Single-Atom Catalysts in Environmental Engineering: Progress, Outlook and Challenges
Abstract
:1. Introduction
2. Progress of SACs in Gaseous Pollution Control
2.1. VOC Treatments
2.2. CO Oxidation
2.3. NO and N2O Reduction
2.4. CO2 Reduction
3. Progress of SACs in Aqueous Pollution Control
3.1. H2O2-Based Fenton-like Processes
3.2. Persulfate-Based Fenton-like Processes
3.3. Electrocatalytic Hydrodehalogenation
3.4. Photocatalytic Hydrodehalogenation
3.5. Nitrate and Nitrite Reduction
4. Conclusions and Outlook
- (1)
- Development of new synthetic strategies: Increasing the number and density of coordination sites can effectively improve the loading of metal single atoms. More loading sites can be created by fabricating defects and unsaturated coordination centers. The methods for synthesizing stable SACs with relatively high metal loadings should be further developed. Studies revealed that when the SAC content increases from ~1% to ~5%, monatomic metals will form neighboring SACs or SAC ensembles without metal−metal bonding. However, it still maintains high atomic utilization and a unique coordination environment [101]. Recently, atom-trapping methods have been applied to load 1–3 wt% of SACs onto reducible supports (e.g., CeO2, FeOx), preventing metal aggregation at high temperatures [17]. It was demonstrated that a single-atom Cu catalyst prepared by atom-trapping on CeO2 effectively prevented sintering and deactivation via the regulated charge state of the Cu through facile charge transfer between the active site and the support [125]. Moreover, using graphene quantum dots as the carbon carrier, the transition metal SAC content was further increased to nearly 40% [126]. Appropriate supports, such as porous carbon and MOF, can strengthen metal–substrate interactions. In addition, it is important to develop a synthetic strategy that can precisely regulate the atomic active center and create more selective metal active centers for a specific catalytic reaction. Through doping heteroatoms and designing bimetallic sites, creating synergistic interactions between various elements may greatly contribute to the enhancement of SAC performance.
- (2)
- Study on catalytic mechanisms: At present, most of the characterization techniques are ex situ, such as high-angle annular dark-field–scanning transmission electron microscopy (HAADF–STEM) and X-ray absorption spectroscopy (XAS), which make it difficult to provide in situ characterization of the alterations of the physicochemical properties and electronic structures of SACs during the reactions. Hence, it is necessary to develop advanced in situ characterization technology to further study the complex pathways of catalytic reactions at the atomic level. Nowadays, some cutting-edge in situ characterization techniques have been reported to detect the evolution of catalyst sites and the interactions between active sites and reactants during the reaction process. For example, Hensen et al. [59] used an in situ near ambient pressure X-ray photoelectron spectrometer (NAP–XPS) to follow the surface electronic structure of Pd–CeO2 SAC during CO oxidation and in situ infrared spectroscopy to probe the interaction between surface sites and reactants. Thereby, the structure–function relationships of Pd/CeO2 catalysts were established. In addition, in situ and operando infrared and XAS were used to detect CO oxidation mechanisms on an Ir single atom, detailing reaction steps [127]. Datye et al. [128] also used CO as a probe molecule during in situ DRIFTS to effectively detect the property changes of Pt1/CeO2 under reaction conditions. The model establishment and theoretical calculations by DFT are beneficial to understanding the formation of the intermediate products and energy barriers (i.e., the rate-determining step) during the reaction, which can guide the design of future catalysts. However, when faced with complicated environmental media and operating parameters, DFT is not suitable due to the high cost of time. As a more handy and advanced technology, machine learning (ML) and quantitative structure–activity relationship (QASR) can efficiently establish the relationship between catalyst performance and certain specific descriptors, such as operational parameters.
- (3)
- Optimization for practical applications: To stabilize the interactions between metal atoms and support, the synthesis methods of a certain metal–support combination are specific, which may hinder the large-scale synthesis of SACs. Developing a simple and general synthesis strategy is beneficial to reducing the cost of large-scale SAC production. The integration of SACs into reactors or systems to achieve pilot-scale and large-scale is another troublesome challenge to overcome. Besides, it is of great importance to improve the adaptability to different complex environments and the stability of the reaction system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Thomas, N.; Dionysiou, D.D.; Pillai, S.C. Heterogeneous Fenton catalysts: A review of recent advances. J. Hazard. Mater. 2021, 404, 124082. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, Z.; Li, Y.; Zhang, G. Advances in single-atom catalysts: Design, synthesis and environmental applications. J. Hazard. Mater. 2022, 429, 128285. [Google Scholar] [CrossRef] [PubMed]
- Schauermann, S.; Hoffmann, J.; Johánek, V.; Hartmann, J.; Libuda, J.; Freund, H.J. Catalytic activity and poisoning of specific sites on supported metal nanoparticles. Angew. Chem. Int. Ed. 2002, 41, 2532–2535. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Zhai, H.; Wang, L. Au20: A tetrahedral cluster. Science 2003, 299, 864–867. [Google Scholar] [CrossRef]
- Valden, M.; Lai, X.; Goodman, D. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650. [Google Scholar] [CrossRef]
- Gao, C.; Low, J.; Long, R.; Kong, T.; Zhu, J.; Xiong, Y. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216. [Google Scholar] [CrossRef]
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef]
- Yang, X.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. [Google Scholar] [CrossRef]
- Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2019, 120, 623–682. [Google Scholar] [CrossRef]
- Zhang, N.; Li, L.; Chu, Y.; Zheng, L.; Sun, S.; Zhang, G.; He, H.; Zhao, J. High Pt utilization efficiency of electrocatalysts for oxygen reduction reaction in alkaline media. Catal. Today 2019, 332, 101–108. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Mitchell, S.; Vorobyeva, E.; Pérez-Ramírez, J. The Multifaceted Reactivity of Single-Atom Heterogeneous Catalysts. Angew. Chem. Int. Ed. 2018, 57, 15316–15329. [Google Scholar] [CrossRef]
- Hu, P.; Huang, Z.; Amghouz, Z.; Makkee, M.; Xu, F.; Kapteijn, F.; Dikhtiarenko, A.; Chen, Y.; Gu, X.; Tang, X. Electronic Metal–Support Interactions in Single-Atom Catalysts. Angew. Chem. Int. Ed. 2014, 53, 3418–3421. [Google Scholar] [CrossRef]
- Cai, T.; Teng, Z.; Wen, Y.; Zhang, H.; Wang, S.; Fu, X.; Song, L.; Li, M.; Lv, J.; Zeng, Q. Single-atom site catalysts for environmental remediation: Recent advances. J. Hazard. Mater. 2022, 440, 129772. [Google Scholar] [CrossRef]
- Peterson, E.J.; DeLaRiva, A.T.; Lin, S.; Johnson, R.S.; Guo, H.; Miller, J.T.; Hun Kwak, J.; Peden, C.H.; Kiefer, B.; Allard, L.F. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885. [Google Scholar] [CrossRef]
- Jones, J.; Xiong, H.; DeLaRiva, A.T.; Peterson, E.J.; Pham, H.; Challa, S.R.; Qi, G.; Oh, S.; Wiebenga, M.H.; Pereira Hernández, X.I. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.; Wang, D.; Li, Y. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, M.; Li, J.; Chen, J.; Jia, H. Anchoring Single-Atom Ru on CdS with Enhanced CO2 Capture and Charge Accumulation for High Selectivity of Photothermocatalytic CO2 Reduction to Solar Fuels. Sol. RRL 2021, 5, 2000313. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, L.; Yang, W.; Xie, C.; Jiang, H. Rational Fabrication of Low-Coordinate Single-Atom Ni Electrocatalysts by MOFs for Highly Selective CO2 Reduction. Angew. Chem. Int. Ed. 2021, 60, 7607–7611. [Google Scholar] [CrossRef]
- Ni, W.; Liu, Z.; Zhang, Y.; Ma, C.; Deng, H.; Zhang, S.; Wang, S. Electroreduction of Carbon Dioxide Driven by the Intrinsic Defects in the Carbon Plane of a Single Fe–N4 Site. Adv. Mater. 2021, 33, 2003238. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, S.; Zhu, Y.; Patlolla, A.; Shan, J.; Yoshida, H.; Takeda, S.; Frenkel, A.I.; Tao, F. Catalysis and in situ studies of Rh1/Co3O4 nanorods in reduction of NO with H2. ACS Catal. 2013, 3, 1011–1019. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, M.; Chen, J.; Xu, W.; Jia, H. Selective immobilization of single-atom Au on cerium dioxide for low-temperature removal of C1 gaseous contaminants. J. Hazard. Mater. 2020, 392, 122511. [Google Scholar] [CrossRef] [PubMed]
- Narula, C.K.; Allard, L.F.; Moses-DeBusk, M.; Stocks, G.M.; Wu, Z. Single Pd atoms on θ-Al2O3 (010) surface do not catalyze NO oxidation. Sci. Rep. 2017, 7, 560. [Google Scholar] [CrossRef]
- Wang, X.; Jin, B.; Jin, Y.; Wu, T.; Ma, L.; Liang, X. Supported Single Fe Atoms Prepared via Atomic Layer Deposition for Catalytic Reactions. ACS Appl. Nano Mater. 2020, 3, 2867–2874. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, J.; Wang, Z.; Xu, Y.; Xing, Z.; Zhang, X.; Guan, Y.; Liao, G.; Li, X. High-loaded single Cu atoms decorated on N-doped graphene for boosting Fenton-like catalysis under neutral pH. J. Mater. Chem. A 2020, 8, 13685–13693. [Google Scholar] [CrossRef]
- Song, H.; Wei, L.; Chen, C.; Wen, C.; Han, F. Photocatalytic production of H2O2 and its in situ utilization over atomic-scale Au modified MoS2 nanosheets. J. Catal. 2019, 376, 198–208. [Google Scholar] [CrossRef]
- An, S.; Zhang, G.; Wang, T.; Zhang, W.; Li, K.; Song, C.; Miller, J.T.; Miao, S.; Wang, J.; Guo, X. High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C3N4) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS Nano 2018, 12, 9441–9450. [Google Scholar] [CrossRef]
- Huang, D.; de Vera, G.A.; Chu, C.; Zhu, Q.; Stavitski, E.; Mao, J.; Xin, H.; Spies, J.A.; Schmuttenmaer, C.A.; Niu, J.; et al. Single-Atom Pt Catalyst for Effective C–F Bond Activation via Hydrodefluorination. ACS Catal. 2018, 8, 9353–9358. [Google Scholar] [CrossRef]
- Wu, Z.; Karamad, M.; Yong, X.; Huang, Q.; Cullen, D.A.; Zhu, P.; Xia, C.; Xiao, Q.; Shakouri, M.; Chen, F.; et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; An, N.; Zhang, S.; Song, Q.; Yang, Y.; Liu, X. Atomically dispersed Fe atoms anchored on S and N–codoped carbon for efficient electrochemical denitrification. Proc. Natl. Acad. Sci. USA 2021, 118, e2105628118. [Google Scholar] [CrossRef]
- McDonald, B.C.; de Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef]
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z.P. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef]
- He, Z.R.; Wang, X.M.; Ling, Z.H.; Zhao, J.; Guo, H.; Shao, M.; Wang, Z. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmos. Chem. Phys. 2019, 19, 8801–8816. [Google Scholar] [CrossRef]
- Yue, X.C.; Ma, N.L.; Sonne, C.; Guan, R.R.; Lam, S.S.; Le, Q.V.; Chen, X.M.; Yang, Y.F.; Gu, H.P.; Rinklebe, J.; et al. Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation. J. Hazard. Mater. 2021, 405, 13. [Google Scholar] [CrossRef]
- Xinhua News Agency. The 14th Five-Year Plan for National Economic and Social Development of the People’s Republic of China and the Outline of the Long-Range Goals for 2035. Available online: http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm (accessed on 1 April 2023).
- Li, J.Q.; Liu, H.; Deng, Y.Z.; Liu, G.; Chen, Y.F.; Yang, J. Emerging nanostructured materials for the catalytic removal of volatile organic compounds. Nanotechnol. Rev. 2016, 5, 147–181. [Google Scholar] [CrossRef]
- Fei, H.L.; Dong, J.C.; Chen, D.L.; Hu, T.D.; Duan, X.D.; Shakir, I.R.; Huang, Y.; Duan, X.F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241. [Google Scholar] [CrossRef]
- Shang, Y.N.; Xu, X.; Gao, B.Y.; Wang, S.B.; Duan, X.G. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 2021, 50, 5281–5322. [Google Scholar] [CrossRef]
- Chen, Y.X.; Huang, Z.W.; Zhou, M.J.; Ma, Z.; Chen, J.M.; Tang, X.F. Single Silver Adatoms on Nanostructured Manganese Oxide Surfaces: Boosting Oxygen Activation for Benzene Abatement. Environ. Sci. Technol. 2017, 51, 2304–2311. [Google Scholar] [CrossRef]
- Deng, H.; Kang, S.Y.; Ma, J.Z.; Zhang, C.B.; He, H. Silver incorporated into cryptomelane-type Manganese oxide boosts the catalytic oxidation of benzene. Appl. Catal. B-Environ. 2018, 239, 214–222. [Google Scholar] [CrossRef]
- Chen, J.; Yan, D.X.; Xu, Z.; Chen, X.; Xu, W.J.; Jia, H.P.; Chen, J. A Novel Redox Precipitation to Synthesize Au-Doped alpha-MnO2 with High Dispersion toward Low-Temperature Oxidation of Formaldehyde. Environ. Sci. Technol. 2018, 52, 4728–4737. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Sui, S.H.; Zheng, X.M.; Cao, R.R.; Zhang, P.Y. One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Appl. Catal. B-Environ. 2019, 257, 12. [Google Scholar] [CrossRef]
- Hoang, S.; Guo, Y.B.; Binder, A.J.; Tang, W.X.; Wang, S.B.; Liu, J.Y.; Huan, T.D.; Lu, X.X.; Wang, Y.; Ding, Y.; et al. Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat. Commun. 2020, 11, 10. [Google Scholar]
- Chen, J.; Jiang, M.Z.; Xu, W.J.; Chen, J.; Hong, Z.X.; Jia, H.P. Incorporating Mn cation as anchor to atomically disperse Pt on TiO2 for low-temperature removal of formaldehyde. Appl. Catal. B-Environ. 2019, 259, 11. [Google Scholar] [CrossRef]
- Liu, P.X.; Zhao, Y.; Qin, R.X.; Gu, L.; Zhang, P.; Fu, G.; Zheng, N.F. A vicinal effect for promoting catalysis of Pd1/TiO2: Supports of atomically dispersed catalysts play more roles than simply serving as ligands. Sci. Bull. 2018, 63, 675–682. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Dai, L.Y.; Liu, Y.X.; Deng, J.G.; Jing, L.; Pei, W.B.; Gao, R.Y.; Feng, Y.; Dai, H.X. Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium-cobalt catalysts for benzene oxidation. Appl. Catal. B-Environ. 2021, 285, 12. [Google Scholar] [CrossRef]
- Liu, G.L.; Zhou, J.H.; Zhao, W.N.; Ao, Z.M.; An, T.C. Single atom catalytic oxidation mechanism of formaldehyde on Al doped graphene at room temperature. Chin. Chem. Lett. 2020, 31, 1966–1969. [Google Scholar] [CrossRef]
- Morin, C.; Simon, D.; Sautet, P. Chemisorption of Benzene on Pt(111), Pd(111), and Rh(111) Metal Surfaces: A Structural and Vibrational Comparison from First Principles. J. Phys. Chem. B 2004, 108, 5653–5665. [Google Scholar] [CrossRef]
- Rose, J.J.; Wang, L.; Xu, Q.Z.; McTiernan, C.F.; Shiva, S.; Tejero, J.; Gladwin, M.T. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy. Am. J. Respir. Crit. Care Med. 2017, 195, 596–606. [Google Scholar] [CrossRef]
- Sinthika, S.; Vala, S.T.; Kawazoe, Y.; Thapa, R. CO Oxidation Prefers the Eley-Rideal or Langmuir-Hinshelwood Pathway: Monolayer vs Thin Film of SiC. ACS Appl. Mater. Interfaces 2016, 8, 5290–5299. [Google Scholar] [CrossRef]
- Qiao, B.; Liang, J.; Wang, A.; Liu, J.; Zhang, T. Single atom gold catalysts for low-temperature CO oxidation. Chin. J. Catal. 2016, 37, 1580–1586. [Google Scholar] [CrossRef]
- Wang, W.W.; Du, P.P.; Zou, S.H.; He, H.Y.; Wang, R.X.; Jin, Z.; Shi, S.; Huang, Y.Y.; Si, R.; Song, Q.S.; et al. Highly Dispersed Copper Oxide Clusters as Active Species in Copper-Ceria Catalyst for Preferential Oxidation of Carbon Monoxide. ACS Catal. 2015, 5, 2088–2099. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Mousavian, P. A DFT study on the possibility of using a single Cu atom incorporated nitrogen-doped graphene as a promising and highly active catalyst for oxidation of CO. Int. J. Quantum Chem. 2019, 119, 10. [Google Scholar] [CrossRef]
- Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chem. Lett. 1987, 16, 405–408. [Google Scholar] [CrossRef]
- Widmann, D.; Behm, R.J. Activation of Molecular Oxygen and the Nature of the Active Oxygen Species for CO Oxidation on Oxide Supported Au Catalysts. Acc. Chem. Res. 2014, 47, 740–749. [Google Scholar] [CrossRef]
- Fujitani, T.; Nakamura, I. Mechanism and Active Sites of the Oxidation of CO over Au/TiO2. Angew. Chem. Int. Ed. 2011, 50, 10144–10147. [Google Scholar] [CrossRef]
- Schubert, M.M.; Hackenberg, S.; van Veen, A.C.; Muhler, M.; Plzak, V.; Behm, R.J. CO oxidation over supported gold catalysts-”inert” and “active” support materials and their role for the oxygen supply during reaction. J. Catal. 2001, 197, 113–122. [Google Scholar] [CrossRef]
- Muravev, V.; Spezzati, G.; Su, Y.Q.; Parastaev, A.; Chiang, F.K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E.J.M. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478. [Google Scholar] [CrossRef]
- He, B.L.; Shen, J.S.; Tian, Z.X. Iron-embedded C2N monolayer: A promising low-cost and high-activity single-atom catalyst for CO oxidation. Phys. Chem. Chem. Phys. 2016, 18, 24261–24269. [Google Scholar] [CrossRef]
- Liu, S.G.; Huang, S.P. Atomically dispersed Co atoms on MoS2 monolayer: A promising high-activity catalyst for CO oxidation. Appl. Surf. Sci. 2017, 425, 478–483. [Google Scholar] [CrossRef]
- Liang, J.X.; Yang, X.F.; Wang, A.Q.; Zhang, T.; Li, J. Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for CO oxidation. Catal. Sci. Technol. 2016, 6, 6886–6892. [Google Scholar] [CrossRef]
- Tang, Y.N.; Chen, W.G.; Shen, Z.G.; Chang, S.S.; Zhao, M.Y.; Dai, X.Q. Nitrogen coordinated silicon-doped graphene as a potential alternative metal-free catalyst for CO oxidation. Carbon 2017, 111, 448–458. [Google Scholar] [CrossRef]
- Liu, B.P.; Lee, J.Y.; Yan, S.H. Enhanced Catalytic Oxidation of CO on Sulfur-Doped Boron Nitride. ChemNanoMat 2020, 6, 9. [Google Scholar] [CrossRef]
- Qiao, B.T.; Liang, J.X.; Wang, A.Q.; Xu, C.Q.; Li, J.; Zhang, T.; Liu, J.Y. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924. [Google Scholar] [CrossRef]
- Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309. [Google Scholar] [CrossRef]
- Shi, J.L.; Zhao, X.J.; Zhang, L.Y.; Xue, X.L.; Guo, Z.X.; Gao, Y.F.; Li, S.F. An oxidized magnetic Au single atom on doped TiO2 (110) becomes a high performance CO oxidation catalyst due to the charge effect. J. Mater. Chem. A 2017, 5, 19316–19322. [Google Scholar] [CrossRef]
- Zou, X.P.; Wang, L.N.; Li, X.N.; Liu, Q.Y.; Zhao, Y.X.; Ma, T.M.; He, S.G. Noble-Metal-Free Single-Atom Catalysts CuAl4O7-9- for CO Oxidation by O2. Angew. Chem. Int. Ed. 2018, 57, 10989–10993. [Google Scholar] [CrossRef]
- Wen, H.; Huai, L.; Jin, X.; Liu, J. Mechanism of nitric oxide reduction by hydrogen on Ni (110) and Ir/Ni (110): First principles and microkinetic modeling. J. Phys. Chem. C 2019, 123, 4825–4836. [Google Scholar] [CrossRef]
- Xing, F.; Jeon, J.; Toyao, T.; Shimizu, K.-I.; Furukawa, S. A Cu–Pd single-atom alloy catalyst for highly efficient NO reduction. Chem. Sci. 2019, 10, 8292–8298. [Google Scholar] [CrossRef]
- Qu, W.; Liu, X.; Chen, J.; Dong, Y.; Tang, X.; Chen, Y. Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH3. Nat. Commun. 2020, 11, 1532. [Google Scholar] [CrossRef]
- Qu, W.; Yuan, H.; Ren, Z.; Qi, J.; Xu, D.; Chen, J.; Chen, L.; Yang, H.; Ma, Z.; Liu, X.; et al. An Atom-Pair Design Strategy for Optimizing the Synergistic Electron Effects of Catalytic Sites in NO Selective Reduction. Angew. Chem. Int. Ed. 2022, 61, e202212703. [Google Scholar] [CrossRef]
- Fang, X.; Qu, W.; Qin, T.; Hu, X.; Chen, L.; Ma, Z.; Liu, X.; Tang, X. Abatement of Nitrogen Oxides via Selective Catalytic Reduction over Ce1–W1 Atom-Pair Sites. Environ. Sci. Technol. 2022, 56, 6631–6638. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, S.; Zhu, H.; Xu, W.; Jiang, R.; Zhang, Y.; Yu, J.; Chen, W.; Jia, L.; Jiang, J.; et al. Isolating Contiguous Ir Atoms and Forming Ir–W Intermetallics with Negatively Charged Ir for Efficient NO Reduction by CO. Adv. Mater. 2022, 34, 2205703. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, S.; Song, S.; Xu, W.; Li, L.; Zhang, Y.; Chen, W.; Li, H.; Jiang, J.; Zhu, T.; et al. Negatively Charged Single-Atom Pt Catalyst Shows Superior SO2 Tolerance in NOx Reduction by CO. ACS Catal. 2023, 13, 224–236. [Google Scholar] [CrossRef]
- Zhou, X.; Han, K.; Li, K.; Pan, J.; Wang, X.; Shi, W.; Song, S.; Zhang, H. Dual-Site Single-Atom Catalysts with High Performance for Three-Way Catalysis. Adv. Mater. 2022, 34, 2201859. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, T.; Liu, Y.; Zhang, X.; Li, L.; Pan, G. Effect of mid-season drainage on CH4 and N2O emission and grain yield in rice ecosystem: A meta-analysis. Agric. Water Manag. 2019, 213, 1028–1035. [Google Scholar] [CrossRef]
- Xie, S.; Kim, D.; Ye, K.; Tetard, L.; Liu, F. Regulating local coordination environment of rhodium single atoms in Rh/CeO2 catalysts for N2O decomposition. J. Rare Earths 2023. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Wang, Y.; Xiong, S.; Su, Z.; Wang, Y.; Yang, W.; Chu, X.; Yang, W.; Peng, Y. Boosting nitrous oxide direct decomposition performance based on samarium doping effects. Chem. Eng. J. 2021, 414, 128643. [Google Scholar] [CrossRef]
- Liu, H.; Yang, S.; Wang, G.; Liu, H.; Peng, Y.; Sun, C.; Li, J.; Chen, J. Strong Electronic Orbit Coupling between Cobalt and Single-Atom Praseodymium for Boosted Nitrous Oxide Decomposition on Co3O4 Catalyst. Environ. Sci. Technol. 2022, 56, 16325–16335. [Google Scholar] [CrossRef]
- Li, F.; Tang, Q. The critical role of hydride (H−) ligands in electrocatalytic CO2 reduction to HCOOH by [Cu25H22(PH3)12]Cl nanocluster. J. Catal. 2020, 387, 95–101. [Google Scholar] [CrossRef]
- Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C.M.; Ozden, A.; Dinh, C.T.; Li, J.; Wang, Y. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Reddu, V.; Fisher, A.C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403. [Google Scholar] [CrossRef]
- Dong, W.J.; Yoo, C.J.; Lee, J.L. Monolithic nanoporous In–Sn alloy for electrochemical reduction of carbon dioxide. ACS Appl. Mater. Interfaces 2017, 9, 43575–43582. [Google Scholar] [CrossRef] [PubMed]
- Low, Q.H.; Loo, N.W.X.; Calle-Vallejo, F.; Yeo, B.S. Enhanced electroreduction of carbon dioxide to methanol using zinc dendrites pulse-deposited on silver foam. Angew. Chem. Int. Ed. 2019, 58, 2256–2260. [Google Scholar] [CrossRef] [PubMed]
- Ting, L.R.L.; Pique, O.; Lim, S.Y.; Tanhaei, M.; Calle-Vallejo, F.; Yeo, B.S. Enhancing CO2 electroreduction to ethanol on copper–silver composites by opening an alternative catalytic pathway. ACS Catal. 2020, 10, 4059–4069. [Google Scholar] [CrossRef]
- Chen, C.S.; Wan, J.H.; Yeo, B.S. Electrochemical reduction of carbon dioxide to ethane using nanostructured Cu2O-derived copper catalyst and palladium (II) chloride. J. Phys. Chem. C 2015, 119, 26875–26882. [Google Scholar] [CrossRef]
- Li, T.; Wei, H.; Liu, T.; Zheng, G.; Liu, S.; Luo, J.-L. Achieving efficient CO2 electrochemical reduction on tunable in (OH)3-coupled Cu2O-derived hybrid catalysts. ACS Appl. Mater. Interfaces 2019, 11, 22346–22351. [Google Scholar] [CrossRef]
- Zakaria, S.N.A.; Hollingsworth, N.; Islam, H.U.; Roffey, A.; Santos-Carballal, D.; Roldan, A.; Bras, W.; Sankar, G.; Hogarth, G.; Holt, K.B. Insight into the nature of iron sulfide surfaces during the electrochemical hydrogen evolution and CO2 reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 32078–32085. [Google Scholar] [CrossRef]
- Cui, Q.; Qin, G.; Wang, W.; Geethalakshmi, K.R.; Du, A.; Sun, Q. Novel two-dimensional MOF as a promising single-atom electrocatalyst for CO2 reduction: A theoretical study. Appl. Surf. Sci. 2020, 500, 143993. [Google Scholar] [CrossRef]
- Wang, S.; Kou, T.; Varley, J.B.; Akhade, S.A.; Weitzner, S.E.; Baker, S.E.; Duoss, E.B.; Li, Y. Cu2O/CuS nanocomposites show excellent selectivity and stability for formate generation via electrochemical reduction of carbon dioxide. ACS Mater. Lett. 2020, 3, 100–109. [Google Scholar] [CrossRef]
- Xu, C.; Vasileff, A.; Zheng, Y.; Qiao, S. Recent progress of 3d transition metal single-atom catalysts for electrochemical CO2 reduction. Adv. Mater. Interfaces 2021, 8, 2001904. [Google Scholar] [CrossRef]
- Zhang, T.; Han, X.; Yang, H.; Han, A.; Hu, E.; Li, Y.; Yang, X.; Wang, L.; Liu, J.; Liu, B. Atomically Dispersed Nickel(I) on an Alloy-Encapsulated Nitrogen-Doped Carbon Nanotube Array for High-Performance Electrochemical CO2 Reduction Reaction. Angew. Chem. Int. Ed. 2020, 59, 12055–12061. [Google Scholar] [CrossRef]
- Lyu, H.; Ma, C.; Zhao, J.; Shen, B.; Tang, J. A novel one-step calcination tailored single-atom iron and nitrogen co-doped carbon material catalyst for the selective reduction of CO2 to CO. Sep. Purif. Technol. 2022, 303, 122221. [Google Scholar] [CrossRef]
- Sun, D.; Xu, X.; Qin, Y.; Jiang, S.P.; Shao, Z. Rational Design of Ag-Based Catalysts for the Electrochemical CO2 Reduction to CO: A Review. ChemSusChem 2020, 13, 39–58. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.; Tao, L.; Jiang, P.; Ye, C.; Lin, R.; Huang, Z.; Li, A.; Pang, D.; Yan, H. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem. Int. Ed. 2021, 60, 6170–6176. [Google Scholar] [CrossRef]
- Yin, Y.; Shi, L.; Li, W.; Li, X.; Wu, H.; Ao, Z.; Tian, W.; Liu, S.; Wang, S.; Sun, H. Boosting Fenton-Like Reactions via Single Atom Fe Catalysis. Environ. Sci. Technol. 2019, 53, 11391–11400. [Google Scholar] [CrossRef]
- Ma, J.; Yang, Q.; Wen, Y.; Liu, W. Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range. Appl. Catal. B Environ. 2017, 201, 232–240. [Google Scholar] [CrossRef]
- Guo, Z.; Xie, Y.; Xiao, J.; Zhao, Z.; Wang, Y.; Xu, Z.; Zhang, Y.; Yin, L.; Cao, H.; Gong, J. Single-Atom Mn–N4 Site-Catalyzed Peroxone Reaction for the Efficient Production of Hydroxyl Radicals in an Acidic Solution. J. Am. Chem. Soc. 2019, 141, 12005–12010. [Google Scholar] [CrossRef]
- Yin, Y.; Li, W.; Xu, C.; Shi, L.; Zhang, L.; Ao, Z.; Liu, M.; Lu, M.; Duan, X.; Wang, S. Ultrafine copper nanoclusters and single sites for Fenton-like reactions with high atom utilities. Environ. Sci. Nano 2020, 7, 2595–2606. [Google Scholar] [CrossRef]
- Wu, X.; Kim, J.H. Outlook on Single Atom Catalysts for Persulfate-Based Advanced Oxidation. ACS EST Eng. 2022, 2, 1776–1796. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Xi, S.; Miao, S.; Ding, J.; Cai, W.; Liu, S.; Yang, X.; Yang, H.; Gao, J.; et al. Single Cobalt Atoms Anchored on Porous N-Doped Graphene with Dual Reaction Sites for Efficient Fenton-like Catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Yang, J.; Zhou, X.; Huang, D.; Qi, H.; Weon, S.; Li, J.; Elimelech, M.; Wang, A.; Kim, J.H. Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation. Environ. Sci. Technol. 2020, 55, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Rigby, K.; Huang, D.; Hedtke, T.; Wang, X.; Chung, M.W.; Weon, S.; Stavitski, E.; Kim, J.H. Single-Atom Cobalt Incorporated in a 2D Graphene Oxide Membrane for Catalytic Pollutant Degradation. Environ. Sci. Technol. 2022, 56, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, M.; Zou, R.; Xu, Q. Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chem. Rev. 2020, 120, 12089–12174. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Liu, J.; He, H.; Shen, Z.; Wang, H.H.; Li, W. Photoassisted highly efficient activation of persulfate over a single-atom Cu catalyst for tetracycline degradation: Process and mechanism. J. Hazard. Mater. 2022, 429, 128398. [Google Scholar] [CrossRef]
- Weon, S.; Huang, D.; Rigby, K.; Chu, C.; Wu, X.; Kim, J.H. Environmental Materials beyond and below the Nanoscale: Single-Atom Catalysts. ACS EST Eng. 2021, 1, 157–172. [Google Scholar] [CrossRef]
- Chaplin, B.P.; Reinhard, M.; Schneider, W.F.; Schüth, C.; Shapley, J.R.; Strathmann, T.J.; Werth, C.J. Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water. Environ. Sci. Technol. 2012, 46, 3655–3670. [Google Scholar] [CrossRef]
- Baumgartner, R.; Stieger, G.K.; McNeill, K. Complete Hydrodehalogenation of Polyfluorinated and Other Polyhalogenated Benzenes under Mild Catalytic Conditions. Environ. Sci. Technol. 2013, 47, 6545–6553. [Google Scholar] [CrossRef]
- Farwell, S.O.; Beland, F.A.; Geer, R.D. Reduction pathways of organohalogen compounds: Part I. Chlorinated benzenes. J. Electroanal. Chem. Interfacial Electrochem. 1975, 61, 303–313. [Google Scholar] [CrossRef]
- Li, N.; Song, X.; Wang, L.; Geng, X.; Wang, H.; Tang, H.; Bian, Z. Single-Atom Cobalt Catalysts for Electrocatalytic Hydrodechlorination and Oxygen Reduction Reaction for the Degradation of Chlorinated Organic Compounds. ACS Appl. Mater. Interfaces 2020, 12, 24019–24029. [Google Scholar] [CrossRef]
- Huang, D.; Kim, D.J.; Rigby, K.; Zhou, X.; Wu, X.; Meese, A.; Niu, J.; Stavitski, E.; Kim, J.H. Elucidating the Role of Single-Atom Pd for Electrocatalytic Hydrodechlorination. Environ. Sci. Technol. 2021, 55, 13306–13316. [Google Scholar] [CrossRef]
- Chu, C.; Huang, D.; Gupta, S.; Weon, S.; Niu, J.; Stavitski, E.; Muhich, C.; Kim, J.H. Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nat. Commun. 2021, 12, 5179. [Google Scholar] [CrossRef]
- Zhao, K.; Quan, X.; Su, Y.; Qin, X.; Chen, S.; Yu, H. Enhanced Chlorinated Pollutant Degradation by the Synergistic Effect between Dechlorination and Hydroxyl Radical Oxidation on a Bimetallic Single-Atom Catalyst. Environ. Sci. Technol. 2021, 55, 14194–14203. [Google Scholar] [CrossRef]
- Weon, S.; Suh, M.-J.; Chu, C.; Huang, D.; Stavitski, E.; Kim, J.H. Site-Selective Loading of Single-Atom Pt on TiO2 for Photocatalytic Oxidation and Reductive Hydrodefluorination. ACS EST Eng. 2021, 1, 512–522. [Google Scholar] [CrossRef]
- Wu, W.; Cui, E.; Zhang, Y.; Zhang, C.; Zhu, F.; Tung, C.; Wang, Y. Involving Single-Atom Silver(0) in Selective Dehalogenation by AgF under Visible-Light Irradiation. ACS Catal. 2019, 9, 6335–6341. [Google Scholar] [CrossRef]
- Li, P.; Jin, Z.; Fang, Z.; Yu, G. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522–3531. [Google Scholar] [CrossRef]
- Zhu, T.; Chen, Q.; Liao, P.; Duan, W.; Liang, S.; Yan, Z.; Feng, C. Single-Atom Cu Catalysts for Enhanced Electrocatalytic Nitrate Reduction with Significant Alleviation of Nitrite Production. Small 2020, 16, 2004526. [Google Scholar] [CrossRef]
- Xue, Y.; Yu, Q.; Ma, Q.; Chen, Y.; Zhang, C.; Teng, W.; Fan, J.; Zhang, W. Electrocatalytic Hydrogenation Boosts Reduction of Nitrate to Ammonia over Single-Atom Cu with Cu(I)-N3C1 Sites. Environ. Sci. Technol. 2022, 56, 14797–14807. [Google Scholar] [CrossRef]
- Ke, Z.; He, D.; Yan, X.; Hu, W.; Williams, N.; Kang, H.; Pan, X.; Huang, J.; Gu, J.; Xiao, X. Selective NOX− Electroreduction to Ammonia on Isolated Ru Sites. ACS Nano 2023, 17, 3483–3491. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.Q.; Duy, L.T.; Truong, D.C.; Nguyen Le, B.T.; Phan, B.T.; Cho, Y.; Liu, X.; Lee, H. Efficient ammonia synthesis via electroreduction of nitrite using single-atom Ru-doped Cu nanowire arrays. Chem. Commun. 2022, 58, 5257–5260. [Google Scholar] [CrossRef] [PubMed]
- Kamai, R.; Nakanishi, S.; Hashimoto, K.; Kamiya, K. Selective electrochemical reduction of nitrogen oxides by covalent triazine frameworks modified with single Pt atoms. J. Electroanal. Chem. 2017, 800, 54–59. [Google Scholar] [CrossRef]
- García-Vargas, C.E.; Collinge, G.; Yun, D.; Lee, M.-S.; Muravev, V.; Su, Y.; Pereira-Hernández, X.I.; Jiang, D.; Glezakou, V.-A.; Hensen, E.J.M.; et al. Activation of Lattice and Adatom Oxygen by Highly Stable Ceria-Supported Cu Single Atoms. ACS Catal. 2022, 12, 13649–13662. [Google Scholar] [CrossRef]
- Xia, C.; Qiu, Y.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z.; Kim, J.Y.; Cullen, D.A.; Zheng, D.; et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 2021, 13, 887–894. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Yu, L.; Kovarik, L.; Zhang, X.; Hoffman, A.S.; Gallo, A.; Bare, S.R.; Sokaras, D.; Kroll, T.; et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2019, 2, 149–156. [Google Scholar] [CrossRef]
- Jiang, D.; Yao, Y.; Li, T.; Wan, G.; Pereira-Hernández, X.I.; Lu, Y.; Tian, J.; Khivantsev, K.; Engelhard, M.H.; Sun, C.; et al. Tailoring the Local Environment of Platinum in Single-Atom Pt1/CeO2 Catalysts for Robust Low-Temperature CO Oxidation. Angew. Chem. Int. Ed. 2021, 60, 26054–26062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Hong, R.; Zhang, Z.; Wang, H.; Wu, X.; Wu, Z. Single-Atom Catalysts in Environmental Engineering: Progress, Outlook and Challenges. Molecules 2023, 28, 3865. https://doi.org/10.3390/molecules28093865
Li Z, Hong R, Zhang Z, Wang H, Wu X, Wu Z. Single-Atom Catalysts in Environmental Engineering: Progress, Outlook and Challenges. Molecules. 2023; 28(9):3865. https://doi.org/10.3390/molecules28093865
Chicago/Turabian StyleLi, Zhe, Rongrong Hong, Zhuoyi Zhang, Haiqiang Wang, Xuanhao Wu, and Zhongbiao Wu. 2023. "Single-Atom Catalysts in Environmental Engineering: Progress, Outlook and Challenges" Molecules 28, no. 9: 3865. https://doi.org/10.3390/molecules28093865
APA StyleLi, Z., Hong, R., Zhang, Z., Wang, H., Wu, X., & Wu, Z. (2023). Single-Atom Catalysts in Environmental Engineering: Progress, Outlook and Challenges. Molecules, 28(9), 3865. https://doi.org/10.3390/molecules28093865