Ultrafine Kaolinite Removal in Recycled Water from the Overflow of Thickener Using Electroflotation: A Novel Application of Saline Water Splitting in Mineral Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electroflotation System and Materials
2.2. Minerals Characterization
2.3. Electroflotation Procedure
- (a)
- The feed and tail effluent and effluent TSS measurements:
- (b)
- Based on mass froth collected:
2.4. Zeta Potential Measurements
3. Results and Discussions
3.1. Mineralogical Characterization of Kaolinite
3.2. Zeta Potential of Kaolinite
3.3. Effect of Low Saline Concentration Electrolyte over EF Process
3.4. Result of Electroflotation Process Using Titanium Electrode in 0.1 M NaCl
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
Factor | Symbol Factor | Level | |
---|---|---|---|
−1 | 1 | ||
Potential, (V/SHE) | X1 | 10 | 20 |
Residence time, (min) | X2 | 10 | 20 |
Salinity, (mol/L) | X3 | 0.01 | 0.1 |
Zeta Potential (±4 mV) | |||
---|---|---|---|
pH | DIW | NaCl | KCl |
3 | −13.1 | −12.5 | 18.6 |
5 | −22.31 | −19.0 | 23.2 |
7 | −30.6 | −39.5 | −31.3 |
9 | −32.5 | −34.7 | −31.1 |
10.5 | −31.8 | −34.3 | −30.8 |
12 | −32.9 | −25.2 | −40.6 |
Trial | Time (min) | Voltage | Salinity | Mass Froth (g) | %Rmf | %RTSS |
---|---|---|---|---|---|---|
(V/SHE) | (mol/L) | |||||
1 | 10 | 10 | 0.01 | 0.029 | 11.2 | 59.3 |
2 | 10 | 10 | 0.1 | 0.01 | 3.7 | 64.4 |
3 | 20 | 10 | 0.01 | 0.207 | 80.9 | 70.3 |
4 | 20 | 10 | 0.1 | 0.226 | 88.2 | 76.9 |
5 | 10 | 20 | 0.01 | 0.177 | 69.2 | 78 |
6 | 10 | 20 | 0.1 | 0.226 | 88.4 | 87.2 |
7 | 20 | 20 | 0.01 | 0.532 | 207.9 | 88.9 |
8 | 20 | 20 | 0.1 | 0.457 | 178.7 | 91.4 |
mean | 77.05 | |||||
s.d. | 11.02 | |||||
min | 59.3 | |||||
max | 91.4 |
Trial | Time | Voltage | Salinity | Mass Froth (g) | %Rmf | %RTSS |
---|---|---|---|---|---|---|
(V/SHE) | (mol/L) | |||||
1 | 10 | 10 | 0.01 | 0.01 | 4.1 | 66.9 |
2 | 10 | 10 | 0.1 | 0.022 | 8.6 | 49.4 |
3 | 20 | 10 | 0.01 | 0.107 | 41.9 | 71.3 |
4 | 20 | 10 | 0.1 | 0.106 | 41.4 | 58.1 |
5 | 10 | 20 | 0.01 | 0.017 | 6.7 | 69.5 |
6 | 10 | 20 | 0.1 | 0.007 | 2.6 | 83.2 |
7 | 20 | 20 | 0.01 | 0.364 | 142 | 74.9 |
8 | 20 | 20 | 0.1 | 0.173 | 67.7 | 80.6 |
mean | 69.24 | |||||
s.d | 10.51 | |||||
min | 49.4 | |||||
max | 83.2 |
Appendix B
- Cathode reaction
- Anode reaction
- Overall electrolysis reactions
- The mechanism for H2 evolution (HER):
- The mechanism for O2 evolution (OER):
Appendix C
References
- Brigatti, M.F.; Galan, E.; Theng, B.K.G. Chapter 2 Structures and Mineralogy of Clay Minerals. Dev. Clay Sci. 2006, 1, 19–86. [Google Scholar] [CrossRef]
- Doi, A.; Khosravi, M.; Ejtemaei, M.; Nguyen, T.A.H.; Nguyen, A.V. Specificity and affinity of Multivalent Ions Adsorption to Kaolinite Surface. Appl. Clay Sci. 2020, 190, 105557. [Google Scholar] [CrossRef]
- Gräfe, M.; McFarlane, A.; Klauber, C. Clays and the Minerals Processing Value Chain (MPVC). In Clays in the Minerals Processing Value Chain; Grafe, M., Klauber, C., McFarlane, A.J., Robinson, D.J., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 1–80. ISBN 9781316661888. [Google Scholar]
- Cruz, N.; Peng, Y.; Farrokhpay, S.; Bradshaw, D. Interactions of Clay Minerals in Copper-Gold Flotation: Part 1—Rheological Properties of Clay Mineral Suspensions in the Presence of Flotation Reagents. Miner. Eng. 2013, 50–51, 30–37. [Google Scholar] [CrossRef]
- Molaei, N.; Hoseinian, F.S.; Rezai, B. A Study on the Effect of Active Pyrite on Flotation of Porphyry Copper Ores. Physicochem. Probl. Miner. Process. 2018, 54, 922–933. [Google Scholar] [CrossRef]
- Shaikh, S.M.R.; Nasser, M.S.; Hussein, I.; Benamor, A.; Onaizi, S.A.; Qiblawey, H. Influence of Polyelectrolytes and Other Polymer Complexes on the Flocculation and Rheological Behaviors of Clay Minerals: A Comprehensive Review. Sep. Purif. Technol. 2017, 187, 137–161. [Google Scholar] [CrossRef]
- Minh, T.; Le, K.; Mäkelä, M.; Schreithofer, N.; Dahl, O. A Multivariate Approach for Evaluation and Monitoring of Water Quality in Mining and Minerals Processing Industry. Miner Eng. 2020, 157, 106582. [Google Scholar] [CrossRef]
- Herrera-León, S.; Lucay, F.A.; Cisternas, L.A.; Kraslawski, A. Applying a Multi-Objective Optimization Approach in Designing Water Supply Systems for Mining Industries. The Case of Chile. J. Clean. Prod. 2019, 210, 994–1004. [Google Scholar] [CrossRef]
- Ikumapayi, F.K.; Makitalo, M.; Johansson, B.; Hanumantharao, K. Recycling Process Water in Complex Sulphide Ore Flotationt. In Proceedings of the XXVI IInternationa Minerals Processing Congress (IMPC) 2012 Proceednternationa Minerals Processing Congress (IMPC), New Delhi, India, 24–28 September 2012; pp. 4411–4425. [Google Scholar]
- Rao, K.H.; Vilinska, A.; Chernyshova, I.V. Minerals Bioprocessing: R & D Needs in Mineral Biobene Fi Ciation. Hydrometallurgy 2010, 104, 465–470. [Google Scholar] [CrossRef]
- Mcfarlane, A.; Yeap, K.Y.; Bremmell, K.; Addai-mensah, J. The Influence of Flocculant Adsorption Kinetics on the Dewaterability of Kaolinite and Smectite Clay Mineral Dispersions. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 39–48. [Google Scholar] [CrossRef]
- Oats, W.J.; Ozdemir, O.; Nguyen, A.V. Effect of Mechanical and Chemical Clay Removals by Hydrocyclone and Dispersants on Coal Flotation. Miner. Eng. 2010, 23, 413–419. [Google Scholar] [CrossRef]
- Rodrigues, R.T.; Rubio, J. DAF—Dissolved Air Flotation: Potential Applications in the Mining and Mineral Processing Industry. Int. J. Miner. Process. 2007, 82, 1–13. [Google Scholar] [CrossRef]
- Taner, H.A.; Onen, V. Control of Clay Minerals Effect in Flotation. A Review. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 2, pp. 6–11. [Google Scholar] [CrossRef]
- Levay, G.; Smart, R.S.C.; Skinner, W.M. The Impact of Water Quality on Flotation Performance. J. South. Afr. Inst. Min. Metall. 2001, 101, 69–75. [Google Scholar]
- Romanov, A.M. Electroflotation in Waste Water Treatment: Results and Perspectives. In Mineral Processing and the Environment; Springer: Berlin, Germany, 1998; pp. 335–360. [Google Scholar] [CrossRef]
- Srinivasan, V.; Subbaiyan, M. Note: Electroflotation Studies on Cu, Ni, Zn, and Cd with Ammonium Dodecyl Dithiocarbamate. Sep. Sci. Technol. 1989, 24, 145–150. [Google Scholar] [CrossRef]
- Alexandrova, L.; Nedialkova, T.; Nishkov, I. Electroflotation of Metal Ions in Waste Water. Int. J. Miner. Process. 1994, 41, 285–294. [Google Scholar] [CrossRef]
- Oussedik, S.M.; Khelifa, A. Reduction of Copper Ions Concentration in Wastewaters of Galvanoplastic Industry by Electroflotation. Desalination 2001, 139, 383. [Google Scholar] [CrossRef]
- Khelifa, A.; Moulay, S.; Naceur, A.W. Treatment of Metal Finishing Effluents by the Electroflotation Technique. Desalination 2005, 181, 27–33. [Google Scholar] [CrossRef]
- Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Chibane, M. Removal Turbidity and Separation of Heavy Metals Using Electrocoagulation-Electroflotation Technique. A Case Study. J. Hazard Mater. 2009, 164, 215–222. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Matis, K.A. Cadmium Ion Removal by Electroflotation onto Sewage Sludge Biomass. Int. J. Environ. Waste Manag. 2012, 9, 245–256. [Google Scholar] [CrossRef]
- Jiménez, C.; Talavera, B.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Study of the Production of Hydrogen Bubbles at Low Current Densities for Electroflotation Processes. J. Chem. Technol. Biotechnol. 2010, 85, 1368–1373. [Google Scholar] [CrossRef]
- Fukui, Y.; Yuu, S. Removal of Colloidal Particles in Electroflotation. AiChE J. 1985, 31, 201–208. [Google Scholar] [CrossRef]
- Khosla, N.K.; Venkatachalam, S.; Somasundaran, P. Pulsed Electrogeneration of Bubbles for Electroflotation. J. Appl. Electrochem. 1991, 21, 986–990. [Google Scholar] [CrossRef]
- Llerena, C.; Ho, J.C.K.; Piron, D.L. Effects of PH on Electroflotation of Sphalerite. Chem. Eng. Commun. 1996, 155, 217–228. [Google Scholar] [CrossRef]
- Zheng, C.; Kim, D.-S.; Park, Y.-S. Turbidity Removal of Kaolin in an Electrocoagulation/Flotation Process Using a Mesh-Type Aluminum Electrode. J. Environ. Sci. Int. 2017, 26, 563–572. [Google Scholar] [CrossRef]
- Jiménez, C.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Optimization of a Combined Electrocoagulation-Electroflotation Reactor. Environ. Sci. Pollut. Res. 2016, 23, 9700–9711. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, M.G.; Hoşten, Ç. A Comparative Study of Electrocoagulation and Coagulation of Aqueous Suspensions of Kaolinite Powders. J. Hazard Mater. 2010, 176, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Cisternas, L.A.; Gálvez, E.D. The Use of Seawater in Mining. Miner. Process. Extr. Metall. Rev. 2018, 39, 18–33. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Matis, K.A. Electroflotation Process: A Review. J. Mol. Liq. 2016, 220, 657–664. [Google Scholar] [CrossRef]
- Sarkar, M.S.K.A.; Donne, S.W.; Evans, G.M. Utilization of Hydrogen in Electroflotation of Silica. Adv. Powder Technol. 2011, 22, 482–492. [Google Scholar] [CrossRef]
- Vu, T.P.; Vogel, A.; Kern, F.; Platz, S.; Menzel, U.; Gadow, R. Characteristics of an Electrocoagulation-Electroflotation Process in Separating Powdered Activated Carbon from Urban Wastewater Effluent. Sep. Purif. Technol. 2014, 134, 196–203. [Google Scholar] [CrossRef]
- Barrera-Díaz, C.; Bilyeu, B.; Roa, G.; Bernal-Martinez, L. Physicochemical Aspects of Electrocoagulation. Sep. Purif. Rev. 2011, 40, 1–24. [Google Scholar] [CrossRef]
- Makuei, F.; Tadesse, B.; Albijanic, B.; Browner, R. Electroflotation of Ultrafine Chalcopyrite Particles with Sodium Oleate Collector. Miner. Eng. 2018, 120, 44–46. [Google Scholar] [CrossRef]
- Matis, K.A.; Peleka, E.N. Alternative Flotation Techniques for Wastewater Treatment: Focus on Electroflotation. Sep. Sci. Technol. 2010, 45, 2465–2474. [Google Scholar] [CrossRef]
- Kydros, K.A.; Gallios, G.P.; Matis, K.A. Electrolytic Flotation of Pyrite. J. Chem. Technol. Biotechnol. 1994, 59, 223–232. [Google Scholar] [CrossRef]
- Bhaskar Raju, G.; Khangaonkar, P.R. Electro-Flotation of Chalcopyrite Fines. Int. J. Miner. Process. 1982, 9, 133–143. [Google Scholar] [CrossRef]
- Hacha, R.R.; LeonardoTorem, M.; Gutiérrez Merma, A.; da Silva Coelho, V.F. Electroflotation of Fine Hematite Particles with Rhodococcus Opacus as a Biocollector in a Modified Partridge–Smith Cell. Miner. Eng. 2018, 126, 105–115. [Google Scholar] [CrossRef]
- Liu, A.; Fan, P.; Han, F.; Han, H.; Li, Z.; Wang, H.; Fan, M. Effect of Electroflotation on Quartz and Magnetite and Its Utilization on the Reverse Flotation of Magnetic Separation Concentrate. Miner. Eng. 2022, 175, 107292. [Google Scholar] [CrossRef]
- Tadesse, B.; Albijanic, B.; Makuei, F.; Browner, R. Recovery of Fine and Ultrafine Mineral Particles by Electroflotation—A Review. Miner. Process. Extr. Metall. Rev. 2019, 40, 108–122. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, W.; Cheng, C.Y. A Literature Review of Titanium Solvent Extraction in Chloride Media. Hydrometallurgy 2011, 105, 304–313. [Google Scholar] [CrossRef]
- Bewer, G.; Debrodt, H.; Herbst, H. Titanium for Electrochemical Processes. JOM 1982, 34, 37–41. [Google Scholar] [CrossRef]
- Mraz, R.; Krysa, J. Dimensionally Stables Anodes with a Long Lifetime for Electroflotation. In Precision Process Technology; Springer: Berlin/Heidelberg, Germany, 1993; pp. 681–688. [Google Scholar] [CrossRef]
- Ma, M.; Bruckard, W.J.; McCall, D. Role of Water Structure-Making/Breaking Ions in the Cationic Flotation of Kaolinite: Implications for Iron Ore Processing. Int. J. Min. Eng. Miner. Process. 2012, 1, 17–20. [Google Scholar] [CrossRef]
- Uribe, L.; Gutierrez, L.; Laskowski, J.S.; Castro, S. Role of Calcium and Magnesium Cations in the Interactions between Kaolinite and Chalcopyrite in Seawater. Physicochem. Probl. Miner. Process. 2017, 53, 737–749. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X. Chemical Composition and Surface Property of Kaolins. Miner. Eng. 2003, 16, 1279–1284. [Google Scholar] [CrossRef]
- Arancibia-Bravo, M.; Lucay, F.; Sepulveda, F.; Cisternas, L. On the Use of Na2SO3 as a Pyrite Depressant in Saline Systems and the Presence of Kaolinite. Physicochem. Probl. Miner. Process. 2021, 57, 168–179. [Google Scholar] [CrossRef]
- Yukselen, Y. Zeta Potential of Kaolinite in the Presence of Alkali. Alkaline Earth and Hydrolyzable Metal Ions. Water Air Soil Pollut. 2003, 145, 155–168. [Google Scholar] [CrossRef]
- Zuki, N.M.; Ismail, N.; Omar, F.M. Evaluation of Zeta Potential and Particle Size Measurements of Multiple Coagulants in Semiconductor Wastewater. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; p. 020036. [Google Scholar]
- Dohnalová, Z.; Svoboda, L.; Sulcová, P. Characterization of Kaolin Dispersion Using Acoustic and Electroacoustic Spectroscopy. J. Min. Metall. Sect. B Metall. 2008, 44, 63–72. [Google Scholar] [CrossRef]
- Gupta, V.; Miller, J.D. Surface Force Measurements at the Basal Planes of Ordered Kaolinite Particles. J. Colloid Interface Sci. 2010, 344, 362–371. [Google Scholar] [CrossRef]
- Tang, Y.C.; Huang, X.H.; Wu, C.N. Removal of Arsenic (III) from Drinking Water by Adsorption with Titanium and Ferrous Oxide Nanoparticles. Asian J. Chem. 2013, 25, 2491–2496. [Google Scholar] [CrossRef]
- Ge, J.; Qu, J.; Lei, P.; Liu, H. New Bipolar Electrocoagulation-Electroflotation Process for the Treatment of Laundry Wastewater. Sep. Purif. Technol. 2004, 36, 33–39. [Google Scholar] [CrossRef]
- Safwat, S.M. Treatment of Real Printing Wastewater Using Electrocoagulation Process with Titanium and Zinc Electrodes. J. Water Process Eng. 2020, 34, 101137. [Google Scholar] [CrossRef]
- Mansour, L.B.; Kolsi, K.; Ksentini, I. Influence of Current Density on Oxygen Transfer in an Electroflotation Cell. J. Appl. Electrochem. 2007, 37, 887–892. [Google Scholar] [CrossRef]
- Kotti, M.; Ksentini, I.; Ben Mansour, L. Effects of Impurities on Oxygen Transfer Rate in the Electroflotation Process. Desalination Water Treat. 2011, 36, 34–40. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, Q.; Li, X.; Yao, F.; Xie, L.; Zhao, J.; Chen, F.; Xie, T.; Zeng, G. Electrochemically Induced Pitting Corrosion of Ti Anode: Application to the Indirect Reduction of Bromate. Chem. Eng. J. 2016, 289, 114–122. [Google Scholar] [CrossRef]
- El-Ghenymy, A.; Alsheyab, M.; Khodary, A.; Sirés, I.; Abdel-Wahab, A. Corrosion Behavior of Pure Titanium Anodes in Saline Medium and Their Performance for Humic Acid Removal by Electrocoagulation. Chemosphere 2020, 246, 125674. [Google Scholar] [CrossRef] [PubMed]
- Merzouk, B.; Madani, K.; Sekki, A. Using Electrocoagulation-Electroflotation Technology to Treat Synthetic Solution and Textile Wastewater. Two Case Studies. Desalination 2010, 250, 573–577. [Google Scholar] [CrossRef]
- Sandbank, E.; Shelef, G.; Wachs, A.M. Improved Electroflotation for the Removal of Suspended Solids from Algal Pond Effluents. Water Res. 1974, 8, 587–592. [Google Scholar] [CrossRef]
- Morozov, A.F.; Kon’shina, G.I.; Morozova, V.P. Electroflotation Extraction of Suspensins Fom Waste Thickeners. Sov. Min. 1981, 16, 121–123. [Google Scholar]
- Manohar, C.; Kelkar, V.K.; Yakhmi, J.V. Electroflotation of Colloids without Surfactants. J. Colloid Interface Sci. 1982, 89, 54–60. [Google Scholar] [CrossRef]
- Murugananthan, M.; Raju, G.B.; Prabhakar, S. Separation of Pollutants from Tannery Effluents by Electro Flotation. Sep. Purif. Technol. 2004, 40, 69–75. [Google Scholar] [CrossRef]
- Zuo, Q.; Chen, X.; Li, W.; Chen, G. Combined Electrocoagulation and Electroflotation for Removal of Fluoride from Drinking Water. J. Hazard Mater. 2008, 159, 452–457. [Google Scholar] [CrossRef]
- Balla, W.; Essadki, A.H.; Gourich, B.; Dassaa, A.; Chenik, H.; Azzi, M. Electrocoagulation/Electroflotation of Reactive. Disperse and Mixture Dyes in an External-Loop Airlift Reactor. J. Hazard Mater. 2010, 184, 710–716. [Google Scholar] [CrossRef]
- Tumsri, K.; Chavalparit, O. Optimizing Electrocoagulation-Electroflotation Process for Algae Removal. In Proceedings of the 2nd International Conference on Environmenta l Science and Technology IPCBEE, Singapore, 26–28 February 2011; Volume 6, pp. 452–456. [Google Scholar]
- Attour, A.; Touati, M.; Tlili, M.; Ben Amor, M.; Lapicque, F.; Leclerc, J.-P. Influence of Operating Parameters on Phosphate Removal from Water by Electrocoagulation Using Aluminum Electrodes. Sep. Purif. Technol. 2014, 123, 124–129. [Google Scholar] [CrossRef]
- Kobya, M.; Can, O.T.; Bayramoglu, M. Treatment of Textile Wastewaters by Electrocoagulation Using Iron and Aluminum Electrodes. J. Hazard Mater. 2003, 100, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Mechelhoff, M.; Kelsall, G.H.; Graham, N.J.D. Electrochemical Behaviour of Aluminium in Electrocoagulation Processes. Chem. Eng. Sci. 2013, 95, 301–312. [Google Scholar] [CrossRef]
- Liu, T.; Tan, Y.-J.; Lin, B.Z.M.; Aung, N.N. Novel Corrosion Experiments Using the Wire Beam Electrode, (IV) Studying Localised Anodic Dissolution of Aluminium. Corros. Sci. 2006, 48, 67–78. [Google Scholar] [CrossRef]
- Mansouri, K.; Ibrik, K.; Bensalah, N.; Abdel-Wahab, A. Anodic Dissolution of Pure Aluminum during Electrocoagulation Process: Influence of Supporting Electrolyte, Initial PH, and Current Density. Ind. Eng. Chem. Res. 2011, 50, 13362–13372. [Google Scholar] [CrossRef]
- Cao, L.-M.; Lu, D.; Zhong, D.-C.; Lu, T.-B. Prussian Blue Analogues and Their Derived Nanomaterials for Electrocatalytic Water Splitting. Coord. Chem. Rev. 2020, 407, 213156. [Google Scholar] [CrossRef]
- Rajakaruna, R.M.P.I.; Ariyarathna, I.R. Functionalized Metal-Based Nanoelectrocatalysts for Water Splitting. In Handbook of Functionalized Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 83–109. [Google Scholar]
- Mohtashami, R.; Shang, J.Q. Treatment of Automotive Paint Wastewater in Continuous-Flow Electroflotation Reactor. J. Clean. Prod. 2019, 218, 335–346. [Google Scholar] [CrossRef]
- Feng, S.; Yu, Y.; Li, J.; Luo, J.; Deng, P.; Jia, C.; Shen, Y. Recent Progress in Seawater Electrolysis for Hydrogen Evolution by Transition Metal Phosphides. Catal. Commun. 2022, 162, 106382. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrid, F.M.G.; Arancibia-Bravo, M.P.; Sepúlveda, F.D.; Lucay, F.A.; Soliz, A.; Cáceres, L. Ultrafine Kaolinite Removal in Recycled Water from the Overflow of Thickener Using Electroflotation: A Novel Application of Saline Water Splitting in Mineral Processing. Molecules 2023, 28, 3954. https://doi.org/10.3390/molecules28093954
Madrid FMG, Arancibia-Bravo MP, Sepúlveda FD, Lucay FA, Soliz A, Cáceres L. Ultrafine Kaolinite Removal in Recycled Water from the Overflow of Thickener Using Electroflotation: A Novel Application of Saline Water Splitting in Mineral Processing. Molecules. 2023; 28(9):3954. https://doi.org/10.3390/molecules28093954
Chicago/Turabian StyleMadrid, Felipe M. Galleguillos, María P. Arancibia-Bravo, Felipe D. Sepúlveda, Freddy A. Lucay, Alvaro Soliz, and Luis Cáceres. 2023. "Ultrafine Kaolinite Removal in Recycled Water from the Overflow of Thickener Using Electroflotation: A Novel Application of Saline Water Splitting in Mineral Processing" Molecules 28, no. 9: 3954. https://doi.org/10.3390/molecules28093954