelectrolytes Self-Assembly: Versatile Membrane Fabrication Strategy. J. Mater. Chem. A 2020, 8, 20870–20896. [Google Scholar] [CrossRef]
- Wang, D.; Duan, J.; Liu, J.; Yi, H.; Zhang, Z.; Song, H.; Li, Y.; Zhang, K. Stimuli-Responsive Self-Degradable DNA Hydrogels: Design, Synthesis, and Applications. Adv. Health Mater. 2023, 12, 2203031. [Google Scholar] [CrossRef]
- McManus, J.J.; Charbonneau, P.; Zaccarelli, E.; Asherie, N. The Physics of Protein Self-Assembly. Curr. Opin. Colloid Interface Sci. 2016, 22, 73–79. [Google Scholar] [CrossRef]
- Yu, H.; Angelova, A.; Angelov, B.; Dyett, B.; Matthews, L.; Zhang, Y.; El Mohamad, M.; Cai, X.; Valimehr, S.; Drummond, C.J.; et al. Real-Time pH-Dependent Self-Assembly of Ionisable Lipids from COVID-19 Vaccines and In Situ Nucleic Acid Complexation. Angew. Chem. Int. Ed. 2023, 62, e202304977. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Y.; Matson, J.B. pH-Responsive Self-Assembling Peptide-Based Biomaterials: Designs and Applications. ACS Appl. Bio Mater. 2022, 5, 4635–4651. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, R.; Tang, J.; Yang, D. Rolling Circle Amplification (RCA)-Based DNA Hydrogel. Nat. Protoc. 2021, 16, 5460–5483. [Google Scholar] [CrossRef]
- Schneider, L.; Richter, M.; Oelschlaeger, C.; Rabe, K.S.; Domínguez, C.M.; Niemeyer, C.M. Accurate Quantification of DNA Content in DNA Hydrogels Prepared by Rolling Circle Amplification. Chem. Commun. 2023, 59, 12184–12187. [Google Scholar] [CrossRef]
- Tang, J.; Liang, A.; Yao, C.; Yang, D. Assembly of Rolling Circle Amplification-Produced Ultralong Single-Stranded DNA to Construct Biofunctional DNA Materials. Chemistry 2023, 29, e202202673. [Google Scholar] [CrossRef]
- Ko, O.; Han, S.; Lee, J.B. Selective Release of DNA Nanostructures from DNA Hydrogel. J. Ind. Eng. Chem. 2020, 84, 46–51. [Google Scholar] [CrossRef]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef]
- Fleming, A.; Allison, V.D. Observations on a Bacteriolytic Substance (“Lysozyme”) Found in Secretions and Tissues. Br. J. Exp. Pathol. 1922, 3, 252–260. [Google Scholar]
- Sava, G.; Benetti, A.; Ceschia, V.; Pacor, S. Lysozyme and Cancer: Role of Exogenous Lysozyme as Anticancer Agent (Review). Anticancer Res. 1989, 9, 583–591. [Google Scholar]
- Carlsson, F.; Hyltner, E.; Arnebrant, T.; Malmsten, M.; Linse, P. Lysozyme Adsorption to Charged Surfaces. A Monte Carlo Study. J. Phys. Chem. B 2004, 108, 9871–9881. [Google Scholar] [CrossRef]
- Romanini, D.; Braia, M.; Angarten, R.G.; Loh, W.; Picó, G. Interaction of Lysozyme with Negatively Charged Flexible Chain Polymers. J. Chromatogr. B 2007, 857, 25–31. [Google Scholar] [CrossRef]
- Johansson, C.; Hansson, P.; Malmsten, M. Interaction between Lysozyme and Poly(Acrylic Acid) Microgels. J. Colloid Interface Sci. 2007, 316, 350–359. [Google Scholar] [CrossRef]
- Ghimire, A.; Kasi, R.M.; Kumar, C.V. Proton-Coupled Protein Binding: Controlling Lysozyme/Poly(Acrylic Acid) Interactions with pH. J. Phys. Chem. B 2014, 118, 5026–5033. [Google Scholar] [CrossRef]
- Kim, W.-S.; Kim, H.-S.; Hirasawa, I.; Kim, W.-S. Combination Mechanism of Lysozyme with Polyacrylic Acid at Equilibrium in Polyelectrolyte Precipitation. J. Chem. Eng. Jpn. 2001, 34, 1244–1250. [Google Scholar] [CrossRef]
- Ozer, B.B.P.; Uz, M.; Oymaci, P.; Altinkaya, S.A. Development of a Novel Strategy for Controlled Release of Lysozyme from Whey Protein Isolate Based Active Food Packaging Films. Food Hydrocoll. 2016, 61, 877–886. [Google Scholar] [CrossRef]
- Conte, A.; Buonocore, G.G.; Bevilacqua, A.; Sinigaglia, M.; Del Nobile, M.A. Immobilization of Lysozyme on Polyvinylalcohol Films for Active Packaging Applications. J. Food Prot. 2006, 69, 866–870. [Google Scholar] [CrossRef]
- Wang, G.Z.; He, J.T.; Yan, H.Y.Z.; Zhou, X.L.H.; Cui, Y. Interaction between PVA and Lysozyme and Its Influence on the Conformation of Lysozyme. Acta Chim. Sin. 2008, 66, 1042–1046. [Google Scholar]
- Zhou, G.; Ruhan, A.; Ge, H.; Wang, L.; Liu, M.; Wang, B.; Su, H.; Yan, M.; Xi, Y.; Fan, Y. Research on a Novel Poly (Vinyl Alcohol)/Lysine/Vanillin Wound Dressing: Biocompatibility, Bioactivity and Antimicrobial Activity. Burns 2014, 40, 1668–1678. [Google Scholar] [CrossRef]
- Amariei, G.; Kokol, V.; Boltes, K.; Letón, P.; Rosal, R. Incorporation of Antimicrobial Peptides on Electrospun Nanofibres for Biomedical Applications. RSC Adv. 2018, 8, 28013–28023. [Google Scholar] [CrossRef]
- Åhlén, M.; Tummala, G.K.; Mihranyan, A. Nanoparticle-Loaded Hydrogels as a Pathway for Enzyme-Triggered Drug Release in Ophthalmic Applications. Int. J. Pharm. 2018, 536, 73–81. [Google Scholar] [CrossRef]
- Chen, H.; Feng, R.; Xia, T.; Wen, Z.; Li, Q.; Qiu, X.; Huang, B.; Li, Y. Progress in Surface Modification of Titanium Implants by Hydrogel Coatings. Gels 2023, 9, 423. [Google Scholar] [CrossRef]
- Booth, D.R.; Sunde, M.; Bellotti, V.; Robinson, C.V.; Hutchinson, W.L.; Fraser, P.E.; Hawkins, P.N.; Dobson, C.M.; Radford, S.E.; Blake, C.C.F.; et al. Instability, Unfolding and Aggregation of Human Lysozyme Variants Underlying Amyloid Fibrillogenesis. Nature 1997, 385, 787–793. [Google Scholar] [CrossRef]
- Parry, R.M.; Chandan, R.C.; Shahani, K.M. Isolation and Characterization of Human Milk Lysozyme. Arch. Biochem. Biophys. 1969, 130, 59–65. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Urban, T.; Grządka, E.; Zarko, V.I.; Gun’ko, V.M. Comparison of Adsorption Affinity of Polyacrylic Acid for Surfaces of Mixed Silica–Alumina. Colloid Polym. Sci. 2014, 292, 699–705. [Google Scholar] [CrossRef]
- Nurkeeva, Z.S.; Mun, G.A.; Dubolazov, A.V.; Khutoryanskiy, V.V. pH Effects on the Complexation, Miscibility and Radiation-Induced Crosslinking in Poly(Acrylic Acid)-Poly(Vinyl Alcohol) Blends. Macromol. Biosci. 2005, 5, 424–432. [Google Scholar] [CrossRef]
- Mun, G.A.; Khutoryanskiy, V.V.; Akhmetkalieva, G.T.; Shmakov, S.N.; Dubolazov, A.V.; Nurkeeva, Z.S.; Park, K. Interpolymer Complexes of Poly(Acrylic Acid) with Poly(2-Hydroxyethyl Acrylate) in Aqueous Solutions. Colloid Polym. Sci. 2004, 283, 174–181. [Google Scholar] [CrossRef]
- Nurkeeva, Z.S.; Mun, G.A.; Khutoryanskiy, V.V.; Zotov, A.A.; Mangazbaeva, R.A. Interpolymer Complexes of Poly(Vinyl Ether) of Ethylene Glycol with Poly(Carboxylic Acids) in Aqueous, Alcohol and Mixed Solutions. Polymer 2000, 41, 7647–7651. [Google Scholar] [CrossRef]
- Nurkeeva, Z.S.; Mun, G.A.; Khutoryanskiy, V.V.; Bitekenova, A.B.; Dubolazov, A.V.; Esirkegenova, S.Z. pH Effects in the Formation of Interpolymer Complexes between Poly(N-Vinylpyrrolidone) and Poly(Acrylic Acid) in Aqueous Solutions. Eur. Phys. J. E 2003, 10, 65–68. [Google Scholar] [CrossRef]
- Khutoryanskiy, V.V.; Dubolazov, A.V.; Nurkeeva, Z.S.; Mun, G.A. PH Effects in the Complex Formation and Blending of Poly(Acrylic Acid) with Poly(Ethylene Oxide). Langmuir 2004, 20, 3785–3790. [Google Scholar] [CrossRef]
- Krimm, S.; Liang, C.Y.; Sutherland, G.B.B.M. Infrared Spectra of High Polymers. V. Polyvinyl Alcohol. J. Polym. Sci. 1956, 22, 227–247. [Google Scholar] [CrossRef]
- Zou, Y.; Hao, W.; Li, H.; Gao, Y.; Sun, Y.; Ma, G. New Insight into Amyloid Fibril Formation of Hen Egg White Lysozyme Using a Two-Step Temperature-Dependent FTIR Approach. J. Phys. Chem. B 2014, 118, 9834–9843. [Google Scholar] [CrossRef]
- Jha, I.; Rani, A.; Venkatesu, P. Sustained Stability and Activity of Lysozyme in Choline Chloride against pH Induced Denaturation. ACS Sustain. Chem. Eng. 2017, 5, 8344–8355. [Google Scholar] [CrossRef]
- Ortiz, M.; De Kee, D.; Carreau, P.J. Rheology of Concentrated Poly(Ethylene Oxide) Solutions. J. Rheol. 1994, 38, 519–539. [Google Scholar] [CrossRef]
- Lewandowska, K. Miscibility Studies of Hyaluronic Acid and Poly(Vinyl Alcohol) Blends in Various Solvents. Materials 2020, 13, 4750. [Google Scholar] [CrossRef]
- Li, L.; Hsieh, Y.-L. Ultra-Fine Polyelectrolyte Hydrogel Fibres from Poly(Acrylic Acid)/Poly(Vinyl Alcohol). Nanotechnology 2005, 16, 2852. [Google Scholar] [CrossRef]
- Narambuena, C.F.; Longo, G.S.; Szleifer, I. Lysozyme Adsorption in pH-Responsive Hydrogel Thin-Films: The Non-Trivial Role of Acid–Base Equilibrium. Soft Matter 2015, 11, 6669–6679. [Google Scholar] [CrossRef]
- Hoshino, Y.; Lee, H.; Miura, Y. Interaction between Synthetic Particles and Biomacromolecules: Fundamental Study of Nonspecific Interaction and Design of Nanoparticles That Recognize Target Molecules. Polym. J. 2014, 46, 537–545. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, Y.; Chai, W.; Wang, T.; Zhang, Y. Effects of Composition Ratio on the Properties of Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Blend Membrane: A Molecular Dynamics Simulation Study. Mater. Des. 2016, 89, 848–855. [Google Scholar] [CrossRef]
- Martínez-Rosell, G.; Giorgino, T.; De Fabritiis, G. PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations. J. Chem. Inf. Model. 2017, 57, 1511–1516. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An Environment for Comparative Protein Modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminformatics 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Borisova, O.; Billon, L.; Zaremski, M.; Grassl, B.; Bakaeva, Z.; Lapp, A.; Stepanek, P.; Borisov, O. Synthesis and pH- and Salinity-Controlled Self-Assembly of Novel Amphiphilic Block-Gradient Copolymers of Styrene and Acrylic Acid. Soft Matter 2012, 8, 7649–7659. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed Atlas of Surface Topography of Proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef]
Vibration (cm−1) | Tentative Assignment |
---|---|
1595 | guanidyl CN3H5+ in Arg residues |
1603–1610 | NH2 scissor, hydrated chains, extended |
1614–1618 | extended beta sheets, |
1625 | aggregate, intermolecular beta sheets |
1634 | beta sheets, parallel |
1644–1649 | random coils |
1651–1655 | alpha helix |
1660–1670 | glutamine + beta turns |
1673–1676 | beta turns |
wPAA | pH = 4 | pH = 7.4 | ||
---|---|---|---|---|
(mPa·s) | n | (mPa·s) | n | |
0 | 10.6 ± 0.06 | 0.93 ± 0.01 | 10.9 ± 0.42 | 0.95 ± 0.02 |
0.20 | 31.1 ± 0.07 | 0.97 ± 0.001 | 54.9 ± 0.31 | 0.89 ± 0.002 |
0.40 | 111.3 ± 11.22 | 0.87 ± 0.05 | 180.9 ± 1.21 | 0.64 ± 0.06 |
0.50 | 53.7 * | 0.99 * | 394.7 ± 2.01 | 0.74 ± 0.01 |
0.60 | 16.1 * | 0.99 * | 338.6 ± 4.05 | 0.78 ± 0.06 |
0.80 | 8.62 * | 0.99 * | 398.5 ± 2.85 | 0.57 ± 0.14 |
0.90 | 87.5 ± 0.39 | 0.96 ± 0.06 | 420.2 ± 1.07 | 0.62 ± 0.02 |
1 | 122.6 ± 0.90 | 0.77 ± 0.07 | 461.1 ± 1.62 | 0.68 ± 0.02 |
pH = 2 | pH = 4 | pH = 7.4 |
---|---|---|
LEU31 TRP34 SER36 ASN44 ASN46 THR52 TYR54 ILE56 PHE57 GLN58 ILE59 ASN60 TYR63 TRP64 VAL99 GLN104 ALA108 TRP109 VAL110 ALA111 | LEU31 TRP34 SER36 ASN44 ASN46 ASP49 SER51 THR52 TYR54 ILE56 PHE57 GLN58 ILE59 ASN60 ARG62 TYR63 TRP64 VAL99 GLN104 ALA108 TRP109 VAL110 ALA11 | GLU35 ASN46 ASP49 SER51 ASP53 GLN58 ILE59 ASN60 ARG62 TYR63 TRP64 VAL99 GLN104 ALA108 TRP109 VAL110 ALA11 |
pH | Binding | Favorable Bonds | Unfavorable Bonds | |
---|---|---|---|---|
Affinity (kcal/mol) | Classical Hydrogen (Bond Distance, Å) | Other Types (Bond Distance, Å) | Type (Bond Distance, Å) | |
2 | −7.1 | GLH35 (2.02) ASN46 (2.04) ASN46 (2.52) ASH49 (2.53) ASN60 (2.44) ASN60 (2.48) TYR63 (2.39) TRP64 (2.60) VAL110 (2.05) | – | donor–donor TRP64 (1.26) ALA111 (1.48) |
4 | −6.6 | GLH35 (1.89) ASN46 (2.76) ASP49 (2.56) SER51 (2.63) ASH53 (2.31) GLN58 (2.75) ASN60 (2.33) ASN60 (2.47) ASN60 (2.63) TRP64 (2.20) TRP64 (2.63) VAL110 (2.99) ALA111 (2.10) | carbon hydrogen ILE59 (3.07) | negative–negative GLH35 (2.83) ASH53 (5.45) |
7.4 | −6.4 | ASN46 (2.69) SER51 (2.70) ASN60 (2.42) ASN60 (2.59) TYR63 (2.63) TYR63 (1.98) TRP64 (2.38) TRP64 (2.75) GLN104 (2.08) TRP109 (2.96) VAL110 (2.24) | carbon hydrogen ILE59 (3.43) salt bridge ARG113 (2.36) pi–anion TYR63 (4.07) | negative–negative GLU35 (4.68) ASP53 (4.27) ASP53 (5.16) |
pH | Binding | Favorable Bonds | Unfavorable Bonds | |
---|---|---|---|---|
Affinity (kcal/mol) | Classical Hydrogen (Bond Distance, Å) | Other Types (Bond Distance, Å) | Type (Bond Distance, Å) | |
2 | −5.25 | GLH35 (2.41) GLH35 (2.23) ASN60 (2.40) VAL110 (2.88) ALA111 (2.00) | pi–sigma TRP109 (3.75) | – |
4 | −5.3 | ASN46 (2.57) SER51 (2.44) ASH53 (2.73) ASN60 (2.60) TRP109 (2.88) | pi–sigma TRP109 (3.63) | – |
7.4 | −5.3 | SER51 (2.41) ASP53 (1.88) ASP53 (2.72) GLN58 (2.27) TRP109 (2.88) | pi–sigma TRP109 (3.63) | donor–donor ASN60 (1.73) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morariu, S.; Avadanei, M.; Nita, L.E. Effect of pH on the Poly(acrylic acid)/Poly(vinyl alcohol)/Lysozyme Complexes Formation. Molecules 2024, 29, 208. https://doi.org/10.3390/molecules29010208
Morariu S, Avadanei M, Nita LE. Effect of pH on the Poly(acrylic acid)/Poly(vinyl alcohol)/Lysozyme Complexes Formation. Molecules. 2024; 29(1):208. https://doi.org/10.3390/molecules29010208
Chicago/Turabian StyleMorariu, Simona, Mihaela Avadanei, and Loredana Elena Nita. 2024. "Effect of pH on the Poly(acrylic acid)/Poly(vinyl alcohol)/Lysozyme Complexes Formation" Molecules 29, no. 1: 208. https://doi.org/10.3390/molecules29010208
APA StyleMorariu, S., Avadanei, M., & Nita, L. E. (2024). Effect of pH on the Poly(acrylic acid)/Poly(vinyl alcohol)/Lysozyme Complexes Formation. Molecules, 29(1), 208. https://doi.org/10.3390/molecules29010208