Crystallinity, Rheology, and Mechanical Properties of Low-/High-Molecular-Weight PLA Blended Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Non-Isothermal Crystallization and Thermal Properties of Blended Systems
2.2. Crystal Structure of the Blending System
2.3. Crystal Morphology of the Blending System
2.4. Rheology of the Blending System
2.5. Morphology and Structure of the Blending System
2.6. Mechanical Properties of the Blending System
2.7. Mechanism Analysis
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PLA | Polylactic acid |
DSC | Differential scanning calorimetry |
TGA | Thermogravimetric analysis |
DTG | Differential thermogravimetry |
XRD | X-ray diffractometer |
POM | Polarized optical microscopy |
SEM | Scanning electron microscopy |
Symbols | |
wt% | Weight percent |
Tg | Glass transition temperature |
Tc | Crystallization temperature |
Tm | Melting temperature |
Tcc | Cold crystallization temperature |
Xc | Crystallinity |
ΔHc | Change in enthalpy |
Tonset | Crystallization initiation temperature |
Tendset | Crystallization end temperature |
φ | Cooling rate |
t1/2 | Crystallization half-life |
T1/2w | Full width at half maxima |
T5% | 5% weight loss degradation temperature |
T50% | 50% weight loss degradation temperature |
Tmax | Maximum degradation rate temperature |
t | Time |
T | Temperature |
References
- Patel, R.M. Crystallization kinetics modeling of high density and linear low density polyethylene resins. J. Appl. Polym. Sci. 2012, 124, 1542–1552. [Google Scholar] [CrossRef]
- Fu, X.; Dong, X.; Yang, G.; Bai, S. Non-isothermal crystallization kinetics of graphene/PA10T composites. Heliyon 2022, 8, 10206–10216. [Google Scholar] [CrossRef] [PubMed]
- Dhanvijay, P.U.; Shertukde, V.V. Review: Crystallization of Biodegradable Polymers. Polym.-Plast. Technol. Eng. 2011, 50, 1289–1304. [Google Scholar] [CrossRef]
- Seo, J.; Zhang, X.; Schaake, R.P.; Rhoades, A.M.; Colby, R.H. Dual Nakamura model for primary and secondary crystallization applied to nonisothermal crystallization of poly(ether ether ketone). Polym. Eng. Sci. 2021, 61, 2416–2426. [Google Scholar] [CrossRef]
- Kang, J.; Li, J.; Chen, S.; Peng, H.; Wang, B.; Cao, Y.; Li, H.; Chen, J.; Gai, J.; Yang, F.; et al. Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J. Appl. Polym. Sci. 2013, 129, 2663–2670. [Google Scholar] [CrossRef]
- Liu, W.; Wu, X.; Chen, X.; Liu, S.; Zhang, C. Flexibly Controlling the Polycrystallinity and Improving the Foaming Behavior of Polylactic Acid via Three Strategies. ACS Omega 2022, 7, 6248–6260. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Yang, J.; Zhang, N.; Zhang, J.; Wang, Y. Crystallization of poly(l-lactide) in the miscible poly(l-lactide)/poly(vinyl acetate) blend induced by carbon nanotubes. Polym. Bull. 2018, 75, 2641–2655. [Google Scholar] [CrossRef]
- Samantaray, P.K.; Little, A.; Wemyss, A.M.; Iacovidou, E.; Wan, C. Design and Control of Compostability in Synthetic Biopolyesters. ACS Sustain. Chem. Eng. 2021, 9, 9151–9164. [Google Scholar] [CrossRef]
- Samantaray, P.K.; Little, A.; Haddleton, D.M.; McNally, T.; Tan, B.; Sun, Z.; Huang, W.; Ji, Y.; Wan, C. Poly(glycolic acid) (PGA): A versatile building block expanding high performance and sustainable bioplastic applications. Green Chem. 2020, 22, 4055–4081. [Google Scholar] [CrossRef]
- Standau, T.; Castellón, S.M.; Delavoie, A.; Bonten, C.; Altstädt, V. Effects of chemical modifications on the rheological and the expansion behavior of polylactide (PLA) in foam extrusion. e-Polymers 2019, 19, 297–304. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Cheng, S. Crystallization and Foaming Properties of High-melt-strength Poly(lactic acid). Mater. Rep. 2020, 34, 20182–20186. [Google Scholar]
- Wang, B.; Hina, K.; Zou, H.; Zuo, D.; Yi, C. Thermal, crystallization, mechanical and decomposition properties of poly(lactic acid) plasticized with poly(ethylene glycol). J. Vinyl Addit. Technol. 2018, 24, 293–302. [Google Scholar] [CrossRef]
- Eom, Y.; Choi, B.; Park, S. A Study on Mechanical and Thermal Properties of PLA/PEO Blends. J. Polym. Environ. 2019, 27, 256–262. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y. Following the morphological and thermal properties of PLA/PEO blends containing carbon nanotubes (CNTs) during hydrolytic degradation. Compos. Part B Eng. 2019, 175, 107132–107144. [Google Scholar] [CrossRef]
- Ghafari, R.; Scaffaro, R.; Maio, A.; Gulino, E.F.; Lo Re, G.; Jonoobi, M. Processing-structure-property relationships of electrospun PLA-PEO membranes reinforced with enzymatic cellulose nanofibers. Polym. Test. 2020, 81, 106182–106190. [Google Scholar] [CrossRef]
- Ma, Y.; Li, L.; Wang, Y. Development of PLA-PHB-based biodegradable active packaging and its application to salmon. Packag. Technol. Sci. 2018, 31, 739–746. [Google Scholar] [CrossRef]
- Plavec, R.; Hlaváčiková, S.; Omaníková, L.; Feranc, J.; Vanovčanová, Z.; Tomanová, K.; Bočkaj, J.; Kruželák, J.; Medlenová, E.; Gálisová, I.; et al. Recycling possibilities of bioplastics based on PLA/PHB blends. Polym. Test. 2020, 92, 106880–106891. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Perdiguero, M.; Fiori, S.; Kenny, J.M.; Peponi, L. Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polym. Degrad. Stab. 2020, 179, 109226–109232. [Google Scholar] [CrossRef]
- Kelnar, I.; Kratochvíl, J.; Fortelný, I.; Kaprálková, L.; Zhigunov, A.; Nevoralová, M. Effect of graphite nanoplatelets on melt drawing and properties of PCL/PLA microfibrillar composites. Polym. Compos. 2018, 39, 3147–3156. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, Z.; Wang, M.; Zhang, L.; Liang, Y.; Zhang, Z.; Ren, L.; Ren, L. 4D printing of PLA/PCL shape memory composites with controllable sequential deformation. Bio-Des. Manuf. 2021, 4, 867–878. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Liu, Z.; Zhang, S.; Cao, Z.; Yang, W.; Yang, M. Compatibilization of the poly(lactic acid)/poly(propylene carbonate) blends through in situ formation of poly(lactic acid)-b-poly(propylene carbonate) copolymer. J. Appl. Polym. Sci. 2018, 135, 46009–46023. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, G.; Bian, X.; Zeng, J.; Weng, Y. Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend in Freshwater with Sediment. Molecules 2020, 25, 3946. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Tian, H.; Han, L.; Yang, H.; Bian, J.; Pan, H.; Zhang, H. Improved heat resistance in poly (lactic acid)/ethylene butyl methacrylate glycidyl methacrylate terpolymer blends by controlling highly filled talc particles. J. Therm. Anal. Calorim. 2022, 147, 5719–5732. [Google Scholar] [CrossRef]
- Przekop, R.E.; Kujawa, M.; Pawlak, W.; Dobrosielska, M.; Wieleba, W. Graphite Modified Polylactide (PLA) for 3D Printed (FDM/FFF) Sliding Elements. Polymers 2020, 12, 1250. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yu, G.; Zhu, Y.; Li, C.; Li, J.; Guo, S. Fabrication of polylactide with high-content, ordered, and continuous transcrystallinity via multilayered two-dimensional interface. Mater. Des. 2021, 204, 109687–109695. [Google Scholar] [CrossRef]
- Li, Z.; Tan, B.H.; Lin, T.; He, C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 2016, 62, 22–72. [Google Scholar] [CrossRef]
- Wang, Y.; Run, M. Non-isothermal crystallization kinetic and compatibility of PTT/PP blends by using maleic anhydride grafted polypropylene as compatibilizer. J. Polym. Res. 2009, 16, 725–737. [Google Scholar] [CrossRef]
- Jiang, S. Crystalline Struture Controlling and Crystallization Kineties of Macromolecules; Science Press: Beijing, China, 2021; pp. 121–188. [Google Scholar]
- Chen, Y.; Zhou, D.; Hu, W. Progress of Differential Scanning Calorimetry and Its Application in Polymer Characterization. Acta Polym. Sin. 2021, 52, 423–444. [Google Scholar]
- Yeh, J.; Yang, M.; Wu, C.; Wu, X.; Wu, C. Study on the Crystallization Kinetic and Characterization of Poly(lactic acid) and Poly(vinyl alcohol) Blends. Polym.-Plast. Technol. Eng. 2008, 47, 1289–1296. [Google Scholar] [CrossRef]
- Nofar, M.; Salehiyan, R.; Sinha Ray, S. Rheology of poly (lactic acid)-based systems. Polym. Rev. 2019, 59, 465–509. [Google Scholar] [CrossRef]
- Wang, J.; Chai, J.; Wang, G.; Zhao, J.; Zhang, D.; Li, B.; Zhao, H.; Zhao, G. Strong and thermally insulating polylactic acid/glass fiber composite foam fabricated by supercritical carbon dioxide foaming. Int. J. Biol. Macromol. 2019, 138, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Dou, Q. Melting and Crystallization Behaviors of Poly(lactic acid)/Polypropylene Blends. In Proceedings of the 2015 International Conference on Material Science and Applications (ICMSA 2015), Beijing, China, 26–27 June 2015; Zhang, Z., Ed.; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 282–286. [Google Scholar]
- Chen, D.; Lei, L.; Zou, M.; Li, X. Non-Isothermal Crystallization Kinetics of Poly(Ethylene Glycol)–Poly(l-Lactide) Diblock Copolymer and Poly(Ethylene Glycol) Homopolymer via Fast-Scan Chip-Calorimeter. Polymers 2021, 13, 1156. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Yan, S.; Sun, X. Crystallization Mechanism and Structure Control of Polymers in Confined Space and from Pre-ordered Melt. Acta Polym. Sin. 2021, 52, 634–645. [Google Scholar]
- Wang, G.; Wang, K. Studies on the Induction of Poly(lactic acid) Stereocomplex by Thermal and Tensile Treating. Acta Polym. Sin. 2018, 9, 1221–1227. [Google Scholar]
- Yu, W.; Wang, X.; Ferraris, E.; Zhang, J. Melt crystallization of PLA/Talc in fused filament fabrication. Mater. Des. 2019, 182, 108013–108020. [Google Scholar] [CrossRef]
- He, L.; Song, F.; Li, D.; Zhao, X.; Wang, X.; Wang, Y. Strong and Tough Polylactic Acid Based Composites Enabled by Simultaneous Reinforcement and Interfacial Compatibilization of Microfibrillated Cellulose. ACS Sustain. Chem. Eng. 2020, 8, 1573–1582. [Google Scholar] [CrossRef]
- Ding, W.; Chu, R.K.M.; Mark, L.H.; Park, C.B.; Sain, M. Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO2. Eur. Polym. J. 2015, 71, 231–247. [Google Scholar] [CrossRef]
- Hoffman, J.D.; Miller, R.L. Test of the reptation concept: Crystal growth rate as a function of molecular weight in polyethylene crystallized from the melt. Macromolecules 1988, 21, 3038–3051. [Google Scholar] [CrossRef]
- Ter Horst, J.H.; Deij, M.A.; Cains, P.W. Discovering New Co-Crystals. Cryst. Growth Des. 2009, 9, 1531–1537. [Google Scholar] [CrossRef]
- Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Poly(l-lactide-b-butylene succinate-b-l-lactide) triblock copolymer: A multi-functional additive for PLA/PBS blend with a key performance on film clarity. Polym. Degrad. Stab. 2017, 142, 160–168. [Google Scholar] [CrossRef]
- Hu, W. Principles of Polymer Crystallization; Chemical Industry Press: Beijing, China, 2013; pp. 147–160. [Google Scholar]
- Nofar, M.; Sacligil, D.; Carreau, P.J.; Kamal, M.R.; Heuzey, M. Poly (lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2019, 125, 307–360. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Sun, D.; Chen, Q.; Cai, L. Construction of a Rubber Superelastic-Viscoelastic Model and Analysis of Dynamic Response of Structure. J. Beijing Univ. Technol. 2019, 45, 927–936. [Google Scholar]
- Singh, P.; Ghosh, A.K. Torsional, tensile and structural properties of acrylonitrile–butadiene–styrene clay nanocomposites. Mater. Des. 2014, 55, 137–145. [Google Scholar] [CrossRef]
- Meng, B.; Deng, J.; Liu, Q.; Wu, Z.; Yang, W. Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: Structure and properties. Eur. Polym. J. 2012, 48, 127–135. [Google Scholar] [CrossRef]
- Maroufkhani, M.; Katbab, A.; Liu, W.; Zhang, J. Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: The effect of ACN content on morphology, compatibility and mechanical properties. Polymer 2017, 115, 37–44. [Google Scholar] [CrossRef]
- Azizi, H.; Ghasemi, I. Investigation on the dynamic melt rheological properties of polypropylene/wood flour composites. Polym. Compos. 2009, 30, 429–435. [Google Scholar] [CrossRef]
- Liang, H.; Hao, Y.; Bian, J.; Zhang, H.; Dong, L.; Zhang, H. Assessment of miscibility, crystallization behaviors, and toughening mechanism of polylactide/acrylate copolymer blends. Polym. Eng. Sci. 2015, 55, 386–396. [Google Scholar] [CrossRef]
- Hu, W. Polymer Features in Crystallization. Chin. J. Polym. Sci. 2022, 40, 545–555. [Google Scholar] [CrossRef]
Sample | DSC | |||||
---|---|---|---|---|---|---|
Tg (°C) | Tcc (°C) | Tm1 (°C) | Tm2 (°C) | ΔHcc (J·g−1) | ΔHm (J·g−1) | |
100HPLA/0LPLA | 61.7 | 117.6 | 165.9 | 170.3 | 38.3 | 45.6 |
95HPLA/5LPLA | 62.2 | 118.0 | 165.0 | 169.7 | 37.2 | 44.5 |
90HPLA/10LPLA | 61.9 | 120.4 | 164.0 | 168.9 | 36.8 | 44.0 |
85HPLA/15LPLA | 61.7 | 121.4 | 164.2 | 169.1 | 37.7 | 44.1 |
80HPLA/20LPLA | 61.8 | 121.1 | 164.2 | 169.1 | 37.7 | 44.6 |
0HPLA/100LPLA | 59.8 | 128.2 | 151.8 | - | 8.4 | 13.7 |
Sample | TGA | ||||
---|---|---|---|---|---|
Tonset (°C) | T5% (°C) | T50% (°C) | Tmax (°C) | Residue (%) | |
100HPLA/0LPLA | 350.6 | 338.8 | 368.8 | 372.5 | 6.2 |
95HPLA/5LPLA | 351.2 | 336.6 | 366.7 | 370.9 | 2.1 |
90HPLA/10LPLA | 352.3 | 340.8 | 369.0 | 372.2 | 5.7 |
85HPLA/15LPLA | 350.3 | 342.8 | 366.2 | 368.1 | 6.8 |
80HPLA/20LPLA | 345.2 | 325.9 | 360.6 | 366.1 | 0.2 |
0HPLA/100LPLA | 351.4 | 337.2 | 366.1 | 370.1 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Du, J. Crystallinity, Rheology, and Mechanical Properties of Low-/High-Molecular-Weight PLA Blended Systems. Molecules 2024, 29, 169. https://doi.org/10.3390/molecules29010169
Yang H, Du J. Crystallinity, Rheology, and Mechanical Properties of Low-/High-Molecular-Weight PLA Blended Systems. Molecules. 2024; 29(1):169. https://doi.org/10.3390/molecules29010169
Chicago/Turabian StyleYang, Hongwei, and Jianghua Du. 2024. "Crystallinity, Rheology, and Mechanical Properties of Low-/High-Molecular-Weight PLA Blended Systems" Molecules 29, no. 1: 169. https://doi.org/10.3390/molecules29010169
APA StyleYang, H., & Du, J. (2024). Crystallinity, Rheology, and Mechanical Properties of Low-/High-Molecular-Weight PLA Blended Systems. Molecules, 29(1), 169. https://doi.org/10.3390/molecules29010169