Pharmacological Properties of Four Plant Species of the Genus Anabasis, Amaranthaceae
Abstract
:1. Introduction
2. Methods
3. Traditional Use
4. Pharmacological Activities
4.1. Antioxidant Properties
4.1.1. Anabasis aretioides
4.1.2. Anabasis articulata
4.1.3. Anabasis aphylla
№ | Extracts | H2O2 Scavenging Activity (%) | DPPH IC50 (µg/mL) | ABTS (µg TE/mg E) | FRAP (µg TE/mg E) | β-Carotene Test EC50 (mg/mL) | RP (µg AAE/mg E) | Reference |
---|---|---|---|---|---|---|---|---|
Anabasis aretioides | ||||||||
1 | Decocted | 4.52 ± 0.69 | 1117.67 ± 0.27 | 1.45 ± 0.027 | 2.896 ± 0.209 | − | 1.727 ± 0.047 | [44] |
2 | Infused | 5.96 ± 0.19 | 3704.33 ± 5.97 | 0.69 ± 0.093 | 0.456 ± 0.045 | − | 0.204 ± 0.031 | [44] |
3 | Macerated | 7.84 ± 0.44 | 2704.33 ± 1.91 | 1.56 ± 0.006 | 1.790 ± 0.008 | − | 0.539 ± 0.081 | [44] |
4 | Macerated methanol | 5.32 ± 0.23 | 52.91 ± 0.24 | 48.99 ± 1.316 | 99.736 ± 3.570 | − | 72.176 ± 0.540 | [44] |
5 | Methanol | 3.81 ± 0.26 | 59.65 ± 1.67 | 39.10 ± 0.572 | 79.214 ± 2.031 | − | 59.954 ± 1.505 | [44] |
6 | Ethyl acetate | 3.65 ± 0.80 | 76.08 ± 1.28 | 48.06 ± 0.93 | 83.743 ± 6.346 | − | 63.480 ± 3.701 | [44] |
7 | Chloroform | 2.81 ± 0.43 | 863.60 ± 10.49 | 31.89 ± 1.17 | 50.199 ± 1.341 | − | 23.376 ± 1.601 | [44] |
8 | Petroleum ether | 4.91 ± 0.38 | 515.53 ± 1.39 | 10.61 ± 1.528 | 24.601 ± 1.466 | − | 4.640 ± 0.099 | [44] |
9 | Ascorbic acid | 14.35 ± 0.002 | 0.17 ± 0.02 | − | − | − | − | [44] |
10 | BHT | − | 1.59 ± 0.13 | − | − | − | − | [44] |
11 | Trolox | − | 1.75 ± 0.09 | − | − | − | [44] | |
12 | Acetone extract | 23.81 ± 2.13a | 47.71 ± 1.13 | − | − | − | − | [45] |
13 | Methanol extract | 26.98 ± 2.99 a | 79.15 ± 4.23 | − | − | − | − | [45] |
14 | Chloroform extract | 29.28 ± 5.04 a | 86.73 ± 10.68 | − | − | − | − | [45] |
15 | Ethanol extract | 28.72 ± 3.03 a | 65.08 ± 1.98 | − | − | − | − | [45] |
16 | Ethyl acetate | 45.49 ± 3.84 b | 72.15 ± 1.04 | − | − | − | − | [45] |
17 | BHA extract | 24.13 ± 7.32 a | 2.61 ± 0.13 | − | − | − | − | [45] |
18 | a-Tocopherol | 32.44 ± 5.87 a | − | − | − | − | − | [45] |
Anabasis articulata | ||||||||
19 | Ethyl acetate and n-hexane (5:95) | − | 71.31 ± 0.45 | 72.45 ± 0.79 | − | − | − | [54] |
20 | Ethyl acetate and n-hexane (10:90) | − | 71.34 ± 0.65 | 59.48 ± 0.27 | − | − | − | [54] |
21 | Ethyl acetate and n-hexane (10:90) | − | 34.11 ± 0.87 | 64.78 ± 0.69 | − | − | − | [54] |
22 | Ethyl acetate and n-hexane (30:70) | − | 50.36 ± 0.88 | 67.86 ± 0.95 | − | − | − | [54] |
23 | Oil fraction | − | 78.24 ± 0.32 | 64.52 ± 0.39 | − | − | − | [54] |
24 | Ascorbic acid | − | 78.64 ± 0.63 | 78.35 ± 0.73 | − | − | − | [54] |
25 | Total alkaloids | − | 5.350 ± 0.022 | − | − | 0.353 ± 0.175 | − | [54] |
26 | Basic alkaloids | − | 1.380 ± 0.037 | − | − | 0.372 ± 0.086 | − | [60] |
27 | Tetravalent alkaloids | − | − | − | − | 2.313 ± 0.557 | − | [60] |
28 | Pure basic alkaloids | − | 1.242 ± 0.168 | − | − | 2.313 ± 0.557 | − | [60] |
29 | Ascorbic acid | − | 0.090 ± 0.002 | − | − | − | − | [60] |
30 | BHA | − | 0.054 ± 0.003 | − | − | 0.028 ± 0.005 | − | [60] |
Anabasis aphylla | ||||||||
31 | Ethyl acetate extracts | − | − | − | − | 79.3 ± 0.083 | − | [62] |
32 | Methanolic extract | − | − | − | − | 81.8 ± 0.005 | − | [62] |
Anabasis setifera | ||||||||
33 | Acetone extract | 28.62 ± 0.02 | 21.08 ± 0.02 | [41] | ||||
34 | Methanolic extract | 24.87 ± 0.06 | 24.31 ± 02 | [41] |
4.2. Antimicrobial Properties
4.2.1. Anabasis aretioides
4.2.2. Anabasis articulata
4.2.3. Anabasis aphylla
№ | Extracts | Concentration (mg/mL) | E. coli | S.a | P.a | C.a | Ref. |
---|---|---|---|---|---|---|---|
Anabasis articulata | |||||||
1 | Saponin alkaloids | 5 | 17.8 16.3 | 10.1 12.4 | 21.1 13.3 | 13 - | [72] |
2 | Saponin alkaloids | 2.5 | 15.2 13.2 | 8.5 12 | 16.1 10.8 | 10.5 - | [72] |
3 | Saponin alkaloids | 1 | 10.3 13.3 | 8.1 7.6 | 12.5 8.5 | 9.3 - | [72] |
4 | Saponin alkaloids | 0.5 | 7 - | 10.9 - | 10.2 7.4 | 8.8 - | [72] |
5 | Total alkaloids | 80 | 10 | 10 | 5 | 10 | [72] |
6 | Tetravalent alkaloids | 400 | 20 | >20 | >20 | 20 | [72] |
7 | Pure basic alkaloids | 400 | 0.781 | 3.125 | 25 | >100 | [72] |
Anabasis aphylla | |||||||
8 | Methanol | 100 | - | 8 | 11 | 17 | [65] |
9 | Ethyl acetate | 100 | - | 10 | 14 | 19 | [65] |
10 | n-Butanol | 100 | - | 10 | 10 | 18 | [65] |
11 | Water | 100 | - | 0 | 7 | 12 | [65] |
12 | 1-(2-hydroxy-4,6-dimethoxyphenyl)-ethanone | - | - | - | - | 100.0 | [65] |
13 | 3,4-dihydroxy cinnamic acid tetracosyl ester | - | - | - | - | 200.0 | [65] |
14 | 4-hydroxy 3-methoxy benzoic acid | - | - | - | - | 200.0 | [65] |
15 | 2-hydroxy benzoic acid | - | - | - | - | 100.0 | [65] |
16 | 3,4-dihydroxy cinnamic acid methyl ester | - | - | - | - | 200.0 | [65] |
Anabasis aretioides | |||||||
17 | Macerated methanol | - | - | - | - | - | [44] |
18 | Methanol | - | - | - | - | - | [44] |
19 | Ethyl acetate | 100 | 10.5 | 13.5 | 8 | - | [44] |
20 | Chloroform | 100 | 11.5 | 11.5 | 8 | - | [44] |
4.3. Antiangiogenesis Effect
4.4. Gastroprotective Effect
4.5. Anti-Inflammatory Activity
4.6. Hypoglycemic and Antihyperglycemic Effects
4.7. Antidiabetic Effects
4.8. Glaucoma
4.9. Antiarthritic Activity
4.10. Hepatoprotective Effects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kühn, U.; Bittrich, V.; Carolin, R.; Freitag, H.; Hedge, I.C.; Uotila, P.; Wilson, P.G. Chenopodiaceae. In Flowering Plants Dicotyledons: Magnoliid, Hamamelid and Caryophyllid Families; Springer: Berlin/Heidelberg, Germany, 1993; Volume 1, pp. 253–281. [Google Scholar]
- Akhani, H.; Edwards, G.; Roalson, E.H. Diversification of the old world Salsoleae sl (Chenopodiaceae): Molecular phylogenetic analysis of nuclear and chloroplast data sets and a revised classification. Int. J. Plant Sci. 2007, 168, 931–956. [Google Scholar] [CrossRef]
- Kenzhetayev, G.Z.; Koibakova, S.Y.; Aitimova, A.M.; Zhidebayeva, A.Y. Monitoring of the state of biological diversity at the field of chalk deposit of south shetpe in the area of a cement plant. Ind. Technol. Eng. 2017, 2, 318–326. [Google Scholar]
- Sultanova, B.M.; Akhmetov, Y.M.; Aldibekova, A.R.; Kurmanbayeva, M.S. Spatial structure of vegetation cover of Sharyn SNNP. Eurasian J. Ecol. 2020, 65, 38–50. [Google Scholar] [CrossRef]
- Pieroni, A.; Giusti, M.E.; De Pasquale, C.; Lenzarini, C.; Censorii, E.; Gonzáles-Tejero, M.R.; Sánchez-Rojas, C.P.; Ramiro-Gutiérrez, J.M.; Skoula, M.; Johnson, C.; et al. Circum-Mediterranean cultural heritage and medicinal plant uses in traditional animal healthcare: A field survey in eight selected areas within the RUBIA project. J. Ethnobiol. Ethnomed. 2006, 2, 16. [Google Scholar] [CrossRef]
- Amar, Z. The ash and the red material from Qumran. Dead Sea Discov. 1998, 5, 1–15. [Google Scholar] [CrossRef]
- Johnson, S.; Moody, G.J.; Thomas, J.D.R.; Wolff, E.W.; Coulson, G.; Mulvaney, R.; Peel, D.A.; Reid, A.P.; Suttie, E.D.; Beh, S.K.; et al. SAC 89. In Analytical Proceedings; Royal Society of Chemistry: London, UK, 1990; Volume 27, pp. 79–92. [Google Scholar]
- Costa, F.; Hagan, J.E.; Calcagno, J.; Kane, M.; Torgerson, P.; Martinez-Silveira, M.S.; Stein, C.; Abela-Ridder, B.; Ko, A.I. Global morbidity and mortality of leptospirosis: A systematic review. PLoS Negl. Trop. Dis. 2015, 9, e0003898. [Google Scholar] [CrossRef]
- Skuhrava, M.; Skuhravy, V. Species richness of gall midges(Diptera: Cecidomyiidae) in Europe(West Palaearctic): Biogeography and coevolution with host plants. Acta Soc. Zool. Bohem. 2009, 73, 87–156. [Google Scholar]
- Mandaville, J.P. Flora of Eastern Saudi Arabia; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- El-Keblawy, A.; Gairola, S.; Bhatt, A. Maternal salinity environment affects salt tolerance during germination in Anabasis setifera: A facultative desert halophyte. J. Arid. Land 2016, 8, 254–263. [Google Scholar] [CrossRef]
- Pyankov, V.I.; Gunin, P.D.; Tsoog, S.; Black, C.C. C 4 plants in the vegetation of Mongolia: Their natural occurrence and geographical distribution in relation to climate. Oecologia 2000, 123, 15–31. [Google Scholar] [CrossRef]
- Mittler, R.; Merquiol, E.; Hallak-Herr, E.; Rachmilevitch, S.; Kaplan, A.; Cohen, M. Living under a ‘dormant’canopy: A molecular acclimation mechanism of the desert plant Retama raetam. Plant J. 2001, 25, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Mroczek, A. Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochem. Rev. 2015, 14, 577–605. [Google Scholar] [CrossRef]
- Kloub, S.M.; Banihani, S.A.; Atrooz, O.M.; Hananeh, W.M. The Effect of Alcoholic Extract of Anabasis syriaca Iljin on Biochemical and Histological Parameters in Rats. J. Toxicol. 2022, 2022, 6945745. [Google Scholar] [CrossRef]
- El Dine, R.S.; Abdallah, H.M.; Kandil, Z.A.; Zaki, A.A.; Khan, S.I.; Khan, I.A. PPARα and γ activation effects of new nor-triterpenoidal saponins from the aerial parts of Anabasis articulata. Planta Med. 2019, 85, 274–281. [Google Scholar]
- Eisenman, S.W.; Zaurov, D.E.; Struwe, L. (Eds.) Medicinal Plants of Central Asia: Uzbekistan and Kyrgyzstan; Springer Science Business Media: Berlin/Heidelberg, Germany, 2012; Volume 1, pp. 9–13. [Google Scholar]
- Hawas, U.W.; El-Kassem, L.T.A.; Shaher, F.M.; Al-Farawati, R.; Ghandourah, M. Phytochemical Compositions of Some Red Sea Halophyte Plants with Antioxidant and Anticancer Potentials. Molecules 2022, 27, 3415. [Google Scholar] [CrossRef] [PubMed]
- Stan, D.; Enciu, A.M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front. Pharmacol. 2021, 12, 723233. [Google Scholar] [CrossRef]
- Belyagoubi-Benhammou, N.; Belyagoubi, L.; Gismondi, A.; Di Marco, G.; Canini, A.; Atik Bekkara, F. GC/MS analysis, and antioxidant and antimicrobial activities of alkaloids extracted by polar and apolar solvents from the stems of Anabasis articulata. Med. Chem. Res. 2019, 28, 754–767. [Google Scholar] [CrossRef]
- Lachkar, N.; Lamchouri, F.; Bouabid, K.; Boulfia, M.; Senhaji, S.; Stitou, M.; Toufik, H. Mineral composition, phenolic content, and in vitro antidiabetic and antioxidant properties of aqueous and organic extracts of Haloxylon scoparium aerial parts. Evid. -Based Complement. Altern. Med. 2021, 2021, 9011168. [Google Scholar] [CrossRef]
- Elekofehinti, O.O. Saponins: Anti-diabetic principles from medicinal plants–A review. Pathophysiology 2015, 22, 95–103. [Google Scholar] [CrossRef]
- Raghav, S.S.; Kumar, B.; Sethiya, N.K.; Kaul, A. A Mechanistic Insight on Phytoconstituents Delivering Hypoglycemic Activity: A Comprehensive Overview. Future Pharmacol. 2022, 2, 511–546. [Google Scholar] [CrossRef]
- Idm’hand, E.; Msanda, F.; Cherifi, K. Ethnopharmacological review of medicinal plants used to manage diabetes in Morocco. Clin. Phytosci. 2020, 6, 18. [Google Scholar] [CrossRef]
- Obón, C.; Rivera, D.; Verde, A.; Alcaraz, F. Ethnopharmacology and medicinal uses of extreme halophytes. In Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture; Springer: Basel, Switzerland, 2020; pp. 1–29. [Google Scholar] [CrossRef]
- Abdou, A.M.; Seddek, A.L.S.; Abdelmageed, N.; Badry, M.O.; Nishikawa, Y. Wild Egyptian medicinal plants show in vitro and in vivo cytotoxicity and antimalarial activities. BMC Complement. Med. Ther. 2022, 22, 130. [Google Scholar] [CrossRef] [PubMed]
- Dimetry, N.Z. Different plant families as bioresource for pesticides. In Advances in Plant Biopesticides; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–20. [Google Scholar] [CrossRef]
- Proksch, P.; Edrada, R.; Ebel, R. Drugs from the seas–current status and microbiological implications. Appl. Microbiol. Biotechnol. 2002, 59, 125–134. [Google Scholar]
- Parasuraman, S.; Perumal, P. Siddha, an indigenous medical system of peninsular India. In Herbal Medicine in India: Indigenous Knowledge, Practice, Innovation and Its Value; Springer: Berlin/Heidelberg, Germany, 2020; pp. 9–21. [Google Scholar] [CrossRef]
- Zahran, M.A. Afro-asian mediterranean coastal lands. In Climate-Vegetation: Afro-Asian Mediterranean and Red Sea Coastal Lands; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–103. [Google Scholar] [CrossRef]
- Maleki, T.; Akhani, H. Ethnobotanical and ethnomedicinal studies in Baluchi tribes: A case study in Mt. Taftan, southeastern Iran. J. Ethnopharmacol. 2018, 217, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Fakchich, J.; Elachouri, M. An overview on ethnobotanico-pharmacological studies carried out in Morocco, from 1991 to 2015: Systematic review (part 1). J. Ethnopharmacol. 2021, 267, 113200. [Google Scholar] [CrossRef] [PubMed]
- Hamza, N.; Berke, B.; Umar, A.; Cheze, C.; Gin, H.; Moore, N. A review of Algerian medicinal plants used in the treatment of diabetes. J. Ethnopharmacol. 2019, 238, 111841. [Google Scholar] [CrossRef]
- Kambouche, N.; Merah, B.; Derdour, A.; Bellahouel, S.; Bouayed, J.; Dicko, A.; Younos, C.; Soulimani, R. Hypoglycemic and antihyperglycemic effects of Anabasis articulata (Forssk) Moq (Chenopodiaceae), an Algerian medicinal plant. Afr. J. Biotechnol. 2009, 8, 5589–5594. [Google Scholar]
- Sathiyamoorthy, P.; Lugasi-Evgi, H.; Van-Damme, P.; Abu-Rabia, A.; Gopas, J.; Golan-Goldhirsh, A. Larvicidal activity in desert plants of the Negev and Bedouin market plant products. Int. J. Pharmacogn. 1997, 35, 265–273. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Abdalla, M.S.; Rizk, M.Z.; Mahdy, E.-S.M.E.; Farrag, A.-R.H.; El-Sharabasy, F.S.; Aly, H.F.; Mohamed, M.R. Alleviation of Dimethylnitrosamine-induced liver injury and fibrosis by supplementation of Anabasis articulata extract in rats. Indian J. Clin. Biochem. 2014, 29, 418–429. [Google Scholar] [CrossRef]
- Chu, G.; Wang, M.; Zhang, S. Spatial point patters of Anabasis aphylla populations in the proluvial fan of south Junggar basin. Sci. Silvae Sin. 2014, 50, 8–14. [Google Scholar]
- Khatibi, R.; Soltani, S.; Khodagholi, M. Effects of climatic factors and soil salinity on the distribution of vegetation types containing Anabasis aphylla in Iran: A multivariate factor analysis. Arab. J. Geosci. 2017, 10, 36. [Google Scholar] [CrossRef]
- Chermenskaya, T.D.; Stepanycheva, E.A.; Shchenikova, A.V.; Chakaeva, A.S. Insectoacaricidal and deterrent activities of extracts of Kyrgyzstan plants against three agricultural pests. Ind. Crops Prod. 2010, 32, 157–163. [Google Scholar] [CrossRef]
- Jiao, Y.; Chu, G.; Yang, Z.A.; Wang, Y.; Wang, M. Bacterial Diversity in the rhizosphere of Anabasis aphylla in the Gurbantunggut Desert, China. Curr. Microbiol. 2020, 77, 3750–3759. [Google Scholar] [CrossRef] [PubMed]
- Nowrouzi, I.; Mohammadi, A.H.; Manshad, A.K. Double-Chain Single-Head modification of extracted saponin from Anabasis Setifera plant and its effects on chemical enhanced oil recovery process by surfactant-alkali slug injection into carbonate oil reservoirs. J. Pet. Sci. Eng. 2021, 201, 108438. [Google Scholar] [CrossRef]
- Rakhimova, N.K.; Rakhimova, T. The Status of Salsola arbusculiformis and Anabasis salsa Shrub Grasslands on the Ustyurt Plateau in Karakalpakstan (Uzbekistan). Arid. Ecosyst. 2022, 12, 286–295. [Google Scholar] [CrossRef]
- Dong, Y.Q.; An, S.Z.; Wei, P. Effects of short-term non-grazing on soil nutrients in Haloxylon persicum desert and Anabasis salsa desert. Acta Prataculturae Sin. 2020, 29, 56. [Google Scholar]
- Senhaji, S.; Lamchouri, F.; Toufik, H. Phytochemical content, antibacterial and antioxidant potential of endemic plant anabasis aretioïdes coss. & moq.(Chenopodiaceae). BioMed Res. Int. 2020, 2020, 6152932. [Google Scholar]
- Berrani, A.; Marmouzi, I.; Kharbach, M.; Bouyahya, A.; El Hamdani, M.; El Jemli, M.; Lrhorfi, A.; Benassaoui, H.; Zouarhi, M.; Larbi, O.M.; et al. Anabasis aretioides Coss. & Moq. phenolic compounds exhibit in vitro hypoglycemic, antioxidant and antipathogenic properties. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 251–257. [Google Scholar]
- Boulfia, M.; Lamchouri, F.; Toufik, H. Mineral analysis, in vitro evaluation of alpha-amylase, alpha-glucosidase, and beta-galactosidase inhibition, and antibacterial activities of Juglans regia L. bark extracts. BioMed Res. Int. 2021, 2021, 1585692. [Google Scholar] [CrossRef]
- Monir, T.S.B.; Afroz, S.; Jahan, I.; Hossain, T. Phytochemical study and antioxidant properties of aqueous extracts of Murraya paniculata leaf. J. Appl. Life Sci. Int. 2020, 23, 1–8. [Google Scholar] [CrossRef]
- Lizard, G.; Filali-Zegzouti, Y.; El Midaoui, A. Benefits of argan oil on human health—May 4–6 2017, Errachidia, Morocco. Int. J. Mol. Sci. 2017, 18, 1383. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef] [PubMed]
- Adekola, M.B.; Areola, J.O.; Fagbohun, O.F.; Asaolu, F.T.; Ogundepo, G.E.; Fajobi, A.O.; Babalola, O.O. In-vitro antioxidant and anti-inflammatory activities of ethanol stem-bark extract of Blighia sapida KD Koenig. J. Pharm. Anal. 2022, 12, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Senhaji, S.; Lamchouri, F.; Boulfia, M.; Lachkar, N.; Bouabid, K.; Toufik, H. Mineral composition, content of phenolic compounds and in vitro antioxidant and antibacterial activities of aqueous and organic extracts of the seeds of Peganum harmala L. S. Afr. J. Bot. 2022, 147, 697–712. [Google Scholar] [CrossRef]
- Bautista, I.; Boscaiu, M.; Lidón, A.; Llinares, J.V.; Lull, C.; Donat, M.P.; Mayoral, O.; Vicente, O. Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiol. Plant. 2016, 38, 9. [Google Scholar] [CrossRef]
- Shalaby, S.; Horwitz, B.A. Plant phenolic compounds and oxidative stress: Integrated signals in fungal–plant interactions. Curr. Genet. 2015, 61, 347–357. [Google Scholar] [CrossRef]
- Benhammou, N.; Ghambaza, N.; Benabdelkader, S.; Atik-Bekkara, F.; Panovska, F.K. Phytochemicals and antioxidant properties of extracts from the root and stems of Anabasis articulata. Int. Food Res. J. 2013, 20, 2057. [Google Scholar]
- Mohammed, H.A.; Alshalmani, S.K.; Abdellatif, A.G. Antioxidant and quantitative estimation of phenolics and flavonoids of three halophytic plants growing in Libya. J. Pharmacogn. Phytochem. 2013, 2, 89–94. [Google Scholar]
- Ghembaza, N.; Belyagoubi-Benhammou, N.; Atik Bekkara, F. Separation and identification of bioactive compounds in Anabasis articulata (Forsk) Moq. roots. Nat. Prod. Res. 2016, 30, 857–859. [Google Scholar] [CrossRef]
- Ben Menni, D.; Belyagoubi-Benhammou, N.; Benmahieddine, A.; Ben Menni, H.; Gismondi, A.; Monteleone, V.; Di Marco, G.; D’agostino, A.; Canini, A.; Benamar, H.; et al. Identification of Sterols from Anabasis articulata (Forssk.) Moq.(Chenopodiaceae) Growing in Algeria and Study of Their Potential Bioactivity. Waste Biomass Valorization 2022, 13, 3283–3295. [Google Scholar] [CrossRef]
- Benzineb, E.; Kambouche, N.; Hamiani, A.; Bellahouel, S.; Zitouni, H.; Toumi, H. Phenolics compounds and biological activity of leaves of Anabasis articulata, an Algerian Medicinal Plant. Int. J. Pharm. Res. Allied Sci. 2019, 8, 1–5. [Google Scholar]
- Hassan, S.S.U.; Abdel-Daim, M.M.; Behl, T.; Bungau, S. Natural products for chronic diseases: A ray of hope. Molecules 2022, 27, 5573. [Google Scholar] [CrossRef]
- Al-Joufi, F.A.; Jan, M.; Zahoor, M.; Nazir, N.; Naz, S.; Talha, M.; Sadiq, A.; Nawaz, A.; Khan, F.A. Anabasis articulata (Forssk.) Moq: A good source of phytochemicals with antibacterial, antioxidant, and antidiabetic potential. Molecules 2022, 27, 3526. [Google Scholar] [CrossRef] [PubMed]
- Shaghaghi, A.; Asadi, M.; Allahverdipour, H. Predictors of self-medication behavior: A systematic review. Iran. J. Public Health 2014, 43, 136. [Google Scholar] [PubMed]
- Nadaf, M.; Halimi Khalil Abad, M.; Gholami, A.; Taghavizadeh Yazdi, M.E.; Iriti, M.; Mottaghipisheh, J. Phenolic content and antioxidant activity of different Iranian populations of Anabasis aphylla L. Nat. Prod. Res. 2022, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gorinstein, S.; Martin-Belloso, O.; Katrich, E.; Lojek, A.; Číž, M.; Gligelmo-Miguel, N.; Haruenkit, R.; Park, Y.-S.; Jung, S.-T.; Trakhtenberg, S. Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. J. Nutr. Biochem. 2003, 14, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Shakeri, A.; Hazeri, N.; Vlizadeh, J.; Ghasemi, A.; Tavallaei, F.Z. Phytochemical screening, antimicrobial and antioxidant activities of Anabasis aphylla L. extracts. Kragujev. J. Sci. 2012, 34, 71–78. [Google Scholar]
- Patt, S.; Weigel, K.; Mayer, H.M. A case of dyschondroplasia associated with brain stem glioma: Diagnosis by stereotactic biopsy. Neurosurgery 1990, 27, 487–491. [Google Scholar] [CrossRef]
- Zaiterd, L.; Benarimac, H.; Khechekhouchee, A. Phytochemical investigation, antibacterial and antioxidant activities of Sideritis incana L extracts. Alger. J. Eng. Technol. 2021, 5, 49–54. [Google Scholar]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- de la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Woodhead Publishing: Cambridge, UK, 2019; pp. 253–271. [Google Scholar] [CrossRef]
- Proft, T.; Baker, E.N. Pili in Gram-negative and Gram-positive bacteria—Structure, assembly and their role in disease. Cell. Mol. Life Sci. 2009, 66, 613–635. [Google Scholar] [CrossRef]
- Heng, N.C.; Wescombe, P.A.; Burton, J.P.; Jack, R.W.; Tagg, J.R. The diversity of bacteriocins in Gram-positive bacteria. Bacteriocins Ecol. Evol. 2007, 45–92. [Google Scholar] [CrossRef]
- Maatalah, M.B.; Bouzidi, N.K.; Bellahouel, S.; Merah, B.; Fortas, Z.; Soulimani, R.; Saidi, S.; Derdour, A. Antimicrobial activity of the alkaloids and saponin extracts of Anabasis articulate. J. Biotechnol. Pharm. Res. 2012, 3, 54–57. [Google Scholar]
- Hua, Y.; Keep, R.F.; Hoff, J.T.; Xi, G. Brain injury after intracerebral hemorrhage: The role of thrombin and iron. Stroke 2007, 38, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, Y.; Hao, X.; Li, C.; Peng, Y.; Wang, J.; Liu, H.; Zhou, L. Antimicrobial phenolic compounds from Anabasis aphylla L. Nat. Prod. Commun. 2009, 4, 1934578X0900400314. [Google Scholar] [CrossRef]
- Du, H.; Wang, Y.; Zhao, J.; Yang, H.; Ma, Z.; Hao, X.; Zhou, L. Antibacterial phenolics from chenopodiaceaeous plant Anabasis aphylla L. J. Biotechnol. 2008, 136, S88–S89. [Google Scholar] [CrossRef]
- Abdulsahib, K.; Abdulkareem, A.; Ban Jumaa, Q.; Hayder, S. Antiangiogenesis and antioxidant effect of Anabasis articulata stems extracts. Int. J. Pharm. Sci. Rev. Res. 2016, 41, 88–94. [Google Scholar]
- Gamal, G.; Abo-El-Seoud, K.A.; Attia, G. Triterpenoids from the aerial parts of Anabasis articulata (Forssk) Moq: Gastroprotective effect in vivo with in silico studies, cytotoxic and antimicrobial activities. Nat. Prod. Res. 2022, 36, 4076–4084. [Google Scholar] [CrossRef]
- Amin, E.; Abdel-Bakky, M.S.; Darwish, M.A.; Mohammed, H.A.; Chigurupati, S.; Qureshi, K.A.; Hassan, M.H. The glycemic control potential of some Amaranthaceae plants, with particular reference to in vivo antidiabetic potential of Agathophora alopecuroides. Molecules 2022, 27, 973. [Google Scholar] [CrossRef]
- Metwally, N.S.; Mohamed, A.M.; ELSharabasy, F.S. Chemical constituents of the Egyptian Plant Anabasis articulata (Forssk) Moq and its antidiabetic effects on rats with streptozotocin-induced diabetic hepatopathy. J. Appl. Pharm. Sci. 2012, 2, 54–65. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Cui, J.; Jia, N.; Wu, Y.; Xi, M.; Wen, A. Chikusetsu saponin IVa regulates glucose uptake and fatty acid oxidation: Implications in antihyperglycemic and hypolipidemic effects. J. Pharm. Pharmacol. 2015, 67, 997–1007. [Google Scholar] [CrossRef]
- Farid, O.; Hajji, L.; Eddouks, M. Aqueous extract of anabasis aretioides ameliorates Streptozotocininduced diabetes mellitus in rats. Nat. Prod. J. 2018, 8, 139–146. [Google Scholar] [CrossRef]
- Abdulsahib, W.K. The effect of anabasis articulata stems extract on lowering intraocular pressure in the glaucoma rat model (conference paper). Iraqi J. Pharm. Sci. 2021, 30 (Suppl. S1), 1–8. [Google Scholar] [CrossRef]
- Abdulhusain, Z.H.; Mahdi, M.A.; Abdulsahib, W.K.; Jasim, L.S. Anabasis articulata exerts an anti-arthritic effect on adjuvant-induced arthritis in rats. J. Adv. Pharm. Technol. Res. 2022, 13, 276. [Google Scholar] [PubMed]
- Yan-yu, X.; Yun-mei, S.; Zhi-peng, C.; Qi-neng, P. Preparation of silymarin proliposome: A new way to increase oral bioavailability of silymarin in beagle dogs. Int. J. Pharm. 2006, 319, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Al-Mahasneh, M.A.; Almajwal, A.; Gammoh, S.; Ereifej, K.; Johargy, A.; Alli, I. A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds. Food Chem. 2017, 218, 99–106. [Google Scholar] [CrossRef]
- Avello, M.A.; Pastene, E.R.; Bustos, E.D.; Bittner, M.L.; Becerra, J.A. Variation in phenolic compounds of ugni molinae populations and their potential use as antioxidant supplement. Rev. Bras. Farmacogn-Braz. J. Pharmacogn. 2013, 23, 44–50. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef]
- Amirkia, V.; Heinrich, M. Alkaloids as drug leads—A predictive structural and biodiversity-based analysis. Phytochem. Lett. 2014, 10, xlviii–liii. [Google Scholar] [CrossRef]
Types of Plant | Extracts | Quality of Control | Bioactive Compounds | Pharmacology Activity | Country |
---|---|---|---|---|---|
Anabasisaretioides | Maceration methanol | Surface characterization by SEM-EDS | Polyphenol compounds, tannins, coumarins, reducing compounds | Morocco | |
Ethanolic, ethyl acetate extracts | Folin–Ciocalteu colorimetric method, 700 and 750 nm spectrophotometer | Phenolic, flavonoid, and α-tocopherol | Antioxidant | Algeria | |
Methanolic extract | HPLC-DAD-QTOF-MS | Chlorogenic acid, phenolic compound, hesperidin, quercitrin | Antioxidant and antipathogenic | Morocco | |
Aqueous extract | Polyphenols, tannins, saponins, mucilage, sterol, sesquiterpenes, terpenoids, carbohydrates, and glycosides | Antidiabetic | Morocco | ||
Aqueous extract | HPLC–DAD–ESI–MS | Polyphenol compounds | Antidiabetic | Morocco | |
Soxhlet extract, aqueous, and organic extract | Folin–Ciocalteu reagent, 765 nm spectrophotometer | Polyphenols, tannins | Antibacterial and antioxidant | Morocco | |
Anabasis articulata | Methanolic extract and fractions dichloromethane, methanol, and ethyl acetate | HPLC, UV–Vis detector | Phenolic compounds, flavonoids | Antibacterial and antioxidant | Algeria |
Organic extractions | GC/MS | Alkaloids | Antibacterial and antioxidant | Algeria | |
Ethanolic extract fractions, water, and partitioned with ethyl acetate | HPTLC, 1H NMR and 13C NMR, MS, TLC | Saponin | Streptozotocin-induced diabetes Antidiabetic | Egypt | |
Aqueous extract | Saponin, alkaloids | Antihyperglycemic, antidiabetic | Algeria | ||
Methanolic extract | HPLC-UV, GC-MS | Phenolic, flavonoids | Antibacterial, antioxidant, and antidiabetic | Saudi Arabia and Pakistan | |
Maceration methanol extract | FT-IR, GC-MS | Scopoletin, glycine and 2-methoxy 4-vinylphenol with minor one of 1, 2-dimethyl piperidine | Antiangiogenic activity | Iraq | |
Methanolic extract, fractions | TLC, HPLC, UV–visible spectrophotometry | Phenolic acids | Antioxidative | Algeria | |
Butanolic extract | Saponins | Antihyperglycemic | Algeria | ||
Anabasis aphylla | Methanolic extract | Alkaloids, saponins, flavonoids, terpenoids, steroids, and sterols | Antimicrobial and antioxidant activities | Iran | |
10% H2O2 extract | HPLC, RPLC-MS/MS, SDS-PAGE electrophoresis | Amino acids | China | ||
Ethanolic extract | Folin–Ciocalteu reagent | Phenolic compounds | Antimicrobial | Iran | |
Ethanolic extract | 1H NMR and 13C | p-Acetyl-phenol 1-O-beta-D-xylopyranosyl-(1-->2)-beta-D-glucopyranoside, together with five known compounds: piceine, isorhamnetin, quercetin, rutin, and isorhamnetin-3-rutinoside | China | ||
Ethanol (95%) extract and fractions, hot water, and extracted with ethyl acetate | 1H NMR and 13C, TLC | Phenolic compounds | Antimicrobial | China | |
Anabasis setifera | n-Butanol fraction | 1H NMR and 13C | α-Amyrin 3-O-glucopyranoside, patuletin 7-O-glucopyranoside, myricitrin, and a new oleanane triterpene saponin derivative, sophradiol 3-O-α-L-1C4-rhamnopyranosyl-(1′′′→4′′)-O-β-D-4C1-galactopyranosyl (1′′→6′)-O-β-D-4C1-glucopyranoside | Anti-inflammatory | China |
Methanol extraction | Phenols, tannins, flavonoids, and saponins | Antioxidant | Iran | ||
Oil-in-water extraction | 1H NMR and 13C | Saponin | South Africa and Iran | ||
Ethanolic 70% extract | Lipoidal matter, carbohydrates, proteins, and phenolic compounds | Anti-inflammatory, antidiabetic, antispasmodic, and antimicrobial activities | Egypt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shegebayev, Z.; Turgumbayeva, A.; Datkhayev, U.; Zhakipbekov, K.; Kalykova, A.; Kartbayeva, E.; Beyatli, A.; Tastambek, K.; Altynbayeva, G.; Dilbarkhanov, B.; et al. Pharmacological Properties of Four Plant Species of the Genus Anabasis, Amaranthaceae. Molecules 2023, 28, 4454. https://doi.org/10.3390/molecules28114454
Shegebayev Z, Turgumbayeva A, Datkhayev U, Zhakipbekov K, Kalykova A, Kartbayeva E, Beyatli A, Tastambek K, Altynbayeva G, Dilbarkhanov B, et al. Pharmacological Properties of Four Plant Species of the Genus Anabasis, Amaranthaceae. Molecules. 2023; 28(11):4454. https://doi.org/10.3390/molecules28114454
Chicago/Turabian StyleShegebayev, Zhanybek, Aknur Turgumbayeva, Ubaidilla Datkhayev, Kairat Zhakipbekov, Assem Kalykova, Elmira Kartbayeva, Ahmet Beyatli, Kuanysh Tastambek, Gulmira Altynbayeva, Bassymbek Dilbarkhanov, and et al. 2023. "Pharmacological Properties of Four Plant Species of the Genus Anabasis, Amaranthaceae" Molecules 28, no. 11: 4454. https://doi.org/10.3390/molecules28114454
APA StyleShegebayev, Z., Turgumbayeva, A., Datkhayev, U., Zhakipbekov, K., Kalykova, A., Kartbayeva, E., Beyatli, A., Tastambek, K., Altynbayeva, G., Dilbarkhanov, B., Akhelova, A., Anarbayeva, R., & Orynbassarova, K. (2023). Pharmacological Properties of Four Plant Species of the Genus Anabasis, Amaranthaceae. Molecules, 28(11), 4454. https://doi.org/10.3390/molecules28114454