Unlocking the Conformational Changes of P2Y12: Exploring an Acridinone Compound’s Effect on Receptor Activity and Conformation
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Najjar, B.O.; Saqallah, F.G.; Abbas, M.A.; Al-Hijazeen, S.Z.; Sibai, O.A. P2Y12 antagonists: Approved drugs, potential naturally isolated and synthesised compounds, and related in-silico studies. Eur. J. Med. Chem. 2022, 227, 113924. [Google Scholar] [CrossRef] [PubMed]
- Al-Najjar, B.O.; Abbas, M.A.; Sibai, O.A.; Saqallah, F.G.; Al-Kabariti, A.Y. QSAR, structure-based pharmacophore modelling and biological evaluation of novel platelet ADP receptor (P2Y12) antagonist. RSC Med. Chem. 2023, 14, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Al-Najjar, B.O. Investigation of 15-hydroxyprostaglandin dehydrogenase catalytic reaction mechanism by molecular dynamics simulations. J. Mol. Graph. Model. 2018, 80, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Al-Anazi, M.; Al-Najjar, B.O.; Khairuddean, M. Structure-Based Drug Design Studies Toward the Discovery of Novel Chalcone Derivatives as Potential Epidermal Growth Factor Receptor (EGFR) Inhibitors. Molecules 2018, 23, 3203. [Google Scholar] [CrossRef]
- Al-Anazi, M.; Khairuddean, M.; Al-Najjar, B.O.; Murwih Alidmat, M.; Nur Syazni Nik Mohamed Kamal, N.; Muhamad, M. Synthesis, anticancer activity and docking studies of pyrazoline and pyrimidine derivatives as potential epidermal growth factor receptor (EGFR) inhibitors. Arab. J. Chem. 2022, 15, 103864. [Google Scholar] [CrossRef]
- Xie, C.-L.; Zhang, D.; Guo, K.-Q.; Yan, Q.-X.; Zou, Z.-B.; He, Z.-H.; Wu, Z.; Zhang, X.-K.; Chen, H.-F.; Yang, X.-W. Meroterpenthiazole A, a unique meroterpenoid from the deep-sea-derived Penicillium allii-sativi, significantly inhibited retinoid X receptor (RXR)-α transcriptional effect. Chin. Chem. Lett. 2022, 33, 2057–2059. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Zhang, X.; Chen, L.; Zheng, M.; Zhang, J.; Brust, P.; Deuther-Conrad, W.; Huang, Y.; Jia, H. Synthesis and characterization of the two enantiomers of a chiral sigma-1 receptor radioligand: (S)-(+)- and (R)-(-)-[18F]FBFP. Chin. Chem. Lett. 2022, 33, 3543–3548. [Google Scholar] [CrossRef]
- Li, M.; Xia, Q.; Lv, S.; Tong, J.; Wang, Z.; Nie, Q.; Yang, J. Enhanced CO2 capture for photosynthetic lycopene production in engineered Rhodopseudomonas palustris, a purple nonsulfur bacterium. Green Chem. 2022, 24, 7500–7518. [Google Scholar] [CrossRef]
- Harismah, K.; Da’i, M.; Azimzadeh-Sadeghi, S.; Poursafa, P.; Mirzaei, M.; Salarrezaei, E. Interactions of coumarin derivatives with monoamine oxidase biomarkers: In silico approach. Main Group Chem. 2022, 21, 641–650. [Google Scholar] [CrossRef]
- Green ChemistryProtoplasmaMirzaei, M.; Harismah, K.; Soleimani, M.; Mousavi, S. Inhibitory effects of curcumin on aldose reductase and cyclooxygenase-2 enzymes. J. Biomol. Struct. Dyn. 2021, 39, 6424–6430. [Google Scholar]
- Zhang, K.; Yang, Y.; Ge, H.; Wang, J.; Lei, X.; Chen, X.; Wan, F.; Feng, H.; Tan, L. Neurogenesis and Proliferation of Neural Stem/Progenitor Cells Conferred by Artesunate via FOXO3a/p27Kip1 Axis in Mouse Stroke Model. Mol. Neurobiol. 2022, 59, 4718–4729. [Google Scholar] [CrossRef] [PubMed]
- ChemSpider N,N′-Bis(9-oxo-9,10-dihydro-2-acridinyl)nonanediamide. Available online: http://www.chemspider.com/Chemical-Structure.387488.html (accessed on 29 April 2023).
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Von Bertalanffy, L. Acridine orange fluorescence in cell physiology, cytochemistry and medicine. Protoplasma 1963, 57, 51–83. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Gao, Z.-G.; Paoletta, S.; Zhang, D.; Han, G.W.; Li, T.; Ma, L.; Zhang, W.; Müller, C.E.; et al. Agonist-bound structure of the human P2Y12 receptor. Nature 2014, 509, 119–122. [Google Scholar] [CrossRef]
- Dandan, Z.; Qiang, Z.; Beili, W. Structural Studies of G Protein-Coupled Receptors. Mol. Cells 2015, 38, 836–842. [Google Scholar]
- Hao, M.; Li, Y.; Wang, Y.; Yan, Y.; Zhang, S. Combined 3D-QSAR, Molecular Docking, and Molecular Dynamics Study on Piperazinyl-Glutamate-Pyridines/Pyrimidines as Potent P2Y12 Antagonists for Inhibition of Platelet Aggregation. J. Chem. Inf. Model. 2011, 51, 2560–2572. [Google Scholar] [CrossRef]
- Paoletta, S.; Sabbadin, D.; Von Kügelgen, I.; Hinz, S.; Katritch, V.; Hoffmann, K.; Abdelrahman, A.; Straßburger, J.; Baqi, Y.; Zhao, Q.; et al. Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. J. Comput. Aided Mol. Des. 2015, 29, 737–756. [Google Scholar] [CrossRef]
- Haghighi, F. Prediction of Ticagrelor’s Effect on the Lipid Composition and the P2Y12 Receptor of Platelet’s Membrane by Molecular Dynamic and Docking. Ph.D. Thesis, Université de Franche-Comté, Besançon, France, 2019. [Google Scholar]
- Parravicini, C.; Ranghino, G.; Abbracchio, M.P.; Fantucci, P. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors. BMC Bioinform. 2008, 9, 263. [Google Scholar] [CrossRef]
- Kawaguchi, A.; Sato, M.; Kimura, M.; Ichinohe, T.; Tazaki, M.; Shibukawa, Y. Expression and function of purinergic P2Y12 receptors in rat trigeminal ganglion neurons. Neurosci. Res. 2015, 98, 17–27. [Google Scholar] [CrossRef]
- Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham III, T.E.; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi, D.; Gilson, M.K.; et al. AMBER 2018; University of California: San Francisco, CA, USA, 2018. [Google Scholar]
- Dassault-Systèmes. BIOVIA, Discovery Studio Modeling Environment; 16.1; Dassault Systèmes Biovia: San Diego, CA, USA, 2016. [Google Scholar]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Jakalian, A.; Bush, B.L.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 2000, 21, 132–146. [Google Scholar] [CrossRef]
- Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 2002, 23, 1623–1641. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Leach, A.R. Molecular Modelling: Principles and Applications; Prentice Hall: Hoboken, NJ, USA, 2001. [Google Scholar]
- Li, P.; Song, L.F.; Merz, K.M., Jr. Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model. J. Chem. Theory Comput. 2015, 11, 1645–1657. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Durrant, J.D.; Votapka, L.; Sørensen, J.; Amaro, R.E. POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics. J. Chem. Theory Comput. 2014, 10, 5047–5056. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
Complex | Acceptor | Donor | Occupancy (%) | Average Distance (Å) | Average Angle (Å) |
---|---|---|---|---|---|
4PXZ | GLU281@OE2 | NSC159@H47/N9 * | 90.93 | 2.74 | 154.18 |
NSC159@O39 * | ASN159@HD22/ND2 | 68.41 | 2.84 | 159.27 | |
NSC159@O17 * | TYR105@HH/OH | 31.94 | 2.75 | 160.15 | |
NSC159@O17 * | TYR259@HH/OH | 17.84 | 2.77 | 162.74 | |
NSC159@O23 * | LYS179@HZ3/NZ | 16.03 | 2.81 | 154.93 | |
NSC159@O23 * | LYS179@HZ2/NZ | 15.73 | 2.81 | 155.21 | |
NSC159@O23 * | LYS179@HZ1/NZ | 15.24 | 2.81 | 155.19 | |
CYS79@O | NSC159@H61/N24 * | 11.17 | 2.88 | 161.19 | |
ASN191@OD1 | NSC159@H66/N31 * | 7.98 | 2.83 | 151.56 | |
NSC159@O17 * | GLN263@HE21/NE2 | 6.59 | 2.86 | 159.53 | |
SER101@O | NSC159@H61/N24 * | 5.93 | 2.88 | 156.16 | |
4NTJ | ASN191@OD1 | NSC159@H66/N31 * | 64.68 | 2.83 | 162.28 |
NSC159@O17 * | HIS187@HE2/NE2 | 37.92 | 2.84 | 155.02 | |
NSC159@O23 * | LYS280@HZ2/NZ | 14.10 | 2.81 | 154.99 | |
NSC159@O23 * | LYS280@HZ1/NZ | 12.73 | 2.81 | 154.62 | |
NSC159@O23 * | LYS280@HZ3/NZ | 12.05 | 2.81 | 154.49 | |
NSC159@O39 * | ASN159@HD22/ND2 | 10.00 | 2.85 | 159.42 | |
PHE252@O | NSC159@H47/N9 * | 9.29 | 2.85 | 159.95 | |
NSC159@O23 * | TYR105@HH/OH | 6.15 | 2.78 | 159.14 |
Energy Component (kcal/mol) | Energy Value (kcal/mol) per Complex | |
---|---|---|
NSC618159-4PXZ | NSC618159-4NTJ | |
van der Waals Energy (ΔEvdW) | −71.783 | −64.022 |
±4.0481 | ±3.4897 | |
Electrostatic Energy (ΔEEL) | −49.4273 | −54.907 |
±6.2724 | ±7.715 | |
Polar Solvation Energy (ΔEPB) | 84.6431 | 83.1979 |
±8.5487 | ±9.1691 | |
Non-Polar Solvation Energy (ΔENPOLAR) | −6.9489 | −5.9511 |
±0.1474 | ±0.2037 | |
Total Gas Phase Free Energy (ΔGgas) | −121.2103 | −118.929 |
±6.9472 | ±7.9284 | |
Total Solvation Free Energy (ΔGsolv) | 77.6942 | 77.2468 |
±8.5099 | ±9.1647 | |
Total Energy (ΔGbind) | −43.5161 | −41.6822 |
±6.0448 | ±7.3535 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Najjar, B.O.; Saqallah, F.G. Unlocking the Conformational Changes of P2Y12: Exploring an Acridinone Compound’s Effect on Receptor Activity and Conformation. Molecules 2023, 28, 3878. https://doi.org/10.3390/molecules28093878
Al-Najjar BO, Saqallah FG. Unlocking the Conformational Changes of P2Y12: Exploring an Acridinone Compound’s Effect on Receptor Activity and Conformation. Molecules. 2023; 28(9):3878. https://doi.org/10.3390/molecules28093878
Chicago/Turabian StyleAl-Najjar, Belal O., and Fadi G. Saqallah. 2023. "Unlocking the Conformational Changes of P2Y12: Exploring an Acridinone Compound’s Effect on Receptor Activity and Conformation" Molecules 28, no. 9: 3878. https://doi.org/10.3390/molecules28093878
APA StyleAl-Najjar, B. O., & Saqallah, F. G. (2023). Unlocking the Conformational Changes of P2Y12: Exploring an Acridinone Compound’s Effect on Receptor Activity and Conformation. Molecules, 28(9), 3878. https://doi.org/10.3390/molecules28093878