Next Article in Journal
Differentiation of Goat Meat Freshness Using Gas Chromatography with Ion Mobility Spectrometry
Next Article in Special Issue
Pharmacological Properties of Four Plant Species of the Genus Anabasis, Amaranthaceae
Previous Article in Journal
Evaluation of the Impact of Two Thiadiazole Derivatives on the Dissolution Behavior of Mild Steel in Acidic Environments
Previous Article in Special Issue
Role of Stereochemistry on the Biological Activity of Nature-Inspired 3-Br-Acivicin Isomers and Derivatives
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Antibacterial and Antifungal Terpenes from the Medicinal Angiosperms of Asia and the Pacific: Haystacks and Gold Needles

by
Christophe Wiart
1,*,
Geethanjali Kathirvalu
2,
Chandramathi Samudi Raju
2,
Veeranoot Nissapatorn
3,
Mohammed Rahmatullah
4,
Alok K. Paul
5,
Mogana Rajagopal
6,
Jaya Seelan Sathiya Seelan
1,
Nor Azizun Rusdi
1,
Scholastica Lanting
1 and
Mazdida Sulaiman
7
1
Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
2
Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
3
Research Excellence Centre for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
4
Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
5
School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
6
Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
7
Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
*
Author to whom correspondence should be addressed.
Molecules 2023, 28(9), 3873; https://doi.org/10.3390/molecules28093873
Submission received: 15 December 2022 / Revised: 17 March 2023 / Accepted: 18 March 2023 / Published: 4 May 2023

Abstract

:
This review identifies terpenes isolated from the medicinal Angiosperms of Asia and the Pacific with antibacterial and/or antifungal activities and analyses their distribution, molecular mass, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and library searches from 1968 to 2022. About 300 antibacterial and/or antifungal terpenes were identified during this period. Terpenes with a MIC ≤ 2 µg/mL are mostly amphiphilic and active against Gram-positive bacteria, with a molecular mass ranging from about 150 to 550 g/mol, and a polar surface area around 20 Ų. Carvacrol, celastrol, cuminol, dysoxyhainic acid I, ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one, ergosterol-5,8-endoperoxide, geranylgeraniol, gossypol, 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide, 7-hydroxycadalene, 17-hydroxyjolkinolide B, (20R)-3β-hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide, mansonone F, (+)-6,6′-methoxygossypol, polygodial, pristimerin, terpinen-4-ol, and α-terpineol are chemical frameworks that could be candidates for the further development of lead antibacterial or antifungal drugs.

1. Introduction

The phylogenic tree of Angiosperms comprises 11 major taxa or clades so far grouped into: (i) Basal Angiosperms (Protomagnoliids, Magnoliids, Monocots, and Eudicots), (ii) Core Angiosperms (Core Eudicots, Eudicots, Rosids, Fabids, and Malvids), and (iii) Upper Angiosperms (Asterids, Lamiids, and Campanuliids), [1]. Within each clade, secondary metabolites are synthesised as weapons against phytopathogenic bacteria and fungi. Phytoanticipins are present in plants before microbial challenge and phytoalexins are produced by plants under microbial attack [2]. Terpenes (from the Latin terebinthina: turpentine) are formed by the oligomerisation of isoprene units into four classes: monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), and triterpenes (C30), and within each class, different folding and cyclisation result in a wealth of chemical frameworks [3].
The outer structure of bacteria and fungi provides resistance to terpenes and other xenobiotics. Gram-negative bacteria, compared to Gram-positive bacteria, are more resistant to plant natural products and antibiotics because they are packed in a hydrophilic and negatively charged shield of lipopolysaccharides [4]. However, water, nutrients as well as hydrophilic, and, to a lesser extent, amphiphilic xenobiotics with a molecular mass below 600 g/mol, cross this outer layer through large transmembrane protein channels known as porins or aquaporins [5].
In most fungal species, the inner cell wall consists of a core of covalently attached branched β-(1,3) glucan and chitin [6]. The yeast cell wall is made of β-(1,3) glucan and mannoproteins and is negatively charged [7]. Yeasts are more sensitive to biocides because they have wall bud scars left after division [6]. Filamentous fungi are negatively charged, the wall is thicker, and much more complex, hence more resistant to antifungal natural products [6]. In addition, Gram-positive bacteria, Gram-negative bacteria as well as yeasts and filamentous fungi have pumps in their walls that efflux antimicrobials [8]. Five types of bacterial efflux pumps have so far been identified: ABC (ATP Binding Cassette), Resistance Nodulation cell-Division (RND), Major Facilitators (MF), Small Multidrug Resistance (SMR), and Multidrug and Toxic compound Extrusion (MATE). For instance, within MF is the multidrug transporter NorA, which effluxes fluoroquinolones out of the cytoplasm of S. aureus [9].
The golden era of antibiotics and antifungals is over and there is now the urgency to identify antimicrobial agents as well as efflux pump inhibitors with original chemical frameworks. Angiosperms, particularly those used to treat microbial infections in Asia and the Pacific, are a vast source of natural products with chemical structures completely different from conventional antimicrobials often coming from the prokaryotic world. These plants have been studied for about the last 60 years, resulting in the publication of a mammoth quantity of experimental data, but not a single antibiotic or antifungal for oral or parenteral use has come from Angiosperms.
This review therefore aims to answer the following questions: (i) What are the antibacterial and antifungal activities of each class of terpenes? (ii) What is the distribution of terpenes among the various clades of Angiosperms? (iii) What is the strength and spectrum of activity of terpenes? (iv) What is the influence of molecular mass? (v) What is the influence of solubility and polar surface area? (vi) What are the structure-activity relationships? (vii) What are the mechanism of action of terpenes? (viii) What are the antibiotic and/or antifungal potentiating effects of terpenes? All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and library searches from 1968 to 2022.

2. Monoterpenes

Plants in the clades Magnoliids, Monocots, Malvids, and Lamiids produce volatile linear monoterpenes present in essential oils (Figure 1). Minimum inhibiting concentrations (MIC) are listed in Table S1.

2.1. Linear Monoterpenes

The condensation of dimethyl allyl diphosphate and isopentenyl diphosphate yields antibacterial and antifungal monoterpenes [10]. Examples are geraniol (1) (Cymbopogon citratus (DC.) Stapf.; Poaceae; Monocots), nerol (2), neral (3) (Melissa officinalis L.; Lamiaceae, Lamiids), geranyl acetate (4), geranial (5) (also known as citral), geranial (6), citronellol (6), citronellal (7) (Eucalyptus citriodora Hook.; Myrtaceae; Malvids), citronellic acid (8), linalool (Cinnamomum bejolghota (Buch.-Ham.) Sweet; Lauraceae; Magnoliids), and myrcene (10) (Melaleuca alternifolia Cheel; Myrtaceae) [11,12,13,14,15,16,17,18,19,20,21].

2.2. Cyclic Monoterpenes

Cyclic monoterpenes are antibacterial and antifungal such as borneol (11) (Blumea balsamifera (L.) DC.; Asteraceae; Campanuliids), isoborneol (12) (Curcuma wenyujin Y.H. Chen & C. Ling; Zingiberaceae; Monocots), camphor (13) (Dryobalanops aromatica C.F. Gaertn.; Dipterocarpaceae; Malvids), α-pinene (14) (Altingia excelsa Noronha; Altingiaceae; Core Eudicots), α-pinene-7β-O-β-D-2,6-diacetylglucopyranoside (15) (Blumea lacera (Burm. f.) DC.), limonene (16), isomenthone (17) (Mentha piperita L.; Lamiaceae), piperitone (18), menthol (19), carvone (20) (Mentha spicata L.), car-3-ene (21), car-3-ene-2,5-dione (22), and asarinol A (23) (Figure 2) [11,22,23,24,25,26,27,28,29,30,31].
α-Terpineol (24) in Thymus vulgaris L. (Lamiaceae) is a broad-spectrum antibacterial [20,32] as well as terpinen-4-ol (25) and δ-terpineol (26) (Cinnamomum longepaniculatum (Gamble) N. Chao ex H.W. Lide), 1,8-cineole (27) (Eucalyptus globulus Labill.) [13,17,18,32], γ-terpinene (28), α-terpinene (29), p-cymene (31), and cuminol (32) (Cuminum cyminum L.; Apiaceae) [32,33,34,35,36,37,38].
Thymol (33) in Trachyspermum ammi (L.) Sprague (Apiaceae; Campanuliids) is active against a broad-spectrum of bacteria and fungi [29,36]. 7-Acetyl-8,9-dihydroxy thymol (34) and 7,8-dihydroxy-9-butyryl thymol (35) from Lonicera japonica Thunb. (Caprifoliaceae; Campanuliids) are antibacterial [39]. Thymoquinone (36) (Nigella sativa L.; Ranunculaceae; Eudicots) [40,41,42,43] and carvacrol (37) (Origanum vulgare L.; Lamiaceae) are broad-spectrum antibacterial and antifungals [29].

3. Sesquiterpenes

MIC are listed in Table S1.

3.1. Linear Sesquiterpenes

Farnesol (38) and farnesal (39) are antibacterial and antifungal and originate from the condensation of geranyl diphosphate and isopentenyl pyrophosphate [14] (Figure 3).

3.2. Cyclic Sesquiterpenes

Cyclic sesquiterpenes originate from the farnesyl and nerolidyl cations [44] (Figure 4).
Plants in the Zingiberaceae and Costaceae families (Monocots) produce germacrane sesquiterpenes [44,45], which are on average broad-spectrum antibacterials such as germacrone (40), dehydrocurdione (41), and 1(10),4(5)-diepoxygermacrone (42) (Curcuma heyneana Valeton & Zijp) [46]. Germacrone (40), curdione (43), and β-elemene (44) in C. wenyujin are active against Malassezia furfur (ATCC 44344) [37]. Costunolide (45) (Costus speciosus (J. Koenig ex Retz.) Sm.) is antifungal [47]. Other antibacterial germacrane sesquiterpenes are found in the Burseraceae (Malvids) and Asteraceae [48,49].
Plants in the Magnoliids, Monocots, Malvids, Lamiids, and Campanuliids produce antibacterial and antifungal guaiane sesquiterpenes [50]. These are found, for instance, in C. speciosus [47] or Syzygium cumini (L.) Skeels (Myrtaceae) [24], and Cynara scolymus L. (also known as artichoke) (Asteraceae), the latter producing the anticandidal cynaropicrin (46) [51]. Other guaiane sesquiterpenes have been identified from Torilis japonica (Houtt.) DC. Ferula diversivittata Regel & Schmalh., both in the Apiaceae [52,53]. An example of the antifungal xanthanes is deacetylxanthumine (47) (Xanthium strumarium L.; Asteraceae) [54].
Broad-spectrum antibacterial and antifungal eudesmane sesquiterpenes found, for instance, in Laurus nobilis L. Cinnamomum cassia (L.) J. Presl (Lauraceae) [55,56,57]. Isoalantolactone (48) in Abutilon indicum (L.) Sweet (Malvaceae; Malvids) and Inula racemosa Hook f. (Asteraceae) inhibited Aspergillus flavus, Aspergillus niger, Geotrichum candidum, Candida tropicalis, Candida albicans, Gaeumannomyces graminis, Rhizoctonia cerealis, Phytophthora capsici, Bacillus subtilis, Escherichia coli, Pseudomonas fluorecens, Sarcina lutea, and Staphylococcus aureus [58]. In the Malvids, Aquilaria sinensis (Lour.) Spreng (Thymeleaceae) has antibacterial and antifungal eudesmanes [59].
Plants in the Celastraceae produce a unique series of antimycobacterial and antifungal dihydroagarofuran sesquiterpenes such as microjaponin (49) (Microtropis japonica (Franch. & Sav.) Hallier f.) [60,61], 8-acetoxymutangin (50) [60], and monichinine H (51) (Monimopetalum chinense Rehder) [62,63,64].
Antibacterial and antifungal cadinane sesquiterpenes are common in the Bombacaceae, Malvaceae, and Sterculiaceae (Malvids) [65,66]. In Gossypium arboreum L. (Malvaceae), gossypol (52) is specifically active against Gram-positive bacteria and fungi [67,68]. 7-Hydroxycadalene (54), gossypol (52), and (+)-6,6′-methoxygossypol (53) inhibited the growth of Gram-positive bacteria including Vancomycin-resistant Enterococcus faecium [62,63,64,65,66,67,68,69,70].
Mansonone E (55) is fungicidal and mansonone F (56) (Helicteres angustifolia L. (Sterculiaceae; Malvids) is active against MRSA [71]. Other examples are cedrelanol (57) (Commiphora Jacq) [67,72] or (+) 8-hydroxy calamenene (58) in the genus Dysoxylum Bl. (Meliaceae) [73,74]. Cadinane sesquiterpenes in Polygonum viscosum Buch.-Ham. ex D. Don (Polygonaceae; Malvids) are active against resistant strains of E. coli and MRSA [75,76].
An example of antifungal bisabolane sesquiterpene is 4-(1,5-dimethyl-3-oxo-4-hexenyl) benzoic acid (59) (Bridelia retusa (L.) A. Juss.; Phyllanthaceae; Fabids), which is active against Cladosporium cladosporioides [76]. Rudbeckia laciniata L. (Asteraceae) produces antimycobaterial bisabolane endoperoxide sesquiterpenes [77]. Another instance is artemisinin (60) (Artemisia annua L.; Asteraceae) with V. cholerae [78].
α-Humulene (61) (Premna integrifolia L.; Verbenaceae; Lamiids) is a broad-spectrum antibacterial [79,80]. Bactericidal and anticandidal humulanes occur in Zingiber cassumunar Roxb. (Zingiberaceae) and Psidium guajava L. (Myrtaceae) [81,82,83,84,85].

3.3. Miscellaneous

These are lindenane sesquiterpene (Chloranthus japonicus Siebold; Chloranthaceae; Protomagnoliids) [86], α-santalol (62) and β-santalol (63) (Santalum album L.; Santalaceae; Malvids) [87,88,89], allo-aromadendranes (Chisocheton penduliflorus Planch. ex Hiern; Meliaceae), polygodial (bactericidal) (64) (Polygonum hydropiper L.; Polygonaceae) [90,91,92], cyclofarneanes (Premna L. (Verbenaceae) [93], and unusual sesquiterpenes in Glyptopetalum calocarpum (Kurz) Prain (Celastraceae) that are active against Gram-positive bacteria and Microsporum gypseum [94].

4. Diterpenes

MIC are listed in Table S1.

4.1. Linear Diterpenes

The addition of an isoprene to farnesol diphosphate yields geranylgeranyl disphosphate from which geranylgeraniol (65) is derived, active against S. aureus (FDA209P) [95] (Figure 5). Partial reduction in geranylgeranyl disphosphate forms (E)-phytol (66) (Morinda citrifolia L.; Rubiaceae; Lamiids) inhibited the growth of S. aureus (FDA209P) [87] and Mycobacterium tuberculosis (H37Rv) (MIC: 32 µg/mL) [96].

4.2. Cyclic Diterpenes

The cyclization of geranylgeranyl diphosphate accounts for the formation of all antibacterial and antifungal cyclic diterpenes (Figure 6).
Pimarane diterpenes in Ceriops tagal (Perr.) C.B. Rob. (Rhizophoraceae; Fabids) or Toona ciliata M. Roem. (Meliaceae) such as toonaciliatin M (67) are active towards Trichophyton rubrum (MIC: 12.5 µg/mL). Abietane diterpenes such as 17-hydroxyjolkinolide B (68) in Euphorbia fischeriana Steud. (Euphorbiaceae; Fabids) are active against Mycobacterium smegmatis [89,97,98,99]. Cryptotanshinone (69) and dihydrotanshinone I (70) from Salvia miltiorrhiza Bunge (Lamiaceae) are antibacterial and antifungal [100]. Of note, dihydrotanshinone I (70) protected mice against C. albicans at a dose of 5 mg/kg [101]. Carnosic acid (71) and carnosol (72) from Rosmarinus officinalis L. (Lamiaceae) are antibacterial against oral pathogens and are anticandidal [102,103,104].
Plants in the Fabaceae bring to being antimycobacterial furanoditerperne cassanes such as 6β-cinnamoyl-7β-hydroxyvouacapen-5α-ol (73) (Caesalpinia pulcherrima (L.) Sw.) [105]. Niloticane (74), in Acacia arabica (Lam.) Willd. [106] and neocaesalpin P (75) (Caesalpinia bonduc (L) Roxb.), is broadly antibacterial [107]. Oryza sativa L. (Poaceae), when experimentally challenged with Magnaporthe grisea, generates phytocassane B (76), active against the germination of and prevention of the spore germination of M. grisea (ED50: 4 μg/mL) [108]. Labdane diterpenes are broad-spectrum antibacterial and antifungal principles such as (E)-8β, 17-epoxylabd-12-ene-15,16-dial (77) in Alpinia nigra (Gaertn.) B.L. Burtt (Zingiberaceae) [109,110]. Anti-staphylococcal scopadulanes [96] are found in Scoparia dulcis L. (Scrophulariaceae; Lamiids) [111,112,113].
Mitrephora celebica Scheff. (Annonaceae; Magnoliids) produces ent-trachyloban-19-oic acid (78), active against oral pathogens Streptococcus mutans and Porphyromonas gingivalis bacteria as well as antimycobacterial kauranes such as ent-kaur-16-en-19-oic acid (79) [114,115,116,117,118]. The growth of M. tuberculosis (H37Ra) was inhibited by ent-18-acetoxy-7α-hydroxykaur-16-en-15-one (80) and ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one (81) (Croton tonkinensis Gagnep. (Euphorbiaceae) [119]. Another instance is lasiodin (82) in Rabdosia serra (Maxim.) H. Hara (Lamiaceae) [120].
Clerodanes are, in general, antibacterials such as bafoudiosbulbin C (83) (Dioscorea bulbifera L.; Dioscoreaceae), active against Salmonella s [121,122,123]. Other examples are 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide (84) and 16-oxo-cleroda-3, 13(14) E-diene-15 oic acid (85) (Polyalthia longifolia (Sonn.) Thwaites; Annonaceae), the latter being active against Sporothrix schenckii [124,125].
Plants in the Lecythidaceae, Verbenaceae, and Euphorbiaceae such as Croton laui Merr. & F.P. Metcalf produce antibacterial clerodane diterpenes [126,127,128,129]. Euphorbiaceae produce antifungal and antimycobacterial jatrophanes and tiglianes [130,131,132] such as euphoheliosnoid E (86) (active against Gram-positive bacteria S. mutans (ATCC 25175) and Actinomycetes viscosus (ATCC 27044) [133,134].
Plants in the Lamiaceae yield antimycobacterial cembranes, one example being ovatodiolide (87) from Anisomeles indica (L.) O.K.(IC90: 6.5 μg/mL) [135].

4.3. Miscellaneous

These are mainly found in Basal Angiosperms (Alismataceae) such as ent-rosanes, with diterpenes active against oral pathogens [118], antibacterial linear diterpene glycosides in Crocus sativus L. (Iridaceae; Monocots) [136,137], and antifungal alkaloid diterpenes from Delphinium denudatum Wall. ex Hook. f. & Thomson (Ranunculaceae; Eudicots) [138]. Aster triplolium L. (Asteraceae) produces broad-spectrum antibacterial abietane diterpene alkaloids such as dehydroabietylamine (88) [139].

5. Triterpenes

MIC are listed in Table S1.
The condensation of a pair of farnesyl cations forms 2.3-oxidosqualene, from which all antibacterial and antifungal triterpenes are derived by cyclisation (Figure 7).

5.1. Cyclic Triterpenes

Dammarane triterpenes such as amblyone (89) (Amorphophallus paeoniifolius (Dennst.) Nicolson; Araceae; Monocots) and 3,4-seco-mansumbinoic acid (90) (C. wightii) are antibacterial (Gram-positive) and lupanes. Examples of oleanane triterpenes with antibacterial activities are β-amyrin (91) and aceriphyllic acid A (92) (Aceriphyllum rossii (Oliv.) Engl.; Saxifragaceae; Core Eudicots)]. Antifungal oleananes are present in the resin of Liquidambar formosana Hance (Altingiaceae) [89,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155]. In Malvids, gypsogenin (93) inhibited Gram-positive bacteria [155]. Seco-oleanane type triterpenes in the genus Dysoxylum Bl. are active against Gram-positive bacteria as seen with dysoxyhainic acid I (94) [156].
Oleanane triterpene saponins are active against yeasts and filamentous fungi [157,158,159,160,161,162]. The taraxasterane triterpene taraxerone (95) in Schleichera oleosa (Lour.) Oken (Sapindaceae) is antibacterial [163,164,165,166]. Ursanes are antibacterial, antimycobacterial, and antifungal [167,168,169,170]. The friedelane-type triterpene friedelin (96), from a plant in the genus Polyalthia Bl., inhibited E. coli (ATCC 25922) and Micrococcus tetragenus (ATCC 13623) [171]. Tripterygium wilfordii Hook. f. (Celastraceae) yields pristimerin (97), active against Gram-positive bacteria and fungi [172,173,174]. From T. wilfordii, celastrol (98) is antifungal and bacteriostatic for Gram-positive bacteria as well as zeylasterone (99) in Kokoona zeylanica Thwaites (Celastraceae), and the latter is a fungistatic for C. albicans [175,176]. Lanostane triterpenes from Oenothera biennis L. (Onagraceae; Malvids) were active against Gram-negative bacteria [177]. Cycloartanes such as (20R)-3β-hydroxy-24,25,26,27-tetranor-5α-cycloartan-23,21-olide (100) (Meliaceae) inhibit Gram-positive bacteria including MRSA [178]. Tirucallanes are antibacterial and antimycobacterial [179].
Plants in the Cucurbitaceae family (Fabids) yield antibacterial and antimycobacterial cucurbitanes [167] and multifloranes (bryononic acid) (101) [180,181]. Plants in the Meliaceae and Rutaceae produce broad-spectrum antibacterial limonoids such as 7-cinnamoyltoosendanin (102) and swietenolide (103), the latter active bacteria resistant to multiple antibiotics [182,183,184,185,186,187,188]. Limonoids are antifungal such as mulavanin D (104) and 2-hydroxyfissinolide (105) [163,189,190]. In the Simaroubaceae, quassinoids with antibacterial activity have been identified such as (6R)-methoxyjavanicin B (106) [191,192].
Steroids and steroidal saponins of the cholestane, ergostane (ergosterol-5,8-endoperoxide (107), stigmastanes [ campestane, furostane (dioscin) (109), pregnane, and cardenolide type are antibacterial, antimycobacterial, and antifungal] [193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210].

5.2. Miscellaneous

These are antibacterial malabaricans, oroceranes (Lansium domesticum Corrêa; Meliaceae), and ceanothanes such as zizimauritic acid A (110) [211,212,213,214].

6. The Distribution of Antibacterial and Antifungal Terpenes

Regarding the distribution of antibacterial and antifungal terpenes among Asian medicinal Angiosperms, it can be seen in Table 1 that all clades, except the Rosids, yield antibacterial and/or antifungal terpenes. Clades in the Core Eudicots tend to synthesise specific classes of antibacterial and/or antifungal terpenes such as dihydroagarofurans, jatrophanes, cassanes, and cucurbitanes (Fabids), or santalanes, quassinoids, and limonoids (Malvids). The Malvids are home to the broadest array of antibacterial and antifungal sesquiterpenes and triterpenes. In the Upper Angiosperms, Lamiids bring to being the broadest array of antibacterial and antifungal diterpenes. Antibacterial and antifungal terpenes with MIC ≤2 µg/mL are produced by plants in all three groups of Angiosperms.

7. Antibacterial and Antifungal Strength and Spectrum of Terpenes

Several guidelines are available to define the antibacterial strength of secondary metabolites from plants [6,7,8,9]. Here, a terpene is very strongly antibacterial (or antifungal) for MIC ≤ 2 µg/mL; strongly antibacterial (or antifungal) for a MIC > 2 µg/mL and ≤50 µg/mL; moderately antibacterial (or antifungal) for MIC > 50 and ≤100 µg/mL; weakly antibacterial (or antifungal) for a MIC > 100 and ≤500 µg/mL; very weakly antibacterial (or antifungal) for a MIC > 500 and ≤2500 µg/mL; inactive for a MIC > 2500 µg/mL and above.
For terpenes liquid at room temperature, we suggest very strong activity for a value below or equal to 2 µL/mL. According to Tampieri et al. (2005), strong activity is defined for natural products with MIC values ≤ 50 ppm [16]. Here, a terpene is defined as having moderate activity for MIC > 50 and ≤ 100 ppm; weak activity for MIC > 100 and ≤1500 ppm and inactivity for MIC > 1500 ppm.
Accordingly, out of about 300 antibacterial and/or antifungal terpenes identified between 1968 and 2022, 18 (four monoterpenes, five sesquiterpenes, four diterpenes, and five triterpenes) exhibited very strong activities (Table 2). Most of these were active against Gram-positive bacteria, followed by Gram-negative bacteria, mycobacteria, filamentous fungi, and yeasts.

8. Influence of Molecular Mass

The molecular mass of natural products influences their ability to fit in the catalytic pockets of enzymes, cytoplasmic membrane, and to cross the outer membrane via porins. Here, a low molecular mass was defined as below 200 g/mol, medium molecular mass from 200 to 400 g/mol, and high molecular mass above 400 g/mol. Following this classification, terpenes with MIC ≤ 2 µg/mL have a molecular mass ranging mainly from about 150 to 550 g/mol (Table 2).
Terpenes with low molecular mass are active against both Gram-positive and Gram-negative bacteria. It can be argued that being volatile, monoterpenes evaporate from paper discs or agar wells or even liquid broths explaining low activities recorded by most authors, except for Orhan et al., using emulsions [15,186]. Furthermore, the determination of MIC in the liquid broth of non-polar terpenes is almost impossible because they do not dissolve in an aqueous broth and we suggest using paper discs or dissolving the terpenes in melted solid agar for test in Petri dishes for this purpose as well as for measuring synergistic activities. Dimethyl sulfoxide has been recommended to facilitate the dissolution of non-polar natural products in liquid broth, but it has antibacterial and cytotoxic effects and does not dissolve most non-polar extracts and terpenes (personal communication).
Medium molecular mass is beneficial for activity against yeasts whereas filamentous fungi are sensitive to terpenes with low, medium, and high molecular masses.
Six out of the 18 terpenes with MIC ≤ 2 µg/mL had a high molecular mass and terpenes with a high molecular mass were only active against Gram-positive bacteria, probably because of their inability to cross porin channels. It can be observed that terpenes with strong activity against mycobacteria have medium to high molecular masses.

9. Influence of Solubility and Polar Surface Area

Water-soluble and amphiphilic terpenes cross porin channels [4]. Here, we define (at pH 7.4) terpenes with LogD below 1 as hydrophilic, LogD between 1 and 5 amphiphilic, andLogD above 5 as liposoluble.
Accordingly, it can be observed in Table 2 that there are no hydrophilic terpenes with MIC < 2 µg/mL. Amphiphilic terpenes are active against both Gram-positive and Gram-negative bacteria. Lipophilic terpenes are active against Gram-positive bacteria, specifically against mycobacteria, as they might dissolve into mycolic acid. The solubility of terpenes does not influence the activity against filamentous fungi whereas yeasts are specifically sensitive to mid-polar terpenes. The polar surface area of terpene with very strong activity is around 20 Ų.

10. Structure Activity and Mechanism of Action

Regarding the structure–activity relationship and mode of action of terpenes, a general observation is that aromaticity, planarity, and substitutions with hydroxyl, ketone, aldehyde, or carboxylic acid groups increase the antibacterial and antifungal activities of terpenes. The presence of peroxide and/or epoxide groups is beneficial for antibacterial and antifungal properties as seen is amblyone (89), 1,8-cineole (27), artemisinin (60), 17-hydroxyjolkinolide B (68), or ergosterol-5,8-endoperoxide (107). Lipophilic terpenes are often antimycobacterial [96].
Linear monoterpenes inhibit the growth of both Gram-positive and Gram-negative bacteria, suggesting the targeting of the cytoplasmic and/or outer membrane. They are ineffective against Mycobacteria. Cyclic monoterpenes are broad-spectrum antibacterial and antifungal, but not antimycobacterial. The antibacterial mode of action of monoterpenes invokes the destabilisation of the cytoplasmic membrane such as in α-terpineol (24), terpinen-4-ol (25), δ-terpineol (26), and 1,8-cineole (27). Specific mechanisms arise with aromaticity, as seen with thymoquinone (36), which inhibits E. coli ATP synthase and in C. albicans induces the generation of reactive oxygen species [32,33,37,43,215,216,217]. The antifungal mode of action of monoterpenes includes cytoplasm coagulation, hyphal lysis, cell membrane insults, and the leakage of cellular cytoplasmic components [34]. The fact that the reduction and oxidation or isomerization of monoterpene does not much influence their strength against a broad-spectrum of bacteria and fungi spectrum points to mainly non-specific mechanisms, and most probably, accumulation in and the destabilisation of cytoplasmic membranes.
Sesquiterpenes are mainly broad-spectrum antibacterial, antimycobacterial, and antifungal via a mix of non-specific and specific mechanisms. Non-substituted sesquiterpenes like α-humulene (61) non-specifically target the membrane of Gram-positive bacteria and increase the permeability and intracellular content leakage [217]. The cytoplasmic membrane is also one of the non-specific fungal targets of amphiphilic sesquiterpenes, as seen with polygodial (64) with S. cerevisiae [91] and cadinanes [73]. For linear sesquiterpenes, the oxidation of hydroxyl groups into aldehyde is detrimental for activity against filamentous fungi. The introduction of a lactone moiety in sesquiterpenes boosts their activity against filamentous fungi, as seen with costunolide (45), cynaropicrin (46), deacetylxanthumine (47), and isoalantolactone (48) [47]. α-Methylene lactone moieties open to form Michael-type amine adducts with bacterial and fungal amino acids and ribonucleic acids. Furanone moieties in the presence of metal ions generate reactive oxygen species, forming strand breaks and the formation of 8-hydroxy-2′-deoxyguanosine in microbial DNA. Planarity and aromaticity translate into strong antibacterial (Gram-positive) properties, as seen with mansonone F (56) [71] and gossypol (52), the latter targeting DNA polymerase [218,219,220,221]. Epoxide groups are favourable for activity against Gram-negative bacteria, as seen with artemisinin (60), via copper-mediated DNA damage [79].
Diterpenes inhibit the growth of bacteria, mycobacteria, and fungi. Carboxylic, aldehyde, and epoxide groups as well as furanone moieties are favourable for activity as in the case of 17-hydroxyjolkinolide B (68) and 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide (84). In diterpenes, the presence of a furanone moieties favours the generation of reactive oxygen species targeting the DNA in bacteria [110]. The presence of epoxide and aldehyde groups favour membrane damage in the bacteria and yeasts. (E)-8β, 17-Epoxylabd-12-ene-15,16-dial (77) is bactericidal via disintegration of the cytoplasmic membrane of S. aureus (ATCC 6538) and Y. enterolytica (MTCC 859) with the MIC/MBC values of 3.3/6.7 and 3.3/3.3 µg/mL, respectively [109].
Triterpenes are active against Gram-positive and Gram-negative bacteria, mycobacteria, yeasts, and filamentous fungi. The mechanism of action of triterpenes involves both non-specific and specific mechanisms. Lipophilic or amphiphilic triterpenes tend to damage the membrane with subsequent leakage of intracellular K+, as seen with geranylgeraniol (65) and (E)-phytol (66) [95,222]. Triterpenes with benzoquinone moieties, the ketone moiety in ring A conjugated with double bonds and substitution with carboxylic acid groups are strongly active [145] and tend to target bacterial and fungal DNA and/or topoisomerases, as seen with celastrol (98) and zeylasterone (99) [175,176]. Zeylasterone (99) induces cell membrane alterations in B. subtilis [176]. Limonoids inhibit DNA polymerase [223]. An increase in the lipophilicity and presence of endoperoxide or epoxide groups are beneficial for antimycobacterial and anti-Gram-negative activities, as seen with epoxy dammaranes [141]. The catabolism of cholesterol in M. tuberculosis requires enzymes [197] targeted by triterpenes and steroids. Triterpene saponins tend to target Gram-positive bacterial surface sortases [198], and like dioscin (109), lethal for C albicans via the formation of complexes with ergosterol in the cell membrane of fungi leading to the formation of pores, the loss of membrane integrity, and the leakage of cytoplasmic content [198,199,205,206,224,225].

11. Antibiotic and Antifungal Potentiating Effects

Terpenes potentiate antibiotics or antifungal agents in vitro and via non-specific and/or specific mechanisms:
Non-specific mechanisms: This type of synergy includes, for instance, the destabilisation of cytoplasmic membranes in Gram-positive bacteria by lipophilic and amphiphilic terpenes, destabilising the cytoplasmic membrane, as seen with linear terpenes [201], linalool (10) [20,21], 3,4-seco-mansumbinoic acid (90), cucurbitacins [180], cedrelanol (57) [72], and myrcene (10) [12,201]. Cucurbitacin B, for instance, decreases the resistance of S. aureus towards tetracycline and oxacillin [180]. Saponins are antibiotic potentiators for both Gram-positive and negative bacteria [198,199]. Pristimerin (97) and lupanes target DNA machinery and alters the membrane permeability of S. aureus [172,173,174]. Steroidal saponins such as dioscin have both non-specific and specific mechanism [205,206,226]. Limonoids target DNA machinery [223]. In fungi, an example of a non-specific potentiator is polygodial (64) [91]. Isoalantolactone (48) is an example of antibiotic potentiator acting both non-specifically on cytoplasmic membrane and specifically on MCR-1 to potentiate the effects of Polymyxin towards E. coli [227]. For mycobacteria, an example of a non-specific rifampicin-potentiator is artemisinin (60), which generates reactive oxygen species (due to the epoxide moiety) [228].
Specific mechanisms: Antibacterial potentiators such as clerodanes [229], carnosic acid (70), and oleananes [230] inhibit bacterial and fungal efflux pumps. Tiglianes inhibit P-glycoprotein in HepG2/ADR cells, and as such, might be able to inhibit bacterial and/or fungal efflux pumps [231]. Clerodanes inhibit NorA efflux pumps in S. aureus [232]. Neuroactive terpenes tend to inhibit bacterial efflux pumps. An example of neuroactive natural products inhibiting bacterial NorA is the monoterpene indole alkaloid reserpine from Rauvolfia serpentina (L.) Benth. ex Kurz (Apocynaceae; Lamiids). Additionally, reserpine is a calcium channel antagonist as is the synthetic calcium channel antagonist verapamil [233,234,235,236]. The reason why the calcium channel antagonists inhibit the bacterial efflux pump is, at least in part, because of the correlations between the bacterial efflux pumps and bacterial calcium transport [237]. Specific potentiators interfere with the cytoplasmic membrane polarisation of bacteria or fungi, resulting in efflux pump inhibition, as seen with cardenolides [238] and sesquiterpene lactones [239]. Another interesting feature of terpenes, and especially diterpenes, is their ability to remove genes of resistance from the plasmids of Gram-negative bacteria [122].

12. The Safety Issues of Terpenes with Respect on Human Health

Terpenes are phytoalexins/phytoanticipins produced by plants to poison/repel microbes, other plants, and animals [240]. For instance, mansonone E is antifeedant and phytotoxic [68]. In humans, terpenes can induce allergies, irritations as well as renal, pulmonary, hepatic, neurological, or cardiovascular damage [241,242,243]. Cardenolides are cardiotoxic, and euphorbiaceous phorbol esters are tumorigenic. At the cellular level, toxic terpenes disrupt cytoplasmic membranes, generate reactive oxygen species, and impair mitochondrial function [244]. Planar terpenes targeting bacterial DNA are often cytotoxic [66] as well as jatrophanes, daphnanes [130], gypsogenin [155], quassinoids [191], and steroidal saponins [207]. Therefore, selectivity indices using mammalian cells in vitro or lethal doses 50% (LD50) in studies using rodent are advised. The use of brine shrimps (Artemia salina) to determine the toxicity of antimicrobial terpenes is very simple and inexpensive [143].

13. Concluding Remarks

Weinstein and Albersheim (1983) argue that antibacterial natural products from plants act via non-specific mechanisms preventing the development of resistance [245]. The medicinal Angiosperms of Asia and the Pacific generate an enormous diversity of antibacterial and antifungal terpenes acting via specific and/or non-specific mechanisms representing a vast source of potential antimicrobial leads. However, terpenes are often difficult to isolate and identify, tend not to have good oral bioavailability, and are often toxic. For these reasons, identifying antibacterial or antifungal terpenes of clinical systemic usefulness is like trying to find a few needles in a large haystack, but the search is worthwhile.
For the last decades, a huge research effort has been provided in an attempt to find antimicrobials from the medicinal plants used for the treatment of infectious diseases in Asia and the Pacific resulting in the identification of about 300 terpenes. Among these, carvacrol, celastrol, cuminol, dysoxyhainic acid I, ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one, ergosterol-5,8-endoperoxide, geranylgeraniol, gossypol, 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide, 7-hydroxycadalene, 17-hydroxyjolkinolide B, (20R)-3β-hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide, mansonone F, (+)-6,6′-methoxygossypol, polygodial, pristimerin, terpinen-4-ol, and α-terpineol are original chemical frameworks from which there is the potential for the development of lead antibacterial or antifungal drugs.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules28093873/s1, Table S1: Antibacterial and antifungal terpenes from the medicinal plants of Asia and the Pacific.

Author Contributions

Conceptualization, C.W.; Methodology, M.S. and C.W.; Software, M.S. and G.K.; Validation, C.S.R., V.N., M.R. (Mohammed Rahmatullah) and M.R. (Mogana Rajagopal); Investigation, J.S.S.S., A.K.P., N.A.R. and S.L.; Writing—original draft preparation, M.S., G.K. and C.W.; Writing—review and editing, C.S.R., V.N., M.R. (Mohammed Rahmatullah), J.S.S.S., A.K.P., N.A.R., S.L., M.R. (Mogana Rajagopal) and C.W.; Visualization, M.S.; Supervision, V.N. and C.W.; Project administration, C.W.; Funding acquisition, C.W. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. The Angiosperm Phylogeny Group; Chase, M.W.; Christenhusz, M.J.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. 2016, 181, 1–20. [Google Scholar]
  2. Tiku, A.R. Antimicrobial Compounds (Phytoanticipins and Phytoalexins) and Their Role in Plant Defense, in Co-Evolution of Secondary Metabolites; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 845–868. [Google Scholar]
  3. Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of terpenes and recent advances in plant protection. Int. J. Mol. Sci. 2021, 22, 5710. [Google Scholar] [CrossRef] [PubMed]
  4. Denyer, S.P.; Maillard, J.Y. Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. J. Appl. Microbiol. 2002, 92, 35S–45S. [Google Scholar] [CrossRef] [PubMed]
  5. Berg, B.V.D. Bacterial cleanup: Lateral diffusion of hydrophobic molecules through protein channel walls. Biomol. 2010, 1, 263–270. [Google Scholar]
  6. Gow, N.A.; Latge, J.P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spect. 2017, 5, 3. [Google Scholar] [CrossRef]
  7. Kregiel, D.; Berlowska, J.; Szubzda, B. Novel permittivity test for determination of yeast surface charge and flocculation abilities. J. Ind. Microbiol. 2012, 39, 1881–1886. [Google Scholar] [CrossRef] [PubMed]
  8. Nikaido, H.; Zgurskaya, Y.H. AcrAB and related multidrug efflux pumps of Escherichia coli. J. Mol. Microbiol. Biotechnol. 2001, 3, 215–218. [Google Scholar]
  9. Blanco, P.; Hernando-Amado, S.; Reales-Calderon, J.A.; Corona, F.; Lira, F.; Alcalde-Rico, M.; Bernardini, A.; Sanchez, M.B.; Martinez, J.L. Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms 2016, 4, 14. [Google Scholar] [CrossRef] [PubMed]
  10. Ramak, P.; Osaloo, S.K.; Sharifi, M.; Ebrahimzadeh HBehmanesh, M. Biosynthesis, regulation and properties of plant monoterpenoids. J. Med. Plant Res. 2014, 8, 983–991. [Google Scholar]
  11. Lis-Balchin, M.; Buchbauer, G.; Ribisch, K.; Wenger, M.T. Comparative antibacterial effects of novel Pelargonium essential oils and solvent extracts. Lett. Appl. Microbiol. 1998, 27, 135–141. [Google Scholar] [CrossRef]
  12. Onawunmi, G.O.; Yisak, W.-A.; Ogunlana, E. Antibacterial constituents in the essential oil of Cymbopogon citratus (DC). Stapf. J. Ethnopharmacol. 1984, 12, 279–286. [Google Scholar] [CrossRef] [PubMed]
  13. Rosato, A.; Vitali, C.; De Laurentis, N.; Armenise DMilillo, M.A. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar] [CrossRef] [PubMed]
  14. Nagaki, M.; Narita, T.; Ichikawa, H.; Kawakami, J.; Nakane, A. Antibacterial and antifungal activities of isoprenoids. Trans. Matter. Res. Soc. Jpn. 2011, 36, 55–58. [Google Scholar] [CrossRef]
  15. Orhan, İ.E.; Özcelik, B.; Kartal, M.; Kan, Y. Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turk. J. Biol. 2012, 36, 239–246. [Google Scholar] [CrossRef]
  16. Tampieri, M.P.; Galuppi, R.; Macchioni, F.; Carelle, M.S.; Falcioni, L.; Cioni, P.L.; Morelli, I. The inhibition of Candida albicans by selected essential oils and their major components. Mycopathologia 2005, 159, 339–345. [Google Scholar] [CrossRef]
  17. Borges, A.; Alves, A.C.; Simões, M. Effect of selected terpenoids on antibiotic potentiation and eradication of Staphylococcus aureus biofilms—A structure activity relationship study. In Proceedings of the Biofilms 9 Conference, Karlsruhe, Germany, 29 September–1 October 2020. [Google Scholar]
  18. Sonboli, A.; Mirjalili, M.H.; Hadian, J.; Ebrahimi, S.N.; Yousefzadi, M. Antibacterial activity and composition of the essential oil of Ziziphora clinopodioides subsp. bungeana (Juz.) Rech. f. from Iran. Z. Naturforsch. C 2006, 61, 677–680. [Google Scholar] [CrossRef]
  19. Radulović, N.; Mišić, M.; Aleksić, J.; Đoković, D.; Palić Stojanović, G. Antimicrobial synergism and antagonism of salicylaldehyde in Filipendula vulgaris essential oil. Fitoterapia 2007, 78, 565–570. [Google Scholar] [CrossRef]
  20. Park, S.N.; Lim, Y.K.; Freire, M.O.; Cho, E.; Jin, D.; Kook, J.K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe 2012, 18, 369–372. [Google Scholar] [CrossRef]
  21. Aelenei, P.; Rimbu, C.M.; Guguianu, E.; Dimitriu, G.; Aprotosoaie, A.C.; Brebu, M.; Horhogea, C.E.; Miron, A. Coriander essential oil and linalool–interactions with antibiotics against Gram-positive and Gram-negative bacteria. Lett. Appl. Microbiol. 2019, 68, 156–164. [Google Scholar] [CrossRef]
  22. Kotan, R.; Kordali, S.; Cakir, A. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Naturforsch. C 2007, 62, 507–513. [Google Scholar] [CrossRef]
  23. Mulyaningsih, S.; Youns, M.; El-Readi, M.Z.; Ashour, M.L.; Nibret, E.; Sporer, F.; Herrmann, F.; Reichling, J.; Wink, M. Biological activity of the essential oil of Kadsura longipedunculata (Schisandraceae) and its major components. J. Pharm. Pharmacol. 2010, 62, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
  24. Liu, Y.; Zhao, Y.; Guo, D.L.; Liu, W.W.; Liu, Y.X. Synergistic antimicrobial activity of berberine hydrochloride, baicalein and borneol against Candida albicans. Chin. Herb. Med. 2017, 9, 353–357. [Google Scholar] [CrossRef]
  25. Ivanov, M.; Kannan, A.; Stojković, D.S.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.; Sanglard, D.; Soković, M. Camphor and eucalyptol—Anticandidal spectrum, antivirulence effect, efflux pumps interference and cytotoxicity. Int. J. Mol. Sci. 2021, 22, 483. [Google Scholar] [CrossRef]
  26. Ragasa, C.Y.; Wong, J.; Rideout, R.A. Monoterpene glycoside and flavonoids from Blumea lacera. J. Nat. Med. 2007, 61, 474–475. [Google Scholar] [CrossRef]
  27. Hyatt, D.C.; Youn, B.; Zhao, Y.; Santhamma, B.; Coates, R.M.; Croteau, R.B.; Kang, C. Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc. Natl. Acad. Sci. USA 2007, 104, 5360–5365. [Google Scholar] [CrossRef] [PubMed]
  28. Cheallaigh, A.N.; Mansell, D.J.; Toogood, H.S.; Tait, S.; Lygidakis, A.; Scrutton, N.S.; Gardiner, J.M. Chemoenzymatic synthesis of the intermediates in the peppermint monoterpenoid biosynthetic pathway. J. Nat. Prod. 2018, 81, 1546–1552. [Google Scholar] [CrossRef]
  29. Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. JMM 2014, 24, e51–e56. [Google Scholar] [CrossRef]
  30. Moro, I.J.; Gondo, G.D.G.A.; Pierri, E.G.; Pietro, R.C.L.R.; Soares, C.P.; Sousa, D.P.D.; Santos, A.G.D. Evaluation of antimicrobial, cytotoxic and chemopreventive activities of carvone and its derivatives. Braz. J. Pharm. Sci. 2018, 53. [Google Scholar] [CrossRef]
  31. Oh, J.; Hwang, I.H.; Kim, D.C.; Kang, S.C.; Jang, T.S.; Lee, S.H.; Na, M. Anti-listerial compounds from Asari Radix. Arch. Pharm. Res. 2010, 33, 1339–1345. [Google Scholar] [CrossRef]
  32. Li, L.; Shi, C.; Yin, Z.; Jia, R.; Peng, L.; Kang, S.; Li, Z. Antibacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli. Braz. J. Microbiol. 2014, 45, 1409–1413. [Google Scholar] [CrossRef]
  33. Zheng, Y.; Huang, W.; Yoo, J.G.; Ebersole, J.L.; Huang, C.B. Antibacterial compounds from Siraitia grosvenorii leaves. Nat. Prod. Res. 2011, 25, 890–897. [Google Scholar] [CrossRef] [PubMed]
  34. Zhou, H.; Tao, N.; Jia, L. Antifungal activity of citral, octanal and α-terpineol against Geotrichum citri-aurantii. Food Control. 2014, 37, 277–283. [Google Scholar] [CrossRef]
  35. Pinto, E.; Gonçalves, M.J.; Oliveira, P.; Coelho, J.; Cavaleiro, C.; Salgueiro, L. Activity of Thymus caespititius essential oil and α-terpineol against yeasts and filamentous fungi. Ind. Crops Prod. 2014, 62, 107–112. [Google Scholar] [CrossRef]
  36. Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
  37. Zhu, J.; Lower-Nedza, A.D.; Hong, M.; Jiec, S.; Wang, Z.; Yingmao, D.; Tschiggerl, C.; Bucar, F.; Brantner, A.H. Chemical composition and antimicrobial activity of three essential oils from Curcuma wenyujin. Nat. Prod. Commun. 2013, 8, 523–526. [Google Scholar] [CrossRef]
  38. Pare, P.W.; Zajicek, J.; Ferracini, V.L.; Melo, I.S. Antifungal terpenoids from Chenopodium ambrosioides. Biochem. Syst. Ecol. 1993, 21, 649–653. [Google Scholar] [CrossRef]
  39. Yang, J.; Li, Y.C.; Zhou, X.R.; Xu, X.J.; Fu, Q.Y.; Liu, C.Z. Two thymol derivatives from the flower buds of Lonicera japonica and their antibacterial activity. Nat. Prod. Res. 2018, 32, 2238–2243. [Google Scholar] [CrossRef]
  40. Haieb, K.; Kouidhi, B.; Jrah, H.; Mahdouani, K.; Bakhrouf, A. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement. Altern. Med. 2011, 11, 29. [Google Scholar]
  41. Dey, D.; Ray, R.; Hazra, H. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phytother. Res. 2014, 28, 1014–1021. [Google Scholar] [CrossRef]
  42. Mahmoud, H.; Sepahvand, A.; Jahanbakhsh, S.; Ezatpour, B.; Mousavi, S.A. Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. JMM 2014, 24, e155–e161. [Google Scholar]
  43. Almshawit, H.; Macreadie, I. Fungicidal effect of thymoquinone involves generation of oxidative stress in Candida glabrata. Microbiol. Res. 2017, 195, 81–88. [Google Scholar] [CrossRef] [PubMed]
  44. Durairaj, J.; Di Girolamo, A.; Bouwmeester, H.J.; de Ridder, D.; Beekwilder, J.; van Dijk, A.D. An analysis of characterized plant sesquiterpene synthases. Phytochemistry 2019, 158, 157–165. [Google Scholar] [CrossRef] [PubMed]
  45. Vattekkatte, A.; Garms, S.; Brandt, W.; Boland, W. Enhanced structural diversity in terpenoid biosynthesis: Enzymes, substrates and cofactors. Org. Biomol. Chem. 2018, 16, 348–362. [Google Scholar] [CrossRef] [PubMed]
  46. Diastuti, H.; Syah, Y.M.; Juliawaty, L.D.; Singgih, M. Antibacterial activity of germacrane type sesquiterpenes from Curcuma heyneana Rhizomes. Indones. J. Chem. 2014, 14, 32–36. [Google Scholar] [CrossRef]
  47. Duraipandiyan, V.; Abdullah Al-Harbi, N.; Ignacimuthu, S.; Muthukumar, C. Antimicrobial activity of sesquiterpene lactones from traditional medicinal plant, Costus speciosus (Koen ex. Retz.) Sm. BMC Complement. Altern. Med. 2012, 12, 13. [Google Scholar]
  48. Saeed, M.A.; Sabir, A. Antibacterial activities of some constituents from oleo-gum-resin of Commiphora mukul. Fitoterapia 2004, 75, 204–208. [Google Scholar] [CrossRef]
  49. Erasto, P.; Grierson, D.; Afolayan, A. Bioactive sesquiterpene lactones from the leaves of Vernonia amygdalina. J. Ethnopharmacol. 2006, 106, 117–120. [Google Scholar] [CrossRef]
  50. de Kraker, J.W.; Franssen, M.C.; de Groot, A.; König, W.A.; Bouwmeester, H.J. (+)-Germacrene A biosynthesis: The committed step in the biosynthesis of bitter sesquiterpene lactones in chicory. Plant Physiol. 1998, 117, 1381–1392. [Google Scholar] [CrossRef]
  51. Shakeri, A.; Amini, E.; Asili, J.; Masullo, M.; Piacente, S.; Iranshahi, M. Screening of several biological activities induced by different sesquiterpene lactones isolated from Centaurea behen, L. Rhaponticum repens (L.) Hidalgo. Nat. Prod. Res. 2018, 32, 1436–1440. [Google Scholar]
  52. Cho, W.I.; Choi, J.B.; Lee, K.; Chung, M.S.; Pyun, Y.R. Antimicrobial activity of torilin from Torilis japonica fruit against Bacillus subtilis. J. Food Sci. 2008, 73, M37–M46. [Google Scholar] [CrossRef]
  53. Iranshahi, M.; Hosseini, S.T.; Shahverdi, A.R.; Molazade, K.; Khan, S.S.; Ahmad, V.U. Diversolides A–G, guaianolides from the roots of Ferula diversivittata. Phytochemistry 2008, 69, 2753–2757. [Google Scholar] [CrossRef] [PubMed]
  54. Kim, D.K.; Shim, C.K.; Bae, D.W.; Kawk, Y.S.; Yang, M.S.; Kim, H.K. Identification and biological characteristics of an antifungal compound extracted from Cocklebur (Xanthium Strumarium) against Phytophthora drechsleri. Plant Pathol. J. 2002, 18, 288–292. [Google Scholar] [CrossRef]
  55. Fukuyama, N.; Ino, C.; Suzuki, Y.; Kobayashi, N.; Hamamoto, H.; Sekimizu, K.; Orihara, Y. Antimicrobial sesquiterpenoids from Laurus nobilis L. Nat. Prod. Res. 2011, 25, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
  56. Guoruoluo, Y.; Zhou, H.; Zhou, J.; Zhao, H.; Aisa, H.A.; Yao, G. Isolation and characterization of sesquiterpenoids from Cassia buds and their antimicrobial activities. J. Agric. Food. Chem. 2017, 65, 5614–5619. [Google Scholar] [CrossRef] [PubMed]
  57. Picman, A.K.; Schneider, E.F. Inhibition of fungal growth by selected sesquiterpene lactones. Biochem. Syst. Ecol. 1993, 21, 307–314. [Google Scholar] [CrossRef]
  58. Liu, C.; Mishra, A.K.; He, B.; Tan, R. Antimicrobial activities of isoalantolactone, a major sesquiterpene lactone of Inula racemosa. Sci. Bull. 2001, 46, 498–501. [Google Scholar] [CrossRef]
  59. Tissandié, L.; Viciana, S.; Brevard, H.; Meierhenrich, U.J.; Filippi, J.J. Towards a complete characterization of guaiac wood oil. Phytochemistry 2018, 149, 64–81. [Google Scholar] [CrossRef]
  60. Chen, J.J.; Kuo, W.L.; Chen, I.S.; Peng, C.F.; Sung, P.J.; Cheng, M.J.; Lim, Y.P. Microjaponin, a new dihydroagarofuranoid sesquiterpene from the stem of Microtropis japonica with antituberculosis activity. Chem. Biodivers. 2014, 11, 1241–1246. [Google Scholar] [CrossRef]
  61. Chou, T.H.; Chen, I.S.; Peng, C.F.; Sung, P.J.; Chen, J.J. A new dihydroagarofuranoid sesquiterpene and antituberculosis constituents from the root of Microtropis japonica. Chem. Biodivers. 2008, 5, 1412–1418. [Google Scholar] [CrossRef]
  62. Chen, J.J.; Yang, C.S.; Peng, C.F.; Chen, I.S.; Miaw, C.L. Dihydroagarofuranoid sesquiterpenes, a lignan derivative, a benzenoid, and antitubercular constituents from the stem of Microtropis japonica. J. Nat. Prod. 2008, 71, 1016–1021. [Google Scholar] [CrossRef]
  63. Chou, T.H.; Chen, I.S.; Sung, P.J.; Peng, C.F.; Shieh, P.C.; Chen, J.J. A new dihydroagarofuranoid sesquiterpene from Microtropis fokienensis with antituberculosis activity. Chem. Biodivers. 2007, 4, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
  64. Wang, M.; Zhang, Q.; Ren, Q.; Kong, X.; Wang, L.; Wang, H.; Xu, J.; Guo, Y. Isolation and characterization of sesquiterpenes from Celastrus orbiculatus and their antifungal activities against phytopathogenic fungi. J. Agric. Food Chem. 2014, 62, 10945–10953. [Google Scholar] [CrossRef]
  65. Zhao, X.; Xu, S.; Wang, Q.; Yin, M.; Jia, X.; Li, L.; Feng, X. Two new dihydro-β-agarofuran sesquiterpenes from Monimopetalum chinense. Phytochem. Lett. 2019, 34, 108–112. [Google Scholar] [CrossRef]
  66. Limberger, R.P.; Simões-Pires, C.A.; Sobral, M.; Menut, C.; Bessiere, J.M.; Henriques, A.T. Essential oils from Calyptranthes concinna, C. lucida and C. rubella (Myrtaceae). Rev. Cienc. Farm. Basica Apl. 2002, 38, 355–360. [Google Scholar] [CrossRef]
  67. Boonsri, S.; Karalai, C.; Ponglimanont, C.; Chantrapromma, S.; Kanjana-Opas, A. Cytotoxic and antibacterial sesquiterpenes from Thespesia populnea. J. Nat. Prod. 2008, 71, 1173–1177. [Google Scholar] [CrossRef]
  68. Przybylski, P.; Pyta, K.; Stefańska, J.; Ratajczak-Sitarz, M.; Katrusiak, A.; Huczyński, A.; Brzezinski, B. Synthesis, crystal structures and antibacterial activity studies of aza-derivatives of phytoalexin from cotton plant–gossypol. Eur. J. Med. Chem. 2009, 44, 4393–4403. [Google Scholar] [CrossRef] [PubMed]
  69. Masila, V.M.; Midiwo, J.O.; Zhang, J.; Gisacho, B.M.; Munayi, R.; Omosa, L.K.; Wiggers, F.T.; Jacob, M.R.; Walker, L.A.; Muhammad, I. Anti-vancomycin-resistant Enterococcus faecium and E. faecalis activities of (-)-gossypol and derivatives from Thespesia garckeana. Nat. Prod. Comm. 2015, 10, 613–616. [Google Scholar]
  70. Anuthara, R.; Midhun, S.J.; Mathew, L. An in vitro and in silico study of anti-dermatophytic activity of gossypol from fruits of Thespesia populnea (L.) Sol. ex Correa. Asian Pac. J. Trop. Biomed. 2021, 11, 543. [Google Scholar]
  71. Mongkol, R.; Chavasiri, W. Antimicrobial, herbicidal and antifeedant activities of mansonone E from the heartwoods of Mansonia gagei Drumm. J. Integr. Agric. 2016, 15, 2795–2802. [Google Scholar] [CrossRef]
  72. Suh, Y.G.; Kim, S.N.; Shin, D.Y.; Hyun, S.S.; Lee, D.S.; Min, K.H.; Han, S.M.; Li, F.; Choi, E.C.; Choi, S.H. The structure–activity relationships of mansonone F, a potent anti-MRSA sesquiterpenoid quinone: SAR studies on the C6 and C9 analogs. Bioorg. Med. Chem. Lett. 2006, 16, 142–145. [Google Scholar] [CrossRef]
  73. Nagasampagi, B.; Yankov, L.; Dev, S. Sesquiterpenoids from the wood of Cedrela toona Roxb; partial synthesis of t-muurolol, t-cadinol and cubenol; structures of δ-cadinene and δ-cadinol. Tetrahedron Lett. 1968, 9, 1913–1918. [Google Scholar] [CrossRef]
  74. Claeson, P.; Rådström, P.; Sköld, O.; Nilsson, Å.; Höglund, S. Bactericidal effect of the sesquiterpene T-cadinol on Staphylococcus aureus. Phytother. Res. 1992, 6, 94–98. [Google Scholar] [CrossRef]
  75. Nishizawa, M.; Inoue, A.; Sastrapradja, S.; Hayashi, Y. (+)-8-Hydroxycalamenene: A fish-poison principle of Dysoxylum acutangulum and D. Alliaceum. Phytochemistry 1983, 22, 2083–2085. [Google Scholar] [CrossRef]
  76. Datta, B.K.; Mukhlesur Rahman, M.; Gray, A.I.; Nahar, L.; Hossein, S.A.; Auzi, A.A.; Sarker, S.D. Polygosumic acid, a new cadinane sesquiterpene from Polygonum viscosum, inhibits the growth of drug-resistant Escherichia coli and Staphylococcus aureus (MRSA) in vitro. J. Nat. Med. 2007, 61, 391–396. [Google Scholar] [CrossRef]
  77. Jayasinghe, L.; Kumarihamy, B.M.; Jayarathna, K.N.; Udishani, N.G.; Bandara, B.R.; Hara, N.; Fujimoto, Y. Antifungal constituents of the stem bark of Bridelia retusa. Phytochemistry 2003, 62, 637–641. [Google Scholar] [CrossRef] [PubMed]
  78. Pauli, G.F.; Case, R.J.; Inui, T.; Wang, Y.; Cho, S.; Fischer, N.H.; Franzblau, S.G. New perspectives on natural products in TB drug research. Life Sci. 2005, 78, 485–494. [Google Scholar] [CrossRef]
  79. Adekenov, S. Sesquiterpene lactones with unusual structure. Their biogenesis and biological activity. Fitoterapia 2017, 121, 16–30. [Google Scholar] [CrossRef]
  80. Chung, I.Y.; Jang, H.J.; Yoo, Y.J.; Hur, J.; Oh, H.Y.; Kim, S.H.; Cho, Y.H. Artemisinin displays bactericidal activity via copper-mediated DNA damage. Virulence 2022, 13, 149–159. [Google Scholar] [CrossRef]
  81. Rahman, A.; Shanta, Z.S.; Rashid, M.A.; Parvin, T.; Afrin, S.; Khatun, M.K.; Sattar, M.A. In vitro antibacterial properties of essential oil and organic extracts of Premna integrifolia Linn. Arab. J. Chem. 2016, 9, S475–S479. [Google Scholar] [CrossRef]
  82. Kumar, S.S.; Srinivas, P.; Negi, P.S.; Bettadaiah, B.K. Antibacterial and antimutagenic activities of novel zerumbone analogues. Food Chem. 2013, 141, 1097–1103. [Google Scholar] [CrossRef]
  83. Shin, D.S.; Eom, Y.B. Zerumbone inhibits Candida albicans biofilm formation and hyphal growth. Can. J. Microbiol. 2019, 65, 713–721. [Google Scholar] [CrossRef] [PubMed]
  84. Kanokmedhakul, S.; Kanokmedhakul, K.; Lekphrom, R. Bioactive constituents of the roots of Polyalthia cerasoides. J. Nat. Prod. 2007, 70, 1536–1538. [Google Scholar] [CrossRef] [PubMed]
  85. Moreira da Silva, T.; Pinheiro, C.D.; Puccinelli Orlandi, P.; Pinheiro, C.C.; Soares Pontes, G. Zerumbone from Zingiber zerumbet (L.) smith: A potential prophylactic and therapeutic agent against the cariogenic bacterium Streptococcus mutans. BMC Complement. Altern. Med. 2018, 18, 301. [Google Scholar] [CrossRef] [PubMed]
  86. Jassal, K.; Kaushal, S.; Rashmi Rani, R. Antifungal potential of guava (Psidium guajava) leaves essential oil, major compounds: Beta-caryophyllene and caryophyllene oxide. Arch. Phytopathol. Pflanzenschutz 2021, 54, 2034–2050. [Google Scholar] [CrossRef]
  87. Kawabata, J.; Tahara, S.; Mizutani, J. Isolation and structural elucidation of four sesquiterpenes from Chloranthus japonicus (Chloranthaceae). Agric. Biol. Chem. 1981, 45, 1447–1453. [Google Scholar]
  88. Kim, T.H.; Hatano, T.; Okamoto, K.; Yoshida, T.; Kanzaki, H.; Arita, M.; Ito, H. Antifungal and ichthyotoxic sesquiterpenoids from Santalum album heartwood. Molecules 2017, 22, 1139. [Google Scholar] [CrossRef]
  89. Misra, B.B.; Dey, S. Comparative phytochemical analysis and antibacterial efficacy of in vitro and in vivo extracts from East Indian sandalwood tree (Santalum album L.). Lett. Appl. Microbiol. 2012, 55, 476–486. [Google Scholar] [CrossRef]
  90. Phongmaykin, J.; Kumamoto, T.; Ishikawa, T.; Suttisri, R.; Saifah, E. A new sesquiterpene and other terpenoid constituents of Chisocheton penduliflorus. Arch. Pharm. Res. 2008, 31, 21–27. [Google Scholar] [CrossRef]
  91. Kubo, I.; Fujita, K.I.; Lee, S.H.; Ha, T.J. Antibacterial activity of polygodial. Phytother. Res. 2005, 19, 1013–1017. [Google Scholar] [CrossRef]
  92. Kubo, I.; Taniguchi, M. Polygodial, an antifungal potentiator. J. Nat. Prod. 1988, 51, 22–29. [Google Scholar] [CrossRef]
  93. Duraipandiyan, V.; Indwar, F.; Ignacimuthu, S. Antimicrobial activity of confertifolin from Polygonum hydropiper. Pharm. Biol. 2010, 48, 187–190. [Google Scholar] [CrossRef] [PubMed]
  94. Habtemariam, S.; Gray, A.I.; Waterman, G. A new antibacterial sesquiterpene from Premna oligotricha. J. Nat. Prod. 1993, 56, 140–143. [Google Scholar] [CrossRef] [PubMed]
  95. Sotanaphun, U.; Lipipun, V.; Suttisri, R.; Bavovada, R. A new antiviral and antimicrobial sesquiterpene from Glyptopetalum sclerocarpum. Planta Med. 1999, 65, 257–258. [Google Scholar] [CrossRef]
  96. Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, M.A.; Ahmed, M.I.; Shill, M.C.; Karmakar, U.K.; Yarla, N.S.; Khan, I.N.; et al. Phytol: A review of biomedical activities. Food Chem. Toxicol. 2018, 121, 82–94. [Google Scholar] [CrossRef]
  97. Saludes, J.P.; Garson, M.J.; Franzblau, S.G.; Aguinaldo, A.M. Antitubercular constituents from the hexane fraction of Morinda citrifolia Linn. (Rubiaceae). Phytother. Res. 2002, 16, 683–685. [Google Scholar] [CrossRef]
  98. Wang, H.; Li, M.Y.; Wu, J. Chemical constituents and some biological activities of plants from the genus Ceriops. Chem. Biodivers. 2012, 9, 1–11. [Google Scholar] [CrossRef]
  99. Chen, H.D.; Yang, S.P.; Wu, Y.; Dong, L.; Yue, J.M. Terpenoids from Toona ciliata. J. Nat. Prod. 2009, 72, 685–689. [Google Scholar] [CrossRef] [PubMed]
  100. Wang, C.J.; Yan, Q.L.; Ma, Y.F.; Sun, C.P.; Chen, C.M.; Tian, X.G.; Han, X.Y.; Wang, C.; Deng, S.; Ma, X.C. ent-Abietane and tigliane diterpenoids from the roots of Euphorbia fischeriana and their inhibitory effects against Mycobacterium smegmatis. J. Nat. Prod. 2017, 80, 1248–1254. [Google Scholar] [CrossRef]
  101. Zhao, J.; Lou, J.; Mou, Y.; Li, P.; Wu, J.; Zhou, L. Diterpenoid tanshinones and phenolic acids from cultured hairy roots of Salvia miltiorrhiza Bunge and their antimicrobial activities. Molecules 2011, 16, 2259–2267. [Google Scholar] [CrossRef]
  102. Han, Y.; Joo, I. Antifungal effect of tanshinone from Salvia miltiorrhiza against disseminated candidiasis. Yakhak Hoeji 2013, 57, 119–124. [Google Scholar]
  103. Bernardes, W.A.; Lucarini, R.; Tozatti, M.G.; Souza, M.G.; Andrade Silva, M.L.; da Silva Filho, A.A.; Martins, C.H.G.; Miller Crotti, A.E.; Pauletti, P.M.; Groppo, M.; et al. Antimicrobial activity of Rosmarinus officinalis against oral pathogens: Relevance of carnosic acid and carnosol. Chem. Biodivers. 2010, 7, 1835–1840. [Google Scholar] [CrossRef] [PubMed]
  104. Yang, L.; Sui, Y.; Zhong, L.; Ma, T.; Ma, Z.; Liu, X. Carnosol inhibits the growth and biofilm of Candida albicans. JMM 2022, 32, 101234. [Google Scholar] [CrossRef] [PubMed]
  105. Al-Bayati, F.A. Antimicrobial activity of carnosic acid isolated from Rosmarinus officinalis L. leaves. Tikrit J. Pure Sci. 2011, 16, 1662–1813. [Google Scholar]
  106. Promsawan, N.; Kittakoop, P.; Boonphong, S.; Nongkunsarn, P. Antitubercular cassane furanoditerpenoids from the roots of Caesalpinia pulcherrima. Planta Med. 2003, 69, 776–777. [Google Scholar]
  107. Eldeen, I.; Van Heerden, F.; Van Staden, J. In vitro biological activities of niloticane, a new bioactive cassane diterpene from the bark of Acacia nilotica subsp. kraussiana. J. Ethnopharmacol. 2010, 128, 555–560. [Google Scholar] [CrossRef]
  108. Ata, A.; Udenigwe, C.C.; Gale, E.M.; Samarasekera, R. Minor chemical constituents of Caesalpinia bonduc. Nat. Prod. Commun. 2009, 4, 311–314. [Google Scholar] [CrossRef]
  109. Koga, H.; Nakayachi, O. Morphological studies on attachment of spores of Magnaporthe grisea to the leaf surface of rice. J. Gen. Plant Pathol. 2004, 70, 11–15. [Google Scholar] [CrossRef]
  110. Ghosh, S.; Indukuri, K.; Bondalapati, S.; Saikia, A.K.; Rangan, L. Unveiling the mode of action of antibacterial labdane diterpenes from Alpinia nigra (Gaertn.) Bl Burtt seeds. Eur. J. Med. Chem. 2013, 66, 101–105. [Google Scholar] [CrossRef]
  111. Banerjee, M.; Parai, D.; Chattopadhyay, S.; Mukherjee, S.K. Andrographolide: Antibacterial activity against common bacteria of human health concern and possible mechanism of action. Folia Microbiol. 2017, 62, 237–244. [Google Scholar] [CrossRef]
  112. Yamamura, Y.; Kurosaki, F.; Lee, J.B. Elucidation of terpenoid metabolism in Scoparia dulcis by RNA-seq analysis. Sci. Rep. 2017, 7, 43311. [Google Scholar] [CrossRef]
  113. Phan, M.G.; Phan, T.S.; Matsunami, K.; Otsuka, H. Chemical and biological evaluation on scopadulane-type diterpenoids from Scoparia dulcis of Vietnamese origin. Chem. Pharm. Bull. 2006, 54, 546–549. [Google Scholar] [CrossRef] [PubMed]
  114. Zulfiker, A.H.M.; Siddiqua, M.; Nahar, L.; Habib, M.R.; Uddin, N.; Hasan, N.; Rana, M.S. In vitro antibacterial, antifungal and cytotoxic activity of Scoparia dulcis L. Int. J. Pharmacol. Pharm. Sci. 2011, 3, 198–203. [Google Scholar]
  115. Zgoda-Pols, J.R.; Freyer, A.J.; Killmer, L.B.; Porter, J.R. Antimicrobial diterpenes from the stem bark of Mitrephora celebica. Fitoterapia 2002, 73, 434–438. [Google Scholar] [CrossRef]
  116. Hernández, D.M.; Díaz-Ruiz, G.; Rivero-Cruz, B.E.; Bye, R.A.; Aguilar, M.I.; Rivero-Cruz, J.F. Ent-trachyloban-19-oic acid from Iostephane heterophylla as a promising antibacterial agent against Streptococcus mutans biofilms. Fitoterapia 2012, 83, 527–531. [Google Scholar] [CrossRef] [PubMed]
  117. Otomo, K.; Kenmoku, H.; Oikawa, H.; König, W.A.; Toshima, H.; Mitsuhashi, W.; Yamane, H.; Sassa, T.; Toyomasu, T. Biological functions of ent-and syn-copalyl diphosphate synthases in rice: Key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J. 2004, 39, 886–893. [Google Scholar] [CrossRef]
  118. Okada, K.; Kawaide, H.; Miyamoto, K.; Miyazaki, S.; Kainuma, R.; Kimura, H.; Fujiwara, K.; Natsume, M.; Nojiri, H.; Nakajima, M.; et al. HpDTC1, a stress-inducible bifunctional diterpene cyclase involved in momilactone biosynthesis, functions in chemical defense in the moss Hypnum plumaeforme. Sci. Rep. 2016, 6, 25316. [Google Scholar] [CrossRef] [PubMed]
  119. Liu, X.T.; Shi, Y.; Liang, J.Y.; Min, Z.-D. Antibacterial ent-rosane and ent-kaurane diterpenoids from Sagittaria trifolia var. sinensis. CJNM 2009, 7, 341–345. [Google Scholar] [CrossRef]
  120. Jang, W.S.; Jyoti, M.A.; Kim, S.; Nam, K.W.; Ha, T.K.Q.; Oh, W.K.; Song, H.Y. In vitro antituberculosis activity of diterpenoids from the Vietnamese medicinal plant Croton tonkinensis. J. Nat. Med. 2016, 70, 127–132. [Google Scholar] [CrossRef]
  121. Lin, L.; Zhu, D.; Zou, L.; Yang, B.; Zhao, M. Antibacterial activity-guided purification and identification of a novel C-20 oxygenated ent-kaurane from Rabdosia serra (Maxim.) Hara. Food Chem. 2013, 139, 902–909. [Google Scholar] [CrossRef]
  122. Pelot, K.A.; Mitchell, R.; Kwon, M.; Hagelthorn, L.M.; Wardman, J.F.; Chiang, A.; Bohlmann, J.; Ro, D.K.; Zerbe, P. Biosynthesis of the psychotropic plant diterpene salvinorin A: Discovery and characterization of the Salvia divinorum clerodienyl diphosphate synthase. TPJ 2017, 89, 885–897. [Google Scholar] [CrossRef]
  123. Shriram, V.; Jahagirdar, S.; Latha, C.; Kumar, V.; Puranik, V.; Rojatkar, S.; Dhakephalkar, P.K.; Shitole, M.G. A potential plasmid-curing agent, 8-epidiosbulbin E acetate, from Dioscorea bulbifera L. against multidrug-resistant bacteria. IJAA 2008, 32, 405–410. [Google Scholar] [CrossRef] [PubMed]
  124. Kuete, V.; Betrand Teponno, R.; Mbaveng, A.T.; Tapondjou, L.A.; Meyer, J.J.M.; Barboni, L.; Lall, N. Antibacterial activities of the extracts, fractions and compounds from Dioscorea bulbifera. BMC Complement. Altern. Med. 2012, 12, 228. [Google Scholar] [CrossRef] [PubMed]
  125. Murthy, M.M.; Subramanyam, M.; Bindu, M.H.; Annapurna, J. Antimicrobial activity of clerodane diterpenoids from Polyalthia longifolia seeds. Fitoterapia 2005, 76, 336–339. [Google Scholar] [CrossRef]
  126. Sashidhara, K.V.; Singh, S.P.; Shukla, P. Antimicrobial evaluation of clerodane diterpenes from Polyalthia longifolia var. pendula. Nat. Prod. Commun. 2009, 4, 327–430. [Google Scholar] [CrossRef] [PubMed]
  127. Liu, C.P.; Xu, J.B.; Zhao, J.X.; Xu, C.H.; Dong, L.; Ding, J.; Yue, J.M. Diterpenoids from Croton laui and their cytotoxic and antimicrobial activities. J. Nat. Prod. 2014, 77, 1013–1020. [Google Scholar] [CrossRef]
  128. Khan, S.; Jabbar, A.; Hasan, C.M.; Rashid, M.A. Antibacterial activity of Barringtonia racemosa. Fitoterapia 2001, 72, 162–164. [Google Scholar] [CrossRef]
  129. Habtemariam, S.; Gray, A.I.; Halbert, G.W.; Waterman, P.G. A novel antibacterial diterpene from Premna schimperi. Planta Med. 1990, 56, 187–189. [Google Scholar] [CrossRef]
  130. Khurram, M.; Lawton, L.A.; Edwards, C.; Iriti, M.; Hameed, A.; Khan, M.A.; Khan FA ur Rahman, S. Rapid bioassay-guided isolation of antibacterial clerodane type diterpenoid from Dodonaea viscosa (L.) Jacq. Int. J. Mol. Sci. 2015, 16, 20290–20307. [Google Scholar] [CrossRef]
  131. Fattahian, M.; Ghanadian, M.; Ali, Z.; Khan, I.A. Jatrophane and rearranged jatrophane-type diterpenes: Biogenesis, structure, isolation, biological activity and SARs (1984–2019). Phytochem. Rev. 2020, 19, 265–336. [Google Scholar] [CrossRef]
  132. Zhao, B.Q.; Peng, S.; He, W.J.; Liu, Y.H.; Wang, J.F.; Zhou, X.J. Antitubercular and cytotoxic tigliane-type diterpenoids from Croton tiglium. Bioorg. Med. Chem. Lett. 2016, 26, 4996–4999. [Google Scholar] [CrossRef]
  133. Jiang, Z.Y.; Feng, J.E.; Duan, L.K.; Liu, C.J.; Li, X.F.; Huang, C.Q.; Shi, S.L.; Wang, R.R.; Zuo, A.X.; He, H.P. Tigliane diterpenoids with larvicidal, antifungal, and α-glucosidase inhibitory activities from Croton damayeshu. J. Nat. Prod. 2022, 85, 405–414. [Google Scholar] [CrossRef] [PubMed]
  134. Mongkolvisut, W.; Sutthivaiyakit, S. Antimalarial and antituberculous poly-O-acylated jatrophane diterpenoids from Pedilanthus tithymaloides. J. Nat. Prod. 2007, 70, 1434–1438. [Google Scholar] [CrossRef] [PubMed]
  135. Kaemchantuek, P.; Chokchaisiri, R.; Prabpai, S.; Kongsaeree, P.; Chunglok, W.; Utaipan, T.; Chamulitrat, W.; Suksamrarn, A. Terpenoids with potent antimycobacterial activity against Mycobacterium tuberculosis from Trigonostemon reidioides roots. Tetrahedron 2017, 73, 1594–1601. [Google Scholar] [CrossRef]
  136. Lien, H.M.; Wu, H.Y.; Hung, C.L.; Chen, C.J.; Wu, C.L.; Chen, K.W.; Huang, C.L.; Chang, S.J.; Chen, C.C.; Lin, H.J.; et al. Antibacterial activity of ovatodiolide from Anisomeles indica against Helicobacter pylori. Sci. Rep. 2019, 9, 4205. [Google Scholar] [CrossRef] [PubMed]
  137. Moghaddam, M.N. In vitro antibacterial activity of saffron (Crocus sativus L.) extract and its two major constituents against Helicobacter pylori. Planta Med. 2010, 76, 496. [Google Scholar] [CrossRef]
  138. Hussein, R.A.; Salih, N.A.; Eman Thabit, N. Bioactivity of crocin pigment of saffron plant. Plant Arch. 2018, 18, 357–364. [Google Scholar]
  139. Atta-ur-Rahman; Nasreen, A.; Akhtar, F.; Shekhani, M.S.; Clardy, J.; Parvez, M.; Choudhary, M.I. Antifungal diterpenoid alkaloids from Delphinium denudatum. J. Nat. Prod. 1997, 60, 472–474. [Google Scholar] [CrossRef]
  140. Sj, A.R.; Ck, R. Dehydroabietylamine, a diterpene from Carthamus tinctorious L. showing antibacterial and anthelmintic affects with computational evidence. Curr. Comput. Aided Drug. Des. 2020, 16, 231–237. [Google Scholar] [CrossRef]
  141. Khan, A.; Rahman, M.; Islam, M. Antibacterial, antifungal and cytotoxic activities of amblyone from Amorphophallus campanulatus. Ind. J. Pharmacol. 2008, 40, 41. [Google Scholar] [CrossRef]
  142. Lee, D.G.; Chang, Y.S.; Park, Y.K.; Hahm, K.S.; Woo, E.R. Antimicrobial effects of ocotillone from stem bark of Ailanthus altisshima. J. Microbiol. Biotechnol. 2002, 12, 854–857. [Google Scholar]
  143. Michael, A.S.; Thompson, C.G.; Abramovitz, M. Artemia salina as a test organism for bioassay. Science 1956, 123, 464. [Google Scholar] [CrossRef] [PubMed]
  144. Rahman, M.M.; Khan, A.; Haque, M.E.; Rahman, M.M. Antimicrobial and cytotoxic activities of Laportea crenulata. Fitoterapia 2008, 79, 584–586. [Google Scholar] [CrossRef] [PubMed]
  145. Ghosh, S. Biosynthesis of structurally diverse triterpenes in plants: The role of oxidosqualene cyclases. Proc. Indian Natl. Sci. Acad. 2016, 82, 1189–1210. [Google Scholar] [CrossRef]
  146. Nick, A.; Wright, A.D.; Rali, T.; Sticher, O. Antibacterial triterpenoids from Dillenia papuana and their structure-activity relationships. Phytochemistry 1995, 40, 1691–1695. [Google Scholar] [CrossRef] [PubMed]
  147. Ankeo, S.B.; Damen, F.; Sandjo, L.P.; Celik, I.; Tane, P.; Kuete, V. Antibacterial activities of the methanol extracts, fractions and compounds from Harungana madagascariensis Lam. ex Poir. (Hypericaceae). J. Ethnopharmacol. 2016, 190, 100–105. [Google Scholar]
  148. Chander, M.P.; Vinod Kumar, K.; Lall, C.; Vimal Raj, R.; Vijayachari, P. GC/MS profiling, in vitro anti-leptospiral and haemolytic activities of Boesenbergia rotunda (L.) Mansf. used as a medicinal plant by Nicobarese of Andaman and Nicobar Islands. Nat. Prod. Res. 2016, 30, 1190–1192. [Google Scholar] [CrossRef]
  149. Kongcharoensuntorn, W.; Naengchomnong, W.; Samae, A. Synergistic antibacterial effect of lup-20 (29)-ene-3α, 23-diol from Glochidion daltonii (Mull. Arg.) Kurz. antibiotics on opportunistic bacteria. Chonburi Hosp. J. 2019, 44, 207. [Google Scholar]
  150. Harizon; Pujiastuti, B.; Kurnia, D.; Sumiarsa, D.; Shiono, Y.; Supratman, U. Antibacterial triterpenoids from the bark of Sonneratia alba (Lythraceae). Nat. Prod. Commun. 2015, 10, 277–280. [Google Scholar] [CrossRef]
  151. Saeed, M.A.; Sabir, A. Antibacterial activity of Caesalpinia bonducella seeds. Fitoterapia 2001, 72, 807–809. [Google Scholar] [CrossRef]
  152. Bibi, N.; Tanoli, S.A.K.; Farheen, S.; Afza, N.; Siddiqi, S.; Zhang, Y.; Kazmi, S.U.; Malik, A. In vitro antituberculosis activities of the constituents from Haloxylon salicornicum. Bioorg. Med. Chem. Lett. 2010, 20, 4173–4176. [Google Scholar] [CrossRef]
  153. Bonvicini, F.; Antognoni, F.; Mandrone, M.; Protti, M.; Mercolini, L.; Lianza, M.; Gentilomi, G.A.; Poli, F. Phytochemical analysis and antibacterial activity towards methicillin-resistant Staphylococcus aureus of leaf extracts from Argania spinosa (L.) Skeels. Plant Biosyst. 2017, 151, 649–656. [Google Scholar] [CrossRef]
  154. Zheng, C.J.; Sohn, M.J.; Kim, K.Y.; Yu, H.E.; Kim, W.G. Olean-27-carboxylic acid-type triterpenes with potent antibacterial activity from Aceriphyllum rossii. J. Agric. Food Chem. 2008, 56, 11752–11756. [Google Scholar] [CrossRef] [PubMed]
  155. Chien, S.C.; Xiao, J.H.; Tseng, Y.H.; Kuo, Y.H.; Wang, S.Y. Composition and antifungal activity of balsam from Liquidambar formosana Hance. Holzforsch. 2013, 67, 345–351. [Google Scholar] [CrossRef]
  156. Emirdağ-Öztürk, S.; Karayıldırım, T.; Çapcı-Karagöz, A.; Alankuş-Çalışkan, Ö.; Özmen, A.; Poyrazoğlu-Çoban, E. Synthesis, antimicrobial and cytotoxic activities, and structure–activity relationships of gypsogenin derivatives against human cancer cells. Eur. J. Med. Chem. 2014, 82, 565–573. [Google Scholar] [CrossRef] [PubMed]
  157. He, X.F.; Wang, X.N.; Yin, S.; Dong, L.; Yue, J.M. Ring A-seco triterpenoids with antibacterial activity from Dysoxylum hainanense. Bioorg. Med. Chem. Lett. 2011, 21, 125–129. [Google Scholar] [CrossRef]
  158. Polacheck, I.; Kwon-Chung, K.J. Canavanine resistance in Cryptococcus neoformans. Antimicrob. Agents Chemother. 1986, 29, 468–473. [Google Scholar] [CrossRef]
  159. Hu, Q.; Chen, Y.Y.; Jiao, Q.Y.; Khan, A.; Li, F.; Han, D.F.; Cao, G.D.; Lou, H.X. Triterpenoid saponins from the pulp of Sapindus mukorossi and their antifungal activities. Phytochemistry 2018, 147, 1–8. [Google Scholar] [CrossRef]
  160. Ali, B.; Tabassum, R.; Riaz, N.; Yaqoob, A.; Khatoon, T.; Tareen, R.B.; Jabbar, A.; Nasim, F.U.H.; Saleem, M. Bioactive triterpenoids from Atriplex lasiantha. J. Asian Nat. Prod. Res. 2015, 17, 843–850. [Google Scholar] [CrossRef]
  161. Zhang, D.; Fu, Y.; Yang, J.; Li, X.N.; San, M.M.; Oo, T.N.; Wang, Y.; Yang, X. Triterpenoids and their glycosides from Glinus oppositifolius with antifungal activities against Microsporum gypseum and Trichophyton rubrum. Molecules 2019, 24, 2206. [Google Scholar] [CrossRef]
  162. Gupta, V.K.; Mukherjee, K.; Roy, A. Two novel antifungals, acornine 1 and acornine 2, from the bark of mangrove plant Aegiceras corniculatum (Linn.) Blanco from Sundarban Estuary. Pharmacogn. Mag. 2014, 10 (Suppl. 2), S342. [Google Scholar]
  163. Brahmachari, G.; Mandal, N.C.; Roy, R.; Ghosh, R.; Barman, S.; Sarkar, S.; Jash, S.K.; Mondal, S. A new pentacyclic triterpene with potent antibacterial activity from Limnophila indica Linn. (Druce). Fitoterapia 2013, 90, 104–111. [Google Scholar] [CrossRef] [PubMed]
  164. Aguilar-Guadarrama, B.; Navarro, V.; Leon-Rivera, I.; Rios, M.Y. Active compounds against tinea pedis dermatophytes from Ageratina pichinchensis var. bustamenta. Nat. Prod. Res. 2009, 23, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
  165. Kuete, V.; Nana, F.; Ngameni, B.; Mbaveng, A.T.; Keumedjio, F.; Ngadjui, B.T. Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Ficus ovata (Moraceae). J. Ethnopharmacol. 2009, 124, 556–561. [Google Scholar] [CrossRef]
  166. Manríquez-Torres, J.J.; Zúñiga-Estrada, A.; González-Ledesma, M.; Torres-Valencia, J.M. The antibacterial metabolites and proacacipetalin from Acacia cochliacantha. J. Mex. Chem. Soc. 2007, 51, 228–231. [Google Scholar]
  167. Ghosh, P.; Chakraborty, P.; Mandal, A.; Rasul, M.G.; Chakraborty, M.; Saha, A. Triterpenoids from Schleichera oleosa of Darjeeling foothills and their antimicrobial activity. Ind. J. Pharm. Sci. 2011, 73, 231. [Google Scholar] [CrossRef]
  168. Mehta, A.; Srivastva, G.; Kachhwaha, S.; Sharma, M.; Kothari, S.L. Antimycobacterial activity of Citrullus colocynthis (L.) Schrad. against drug sensitive and drug resistant Mycobacterium tuberculosis and MOTT clinical isolates. J. Ethnopharmacol. 2013, 149, 195–200. [Google Scholar] [CrossRef]
  169. Yuan, J.Q.; Yang, X.Z.; Miao, J.H.; Tang, C.P.; Ke, C.Q.; Zhang, J.B.; Ma, X.J.; Ye, Y. New triterpene glucosides from the roots of Rosa laevigata Michx. Molecules 2008, 13, 2229–2237. [Google Scholar] [CrossRef]
  170. Lahlou, E.H.; Hirai, N.; Kamo, T.; Tsuda, M.; Ohigashi, H. Actinidic acid, a new triterpene phytoalexin from unripe kiwi fruit. Biosci. Biotechnol. Biochem. 2001, 65, 480–483. [Google Scholar] [CrossRef]
  171. Raja, A.F.; Ali, F.; Khan, I.A.; Shawl, A.S.; Arora, D.S. Acetyl-11-keto-β-boswellic acid (AKBA); targeting oral cavity pathogens. BMC Res. Notes 2011, 4, 406. [Google Scholar] [CrossRef]
  172. Oluyori, A.P.; Shaw, A.K.; Preeti, R.; Reddy, S.; Atolani, O.; Olatunji, G.A.; Fabiyi, O.A. Natural antifungal compounds from the peels of Ipomoea batatas Lam. Nat. Prod. Res. 2016, 30, 2125–2129. [Google Scholar] [CrossRef]
  173. Wang, L.K.; Zheng, C.J.; Li, X.B.; Chen, G.Y.; Han, C.R.; Chen, W.H.; Song, X.P. Two new lanostane triterpenoids from the branches and leaves of Polyalthia oblique. Molecules 2014, 19, 7621–7628. [Google Scholar] [CrossRef] [PubMed]
  174. Da Cruz Nizer, W.S.; Ferraz, A.C.; Moraes, T.D.F.S.; Lima, W.G.; Dos Santos, J.P.; Duarte, L.P.; Ferreira, J.M.S.; de Brito Magalhães, C.L.; Vieira-Filho, S.A.; Andrade, A.C.D.S.P.; et al. Pristimerin from Salacia crassifolia (Mart. Ex. Schult.) G. Don. (Celastraceae) roots as a potential antibacterial agent against Staphylococcus aureus. J. Ethnopharmacol. 2021, 266, 113423. [Google Scholar] [CrossRef] [PubMed]
  175. Gullo, F.P.; Sardi, J.C.; Santos, V.A.; Sangalli-Leite, F.; Pitangui, N.S.; Rossi, S.A.; de Paula e Silva, A.C.; Soares, L.A.; Silva, J.F.; Oliveira, H.C.; et al. Antifungal activity of maytenin and pristimerin. eCAM 2012, 2012, 340787. [Google Scholar] [CrossRef]
  176. Padilla-Montaño, N.; de León Guerra, L.; Moujir, L. Antimicrobial Activity and Mode of Action of Celastrol, a Nortriterpen Quinone From Natural Sources. Foods 2021, 10, 591. [Google Scholar] [CrossRef] [PubMed]
  177. De León, L.; Moujir, L. Activity and mechanism of the action of zeylasterone against Bacillus subtilis. J. Appl. Microbiol. 2008, 104, 1266–1274. [Google Scholar] [CrossRef]
  178. Singh, S.; Dubey, V.; Singh, D.K.; Fatima, K.; Ahmad, A.; Luqman, S. Antiproliferative and antimicrobial efficacy of the compounds from the roots of Oenothera biennis L. J. Pharm. Pharmacol. 2017, 69, 1230–1243. [Google Scholar] [CrossRef]
  179. Wang, X.Y.; Tang, G.H.; Yuan, C.M.; Zhang, Y.; Zou, T.; Yu, C.; Zhao, Q.; Hao, X.J.; He, H.P. Aphagrandinoids A–D, cycloartane triterpenoids with antibacterial activities from Aphanamixis grandifolia. Fitoterapia 2013, 85, 64–68. [Google Scholar] [CrossRef]
  180. Tan, M.A.; Takayama, H.; Aimi, N.; Kitajima, M.; Franzblau, S.G.; Nonato, M.G. Antitubercular triterpenes and phytosterols from Pandanus tectorius Soland. var. laevis. J. Nat. Med. 2008, 62, 232–235. [Google Scholar] [CrossRef]
  181. Hassan, S.T.S.; Berchová-Bímová, K.; Petráš, J.; Hassan, K.T.S. Cucurbitacin B interacts synergistically with antibiotics against Staphylococcus aureus clinical isolates and exhibits antiviral activity against HSV-1. S. Afr. J. Bot. 2017, 108, 90–94. [Google Scholar] [CrossRef]
  182. Heliawati, L.; Syah, Y.M.; Bumi, M.B. Bryononic acid: Antibacterial compound from fruit hulls of S. koetjape Merr extract. J. Chem. Pharm. Sci. 2019, 12, 1–5. [Google Scholar] [CrossRef]
  183. Shi, Y.S.; Zhang, Y.; Li, H.T.; Wu, C.H.; El-Seedi, H.R.; Ye, W.K.; Wang, Z.W.; Li, C.B.; Zhang, X.F.; Kai, G.Y. Limonoids from Citrus: Chemistry, anti-tumor potential, and other bioactivities. JFF 2020, 75, 104213. [Google Scholar] [CrossRef]
  184. Hu, J.; Song, Y.; Li, H.; Mao, X.; Zhao, Y.; Shi, X.; Yang, B. Antibacterial and cytotoxic triterpenoids from the ethanol extract of Dysoxylum densiflorum (Blume) Miq. Phytochem. Lett. 2014, 10, 219–223. [Google Scholar] [CrossRef]
  185. Liang, X.; Li, B.; Wu, F.; Li, T.; Wang, Y.; Ma, Q.; Liang, S. Bitterness and antibacterial activities of constituents from Evodia rutaecarpa. BMC Complement. Altern. Med. 2017, 17, 180. [Google Scholar] [CrossRef] [PubMed]
  186. Zhang, Q.; Shi, Y.; Liu, X.T.; Liang, J.Y.; Ip, N.Y.; Min, Z.D. Minor limonoids from Melia toosendan and their antibacterial activity. Planta Med. 2007, 73, 1298–1303. [Google Scholar] [CrossRef]
  187. Yuan, C.M.; Zhang, Y.; Tang, G.H.; Di, Y.T.; Cao, M.M.; Wang, X.Y.; Zuo, G.Y.; Li, S.L.; Hua, H.M.; He, H.P.; et al. Khayseneganins A–H, limonoids from Khaya senegalensis. J. Nat. Prod. 2013, 76, 327–333. [Google Scholar] [CrossRef]
  188. Rahman, A.S.; Chowdhury, A.A.; Ali, H.A.; Raihan, S.Z.; Ali, M.S.; Nahar, L.; Sarker, S.D. Antibacterial activity of two limonoids from Swietenia mahagoni against multiple-drug-resistant (MDR) bacterial strains. J. Nat. Med. 2009, 63, 41–45. [Google Scholar] [CrossRef]
  189. Lin, B.D.; Yuan, T.; Zhang, C.R.; Dong, L.; Zhang, B.; Wu, Y.; Yue, J.M. Structurally diverse limonoids from the fruits of Swietenia mahagoni. J. Nat. Prod. 2009, 72, 2084–2090. [Google Scholar] [CrossRef]
  190. Lu, X.F.; Lin, P.C.; Zi, J.C.; Fan, X.N. Limonoids from seeds of Azadirachta indica and their antibacterial activity. Chin. Med. J. 2019, 44, 4864–4873. [Google Scholar]
  191. Lin, B.D.; Chen, H.D.; Liu, J.; Zhang, S.; Wu, Y.; Dong, L.; Yue, J.M. Mulavanins A–E: Limonoids from Munronia delavayi. Phytochemistry 2010, 71, 1596–1601. [Google Scholar] [CrossRef]
  192. Wong, C.P.; Nugroho, A.E.; Awouafack, M.D.; Win, Y.Y.; Win, N.N.; Ngwe, H.; Morita, H. Two new quassinoids and other constituents from Picrasma javanica wood, and their biological activities. J. Nat. Med. 2019, 73, 589–596. [Google Scholar]
  193. Nejma, A.B.; Nguir, A.; Jannet, H.B.; Daïch, A.; Othman, M.; Lawson, A.M. New septanoside and 20-hydroxyecdysone septanoside derivative from Atriplex portulacoides roots with preliminary biological activities. Bioorg. Med. Chem. Lett. 2015, 25, 1665–1670. [Google Scholar] [CrossRef] [PubMed]
  194. You, F.; Han, T.; Wu, J.Z.; Huang, B.K.; Qin, L.P. Antifungal secondary metabolites from endophytic Verticillium sp. Biochem. Syst. Ecol. 2009, 37, 162–165. [Google Scholar] [CrossRef]
  195. Cantrell, C.L.; Rajab, M.S.; Franzblau, S.G.; Fronczek, F.R.; Fischer, N.H. Antimycobacterial ergosterol-5, 8-endoperoxide from Ajuga remota. Planta Med. 1999, 65, 732–734. [Google Scholar] [CrossRef]
  196. Januário, A.H.; Filho, E.R.; Pietro, R.C.L.R.; Kashima, S.; Sato, D.N.; França, S.C. Antimycobacterial physalins from Physalis angulata L. (Solanaceae). Phytother. Res. 2002, 16, 445–448. [Google Scholar] [CrossRef]
  197. Silva, M.T.; Simas, S.M.; Batista, T.G.; Cardarelli, P.; Tomassini, T.C. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae) fraction and physalin B bringing out the importance of assay determination. Mem. Inst. Ozwaldo Cruz 2005, 100, 779–782. [Google Scholar] [CrossRef] [PubMed]
  198. Rahman, M.M.; Gray, A.I. Antimicrobial constituents from the stem bark of Feronia limonia. Phytochemistry 2002, 59, 73–77. [Google Scholar] [CrossRef] [PubMed]
  199. Kim, S.H.; Shin, D.S.; Oh, M.N.; Chung, S.C.; Lee, J.S.; Chang, I.M.; Oh, K.B. Inhibition of sortase, a bacterial surface protein anchoring transpeptidase, by β-sitosterol-3-O-glucopyranoside from Fritillaria verticillata. Biosci. Biotechnol. Biochem. 2003, 67, 2477–2479. [Google Scholar] [CrossRef]
  200. Subramaniam, S.; Keerthiraja, M.; Sivasubramanian, A. Synergistic antibacterial action of β-sitosterol-D-glucopyranoside from Desmostachya bipinnata leaves with antibiotics against common human pathogens. Rev. Braz. Pharmacogn. 2014, 24, 44–50. [Google Scholar] [CrossRef]
  201. de Moura, R.M.X.; Pereira, P.S.; Januario, A.H.; de Castro França SDias, D.A. Antimicrobial screening and quantitative determination of benzoic acid derivative of Gomphrena celosioides by TLC-densitometry. Chem. Pharm. Bull. 2004, 52, 1342–1344. [Google Scholar] [CrossRef]
  202. Meerungrueang, W.; Panichayupakaranant, P. Antimicrobial activities of some Thai traditional medical longevity formulations from plants and antibacterial compounds from Ficus foveolata. Pharm. Biol. 2014, 52, 1104–1109. [Google Scholar] [CrossRef]
  203. Thu, Z.M.; Oo, S.M.; Nwe, T.M.; Aung, H.T.; Armijos, C.; Hussain, F.H.; Vidari, G. Structures and bioactivities of steroidal saponins from the genera dracaena and sansevieria. Molecules 2021, 26, 1916. [Google Scholar] [CrossRef] [PubMed]
  204. Sautour, M.; Mitaine-Offer, A.C.; Miyamoto, T.; Dongmo, A.; Lacaille-Dubois, M.A. A new steroidal saponin from Dioscorea cayenensis. Chem. Pharm. Bull. 2004, 52, 1353–1355. [Google Scholar] [CrossRef] [PubMed]
  205. Yang, L.; Liu, X.; Zhong, L.; Sui, Y.; Quan, G.; Huang, Y.; Wang, F.; Ma, T. Dioscin inhibits virulence factors of Candida albicans. BioMed Res. Int. 2018, 2018, 4651726. [Google Scholar] [CrossRef]
  206. Cho, J.; Choi, H.; Lee, J.; Kim, M.S.; Sohn, H.Y.; Lee, D.G. The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica. Biochim. Biophys. Acta (BBA)-Biomembr. 2013, 1828, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
  207. Deng, D.; Lauren, D.R.; Cooney, J.M.; Jensen, D.J.; Wurms, K.V.; Upritchard, J.E.; Cannon, R.D.; Wang, M.Z.; Li, M.Z. Antifungal saponins from Paris polyphylla Smith. Planta Med. 2008, 74, 1397–1402. [Google Scholar] [CrossRef]
  208. Fouedjou, R.T.; Teponno, R.B.; Quassinti, L.; Bramucci, M.; Petrelli, D.; Vitali, L.A.; Fiorini, D.; Tapondjou, L.A.; Barboni, L. Steroidal saponins from the leaves of Cordyline fruticosa (L.) A. Chev. and their cytotoxic and antimicrobial activity. Phytochem. Lett. 2014, 7, 62–68. [Google Scholar] [CrossRef]
  209. Yang, C.R.; Zhang, Y.; Jacob, M.R.; Khan, S.I.; Zhang, Y.J.; Li, X.C. Antifungal activity of C-27 steroidal saponins. Antimicrob. Agents Chemother. 2006, 50, 1710–1714. [Google Scholar] [CrossRef]
  210. Lin, T.C.; Fan, M.C.; Wang, S.Y.; Huang, J.W. Identification of the Solanum nigrum extract component involved in controlling cabbage black leaf spot disease. J. Agric. Food. Chem. 2011, 59, 1667–1672. [Google Scholar] [CrossRef]
  211. Yücesan, B. In Vitro Propagation and Cardiac Glycoside Production in Endemic Digitalis L. species of Anatolia. Ph.D. Thesis, Abant Izzet Bayzal University: Bolu, Türkiye, 2011. [Google Scholar]
  212. Srinivas, P.V.; Rao, R.R.; Rao, J.M. Two new tetracyclic triterpenes from the heartwood of Ailanthus excelsa Roxb. Chem. Biodivers. 2006, 3, 930–934. [Google Scholar] [CrossRef]
  213. Dong, S.H.; Zhang, C.R.; Dong, L.; Wu, Y.; Yue, J.M. Onoceranoid-type triterpenoids from Lansium domesticum. J. Nat. Prod. 2011, 74, 1042–1048. [Google Scholar] [CrossRef]
  214. Ragasa, C.Y.; Labrador, P.; Rideout, J.A. Antimicrobial terpenoids from Lansium domesticum. Philip. Agric. Sci. 2006, 89, 101. [Google Scholar]
  215. Ji, C.J.; Zeng, G.Z.; Han, J.; He, W.J.; Zhang, Y.M.; Tan, N.H. Zizimauritic acids A–C, three novel nortriterpenes from Ziziphus mauritiana. Bioorg. Med. Chem. Lett. 2012, 22, 6377–6380. [Google Scholar] [CrossRef] [PubMed]
  216. Huang, J.; Yang, L.; Zou, Y.; Luo, S.; Wang, X.; Liang, Y.; Du, Y.; Feng, R.; Wei, Q. Antibacterial activity and mechanism of three isomeric terpineols of Cinnamomum longepaniculatum leaf oil. Folia Microbiol. 2021, 66, 59–67. [Google Scholar] [CrossRef] [PubMed]
  217. Ahmad, Z.; Laughlin, T.F.; Kady, I.O. Thymoquinone inhibits Escherichia coli ATP synthase and cell growth. PLoS ONE 2015, 10, e0127802. [Google Scholar] [CrossRef]
  218. Moo, C.L.; Yang, S.K.; Osman, M.A.; Yuswan, M.H.; Loh, J.Y.; Lim, W.M.; Swee-Hua-Erin, L.I.M.; Lai, K.S. Antibacterial activity and mode of action of β-caryophyllene on Bacillus cereus. Pol. J. Microbiol. 2020, 69, 49–54. [Google Scholar] [CrossRef]
  219. Lawrence, N.J.; McGown, A.T.; Nduka, J.; Hadfield, J.A.; Pritchard, R.G. Cytotoxic michael-type amine adducts of α-methylene lactones alantolactone and isoalantolactone. Bioog. Med. Chem. Lett. 2001, 11, 429–431. [Google Scholar] [CrossRef]
  220. Murakami, K.; Haneda, M.; Makino, T.; Yoshino, M. Prooxidant action of furanone compounds: Implication of reactive oxygen species in the metal-dependent strand breaks and the formation of 8-hydroxy-2′-deoxyguanosine in DNA. Food Chem. Toxicol. 2007, 45, 1258–1262. [Google Scholar] [CrossRef]
  221. Rosenberg, L.J.; Adlakha, R.C.; Desai, D.M.; Rao, P.N. Inhibition of DNA polymerase α by gossypol. BBA 1986, 866, 258–267. [Google Scholar] [CrossRef]
  222. Sun, D.A.; Starck, S.R.; Locke, E.P.; Hecht, S.M. DNA Polymerase β Inhibitors from Sandoricum koetjape. J. Nat. Prod. 1999, 62, 1110–1113. [Google Scholar] [CrossRef]
  223. Haraguchi, H.; Kataoka, S.; Okamoto, S.; Hanafi, M.; Shibata, K. Antimicrobial triterpenes from Ilex integra and the mechanism of antifungal action. Phytother. Res. 1999, 13, 151–156. [Google Scholar] [CrossRef]
  224. Mert-Türk, F. Saponins versus plant fungal pathogens. J. Cell. Mol. Biol. 2006, 5, 13–17. [Google Scholar]
  225. Polacheck, I.; Levy, M.; Guizie, M.; Zehavi, U.; Naim, M.; Evron, R. Mode of action of the antimycotic agent G2 from alfalfa roots. Zentralbl Bakteriol. 1991, 275, 504–512. [Google Scholar] [CrossRef] [PubMed]
  226. Sun, B.T.; Zheng, L.H.; Bao, Y.L.; Yu, C.L.; Wu, Y.; Meng, X.Y.; Li, Y.X. Reversal effect of Dioscin on multidrug resistance in human hepatoma HepG2/adriamycin cells. Eur. J. Pharmacol. 2011, 654, 129–134. [Google Scholar] [CrossRef] [PubMed]
  227. Lu, N.; Lv, Q.; Sun, X.; Zhou, Y.; Guo, Y.; Qiu, J.; Zhang, P.; Wang, J. Isoalantolactone restores the sensitivity of gram-negative Enterobacteriaceae carrying MCR-1 to carbapenems. J. Cell. Mol. Med. 2020, 24, 2475–2483. [Google Scholar] [CrossRef] [PubMed]
  228. Patel, Y.S.; Mistry, N.; Mehra, S. Repurposing artemisinin as an anti-mycobacterial agent in synergy with rifampicin. Tuberculosis 2019, 115, 146–153. [Google Scholar] [CrossRef]
  229. Puapairoj, P.; Naengchomnong, W.; Kijjoa, A.; Pinto, M.M.; Pedro, M.; Nascimento, M.S.J.; Silva, A.M.; Herz, W. Cytotoxic activity of lupane-type triterpenes from Glochidion sphaerogynum and Glochidion eriocarpum two of which induce apoptosis. Planta Med. 2005, 71, 208–213. [Google Scholar] [CrossRef]
  230. Gupta, V.K.; Tiwari, N.; Gupta, P.; Verma, S.; Pal, A.; Srivastava, S.K.; Darokar, M.P. A clerodane diterpene from Polyalthia longifolia as a modifying agent of the resistance of methicillin resistant Staphylococcus aureus. Phytomedicine 2016, 23, 654–661. [Google Scholar] [CrossRef]
  231. Oluwatuyi, M.; Kaatz, G.W.; Gibbons, S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 2004, 65, 3249–3254. [Google Scholar] [CrossRef]
  232. Weng, H.Z.; Tian, Y.; Zhang, J.S.; Huang, J.L.; Tang, G.H.; Yin, S. A new tigliane-type diterpenoid from Euphorbia tirucalli. Nat. Prod. Res. 2022, 36, 5380–5386. [Google Scholar] [CrossRef]
  233. Sharma, A.; Gupta, V.K.; Pathania, R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Ind. J. Med. Res. 2019, 149, 129. [Google Scholar]
  234. Markham, P.N.; Neyfakh, A.A. Inhibition of the multidrug transporter NorA prevents emergence of norfloxacin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1996, 40, 2673–2674. [Google Scholar] [CrossRef] [PubMed]
  235. Login, I.S.; Judd, A.M.; Cronin, M.J.; Yasumoto, T.; MacLeod, R.M. Reserpine is a calcium channel antagonist in normal and GH3 rat pituitary cells. Am. J. Physiol. Endocrinol. Metab. 1985, 248, E15–E19. [Google Scholar] [CrossRef]
  236. Gupta, S.; Cohen, K.A.; Winglee, K.; Maiga, M.; Diarra, B.; Bishai, W.R. Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014, 58, 574–576. [Google Scholar] [CrossRef] [PubMed]
  237. Martins, A.; Machado, L.; Costa, S.; Cerca, P.; Spengler, G.; Viveiros, M.; Amaral, L. Role of calcium in the efflux system of Escherichia coli. IJAA 2011, 37, 410–414. [Google Scholar] [CrossRef] [PubMed]
  238. Wink, M.; Ashour, M.L.; El-Readi, M.Z. Secondary metabolites from plants inhibiting ABC transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents. Front. Microbiol. 2012, 3, 130. [Google Scholar] [CrossRef]
  239. Kwak, Y.G.; Kim, D.K.; Ma, T.Z.; Park, S.A.; Park, H.; Jung, Y.H.; Yoo, D.J.; Eun, J.S. Torilin fromTorilis japonica (Houtt.) DC. Blocks hKv1. 5 channel current. Arch. Pharmacal Res. 2006, 29, 834–839. [Google Scholar]
  240. Habermehl, G.G.; Fliegner, W. Terpenes and their biological relevance. Stud. Nat. Prod. Chem. 1997, 20, 3–24. [Google Scholar]
  241. Matura, M.; Sköld, M.; Börje, A.; Andersen, K.E.; Bruze, M.; Frosch, P.; Goossens, A.; Johansen, J.D.; Svedman, C.; White, I.R.; et al. Selected oxidized fragrance terpenes are common contact allergens. Contact Derm. 2005, 52, 320–328. [Google Scholar] [CrossRef]
  242. Wolkoff, P. Indoor air chemistry: Terpene reaction products and airway effects. Int. J. Hyg. Environ. Health 2020, 225, 113439. [Google Scholar] [CrossRef]
  243. Di Sotto, A.; Evandri, M.G.; Mazzanti, G. Antimutagenic and mutagenic activities of some terpenes in the bacterial reverse mutation assay. MRGTEM 2008, 653, 130–133. [Google Scholar] [CrossRef]
  244. Agus, H.H. Terpene Toxicity and Oxidative Stress. In Toxicology; Academic Press: Cambridge, MA, USA, 2021; pp. 33–42. [Google Scholar]
  245. Weinstein, L.I.; Albersheim, P. Host-pathogen interactions: XXIII. The mechanism of the antibacterial action of glycinol, a pterocarpan phytoalexin synthesized by soybeans. Plant Physiol. 1983, 72, 557–563. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Antibacterial and antifungal linear monoterpenes. (1) geraniol, (2) nerol, (3) neral, (4) geranyl acetate, (5) geranial, (6) citronellol, (7) citronellal, (8) citronellic acid, (9) linalool, (10) myrcene.
Figure 1. Antibacterial and antifungal linear monoterpenes. (1) geraniol, (2) nerol, (3) neral, (4) geranyl acetate, (5) geranial, (6) citronellol, (7) citronellal, (8) citronellic acid, (9) linalool, (10) myrcene.
Molecules 28 03873 g001
Figure 2. Antibacterial and antifungal cyclic monoterpenes. Borneol (11), isoborneol (12), camphor (13), α-pinene (14), α-pinene-7β-O-β-D-2,6-diacetylglucopyranoside (15), limonene (16), isomenthone (17), piperitone (18), menthol (19), carvone (20), car-3-ene (21), car-3-ene-2,5-dione (22), asarinol A (23), α-terpineol (24), terpinen-4-ol (25), δ-terpineol (26), 1,8-cineole (27), γ-terpinene (28), α-terpinene (29), ascaridole (30), p-cymene (31), cuminol (32), thymol (33), 7-acetyl-8,9-dihydroxy thymol (34), 7,8-dihydroxy-9-butyryl thymol (35), carvacrol (37).
Figure 2. Antibacterial and antifungal cyclic monoterpenes. Borneol (11), isoborneol (12), camphor (13), α-pinene (14), α-pinene-7β-O-β-D-2,6-diacetylglucopyranoside (15), limonene (16), isomenthone (17), piperitone (18), menthol (19), carvone (20), car-3-ene (21), car-3-ene-2,5-dione (22), asarinol A (23), α-terpineol (24), terpinen-4-ol (25), δ-terpineol (26), 1,8-cineole (27), γ-terpinene (28), α-terpinene (29), ascaridole (30), p-cymene (31), cuminol (32), thymol (33), 7-acetyl-8,9-dihydroxy thymol (34), 7,8-dihydroxy-9-butyryl thymol (35), carvacrol (37).
Molecules 28 03873 g002
Figure 3. Antibacterial and antifungal linear sesquiterpenes. Farnesol (38), farnesal (39).
Figure 3. Antibacterial and antifungal linear sesquiterpenes. Farnesol (38), farnesal (39).
Molecules 28 03873 g003
Figure 4. Antibacterial and antifungal cyclic sesquiterpenes. Germacrone (40), dehydrocurdione (41), 1(10),4(5)-diepoxygermacrone (42), c urdione (43), β-elemene (44), costunolide (45),cynaropicrin (46), deacetylxanthumine (47), isoalantolactone (48), microjaponin (49), 8-acetoxymutangin (50), monichinine H (51), gossypol (52), (+)-6,6′-methoxygossypol (53), 7-hydroxycadalene (54), mansonone E (55), mansonone F (56), cedrelanol (57),(+)-8-hydroxy calamenen (58), 4-(1,5-dimethyl-3-oxo-4-hexenyl) benzoic acid (59), artemisinin (60), α-humulene (61), α-santalol (62), β-santalol (63), and polygodial (64).
Figure 4. Antibacterial and antifungal cyclic sesquiterpenes. Germacrone (40), dehydrocurdione (41), 1(10),4(5)-diepoxygermacrone (42), c urdione (43), β-elemene (44), costunolide (45),cynaropicrin (46), deacetylxanthumine (47), isoalantolactone (48), microjaponin (49), 8-acetoxymutangin (50), monichinine H (51), gossypol (52), (+)-6,6′-methoxygossypol (53), 7-hydroxycadalene (54), mansonone E (55), mansonone F (56), cedrelanol (57),(+)-8-hydroxy calamenen (58), 4-(1,5-dimethyl-3-oxo-4-hexenyl) benzoic acid (59), artemisinin (60), α-humulene (61), α-santalol (62), β-santalol (63), and polygodial (64).
Molecules 28 03873 g004
Figure 5. Antibacterial and antifungal linear diterpenes. Geranylgeraniol (65), (E)-phytol (66).
Figure 5. Antibacterial and antifungal linear diterpenes. Geranylgeraniol (65), (E)-phytol (66).
Molecules 28 03873 g005
Figure 6. Antibacterial and antifungal cyclic diterpenes. Toonaciliatin M (67), 17-hydroxyjolkinolide B (68), cryptotanshinone (69), dihydrotanshinone I (70), carnosic acid (71), carnosol (72), is 6β-cinnamoyl-7β-hydroxyvouacapen-5α-ol (73), Niloticane (74), neocaesalpin P (75), phytocassane B (76), E)-8β, 17-epoxylabd-12-ene-15,16-dial (77), ent-trachyloban-19-oic acid (78), ent-kaur-16-en-19-oic acid (79), ent-18-acetoxy-7α-hydroxykaur-16-en-15-one (80), ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one (81), lasiodin (82), bafoudiosbulbin C (83), 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide (84), 16-oxo-cleroda-3, 13(14) E-diene-15 oic acid (85), euphoheliosnoid E (86), ovatodiolide (87), and dehydroabietylamine (88).
Figure 6. Antibacterial and antifungal cyclic diterpenes. Toonaciliatin M (67), 17-hydroxyjolkinolide B (68), cryptotanshinone (69), dihydrotanshinone I (70), carnosic acid (71), carnosol (72), is 6β-cinnamoyl-7β-hydroxyvouacapen-5α-ol (73), Niloticane (74), neocaesalpin P (75), phytocassane B (76), E)-8β, 17-epoxylabd-12-ene-15,16-dial (77), ent-trachyloban-19-oic acid (78), ent-kaur-16-en-19-oic acid (79), ent-18-acetoxy-7α-hydroxykaur-16-en-15-one (80), ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one (81), lasiodin (82), bafoudiosbulbin C (83), 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide (84), 16-oxo-cleroda-3, 13(14) E-diene-15 oic acid (85), euphoheliosnoid E (86), ovatodiolide (87), and dehydroabietylamine (88).
Molecules 28 03873 g006
Figure 7. Antibacterial and antifungal cyclic triterpenes. 4-Seco-mansumbinoic acid (90), β-amyrin (91), aceriphyllic acid A (92), gypsogenin (93), dysoxyhainic acid I (94), taraxerone (95), friedelin (96), pristimerin (97), celastrol (98), zeylasterone (99), (20R)-3β-hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide (100), bryononic acid (101), 7-cinnamoyltoosendanin (102), swietenolide (103), mulavanin D (104), 2-hydroxyfissinolide (105), (6R)-methoxyjavanicin B (106), ergosterol-5,8-endoperoxide (107), stigmasterol 3–O–β–D–glucopyranoside (108), and dioscin (109).
Figure 7. Antibacterial and antifungal cyclic triterpenes. 4-Seco-mansumbinoic acid (90), β-amyrin (91), aceriphyllic acid A (92), gypsogenin (93), dysoxyhainic acid I (94), taraxerone (95), friedelin (96), pristimerin (97), celastrol (98), zeylasterone (99), (20R)-3β-hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide (100), bryononic acid (101), 7-cinnamoyltoosendanin (102), swietenolide (103), mulavanin D (104), 2-hydroxyfissinolide (105), (6R)-methoxyjavanicin B (106), ergosterol-5,8-endoperoxide (107), stigmasterol 3–O–β–D–glucopyranoside (108), and dioscin (109).
Molecules 28 03873 g007
Table 1. Distribution of antibacterial and or antifungal terpenes in medicinal Angiosperms in Asia and the Pacific.
Table 1. Distribution of antibacterial and or antifungal terpenes in medicinal Angiosperms in Asia and the Pacific.
Groups of AngiospermsCladesType of TerpenesReferences
Basal AngiospermsProtomagnoliidsMonoterpenes[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43]
Sesquiterpenes (Lindenanes)[44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]
MagnoliidsMonoterpenes [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43]
Sesquiterpenes (Bisabolanes, Eudesmanes, Guaianes, Germacranes)[44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]
Diterpenes (Clerodanes, Kauranes, Trachylobanes)[95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139]
MonocotsMonoterpenes [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43]
Sesquiterpenes (Guaianes, Germacranes, Humulanes)[44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]
Diterpenes (Clerodanes, Kauranes, Rosanes)[95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139]
Triterpenes (Dammaranes, Stigmastanes, Spirostanes, Tirucallanes)
Core AngiospermsEudicotsMonoterpenes [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43]
Diterpenes (Diterpene alkaloids)[95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139]
Core EudicotsMonoterpenes
Triterpenes (Lupanes, Oleananes)
FabidsMonoterpenes [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43]
Sesquiterpenes (Bisabolanes, Dihydroagarofurans)[44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]
Diterpenes (Cassanes, Clerodanes, Jatrophanes, Kauranes, Pimaranes)[95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139]
Triterpenes (Cucurbitanes, Friedelanes, Lupanes, Oleananes, Stigmastanes, Ursanes)
MalvidsMonoterpenes[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43]
Sesquiterpenes (Cadinanes, Drimanes, Eudesmanes, Germacranes, Guaianes, Humulanes, Santalanes)[44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]
Diterpenes (Pimaranes)[95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139]
Triterpenes (Cholestanes, Dammaranes, Ergostanes, Lanostanes, Limonoids, Lupanes, Oleananes, Quassinoids, Stigmastanes, Taraxasteranes, Ursanes)
Upper AngiospermsAsteridsDiterpenes (Cadinanes, Clerodanes)[95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139]
Triterpenes (Oleananes)
LamiidsMonoterpenes[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43]
Sesquiterpenes (Eudesmanes, Guaianes, Humulanes) [44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]
Diterpenes (Cembranes, Clerodanes, Kauranes, Labdanes, Scopaludanes)[95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139]
Triterpenes (Cardenolides, Ergostanes, Oleananes, Spirostanes, Ursanes)
CampanuliidsMonoterpenes [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43]
Sesquiterpenes (Bisabolanes, Eudesmanes, Germacranes, Guaianes)[44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]
Diterpenes (Diterpene alkaloids, Kauranes)[95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139]
Table 2. Terpenes with very strong antibacterial and/or antifungal activities (MIC ≤2 µg/mL).
Table 2. Terpenes with very strong antibacterial and/or antifungal activities (MIC ≤2 µg/mL).
Type of TerpenesName of TerpenesMM (g/mol)LogDPSA (Ų)Gram-PositiveGram-NegativeMycobacteriaFilamentous FungiYeastsReferences
Monoterpenesα-Terpineol (24)154.2320S. aureus (*)E. coli (*) G. citri-aurantii (*) [20,32]
Terpinen-4-ol (25)154.23 S. aureus (*)E. coli (*)
S. enteritidis (*)
[33,36]
Cuminol (32)150.22.320B. cereus [15]
Carvacrol (37)150.2320B. subtilisP. aeruginosa [13,16]
SesquiterpenesGossypol (52)518.55.1156B. cereus
S. aureus
S. epidermidis
[62,63,64,65,66,67,68,69,70]
(+)-6,6′-Methoxygossypol (53)546.7n.an.aE. faecalis [62,63,64,65,66,67,68,69,70]
7-Hydroxycadalene (54)214.34.720B. cereus [62,63,64,65,66,67,68,69,70]
Mansonone F (56)240.22.543MRSA [71]
Polygodial (64)234.33.834 S. libertianaS. cerevisae
H. anomala
C. utilis
[90,92]
DiterpenesGeranylgeraniol (65)290.47.420S. aureus [95]
17-Hydroxyjolkinolide B (68)346.42.672 M. smegmatis [99]
ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one (81)n.an.an.a M. tuberculosis [119]
16α-Hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide (84)n.an.an.a E. coli
K. pneumoniae
P. aeruginosa
S. typhi
[119]
TriterpenesDysoxyhainic acid I (94)458.7n.a57.5B. subtilis [156]
Pristimerin (97)464.27.164B. subtilis (°)
S. epidermidis (°)
[172,173,174]
Celastrol (98)450.6475B. cereus (°)
B. megaterium (°)
B. pumilus (°)
B. subtilis (°)
S. aureus (°)
S. epidermidis (°)
H. capsulatum (*)C. neoformans (*)[175]
(20R)-3β-Hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide (100)n.an.an.aMRSA [178]
Ergosterol-5,8-endoperoxide (107)412.66.929 M. tuberculosis [194,195,196,197]
MM: molecular mass; PSA: polar surface area; (*): bactericidal or fungicidal; (°): bacteristatic or fungistati.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Wiart, C.; Kathirvalu, G.; Raju, C.S.; Nissapatorn, V.; Rahmatullah, M.; Paul, A.K.; Rajagopal, M.; Sathiya Seelan, J.S.; Rusdi, N.A.; Lanting, S.; et al. Antibacterial and Antifungal Terpenes from the Medicinal Angiosperms of Asia and the Pacific: Haystacks and Gold Needles. Molecules 2023, 28, 3873. https://doi.org/10.3390/molecules28093873

AMA Style

Wiart C, Kathirvalu G, Raju CS, Nissapatorn V, Rahmatullah M, Paul AK, Rajagopal M, Sathiya Seelan JS, Rusdi NA, Lanting S, et al. Antibacterial and Antifungal Terpenes from the Medicinal Angiosperms of Asia and the Pacific: Haystacks and Gold Needles. Molecules. 2023; 28(9):3873. https://doi.org/10.3390/molecules28093873

Chicago/Turabian Style

Wiart, Christophe, Geethanjali Kathirvalu, Chandramathi Samudi Raju, Veeranoot Nissapatorn, Mohammed Rahmatullah, Alok K. Paul, Mogana Rajagopal, Jaya Seelan Sathiya Seelan, Nor Azizun Rusdi, Scholastica Lanting, and et al. 2023. "Antibacterial and Antifungal Terpenes from the Medicinal Angiosperms of Asia and the Pacific: Haystacks and Gold Needles" Molecules 28, no. 9: 3873. https://doi.org/10.3390/molecules28093873

Article Metrics

Back to TopTop