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Abstract: Recently, single-atom catalysts (SACs) have attracted wide attention in the field of envi-
ronmental engineering. Compared with their nanoparticle counterparts, SACs possess high atomic
efficiency, unique catalytic activity, and selectivity. This review summarizes recent studies on the
environmental remediation applications of SACs in (1) gaseous: volatile organic compounds (VOCs)
treatment, NOx reduction, CO2 reduction, and CO oxidation; (2) aqueous: Fenton-like advanced
oxidation processes (AOPs), hydrodehalogenation, and nitrate/nitrite reduction. We present the
treatment activities and reaction mechanisms of various SACs and propose challenges and future
opportunities. We believe that this review will provide constructive inspiration and direction for
future SAC research in environmental engineering.

Keywords: single-atom catalysts; VOCs treatment; NOx reduction; CO2 reduction; CO oxidation;
fenton-like processes; hydrodehalogenation; nitrate and nitrite reduction

1. Introduction

Large amounts of pollutants are discharged into the environment as a result of eco-
nomic growth, leaving serious pollution problems that require urgent treatment. Compared
to traditional physical adsorption or biological treatments, chemical catalysis is considered
an effective approach to quickly degrade pollutants [1], with less generation of secondary
solid waste or sludge. Developing appropriate catalysts that can not only efficiently elimi-
nate pollutants but also operate stably and sustainably is of great importance [2].

Conventional heterogeneous catalysts are typically designed on a nanometer scale.
However, the atomic utilization of nanoparticles (NPs) is limited because only the outmost
layer of atoms participates in the surface catalytic reaction [3], which hinders the further
improvement of catalytic activity. Moreover, noble metal catalysts containing costly Pd,
Pt, Au, Ru, etc. are required to achieve higher atomic efficiency to obtain economic
benefits. To solve these issues, researchers have devoted themselves to decreasing the size
of nanocatalysts to maximize the exposure of active surface sites, meanwhile achieving
additional benefits such as quantum size effects [4,5] and unsaturated coordination [6].

The idea of single-atom catalysts (SACs) was first proposed by Zhang and cowork-
ers [7] in 2011, which describes a type of catalyst reaching the theoretical size limit of
“single-atom”. Compared to bulk nanocatalysts, single-atom catalysts possess several
advantages. From the perspective of catalyst structure, the sufficient interactions gener-
ated by the chemical bond between the metal and the support provide higher numbers of
interfaces and active sites for the catalytic reaction [8–11]. The unsaturated coordination
facilitates the adsorption of pollutants on the SAC site and dynamic electron transport,
contributing to a better redox reaction [7,10,12]. The strong metal-support bonding also
prevents the aggregation of atoms [13,14] and the environmental risk of metal leaching [15].
With close to 100% atomic efficiency, the metal loading greatly decreases to achieve a similar
degradation capacity as nanocatalysts, further reducing the cost of the catalyst.
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In the field of environmental engineering, remarkable progress has been made in SAC
research (Figure 1), particularly involving CO oxidation [7,16,17], CO2 reduction [18–21],
NOx degradation [22–24], volatile organic compounds (VOCs) degradation [23,25], aque-
ous advanced oxidation processes (AOPs) [26–28], hydrodehalogenation [29], nitrate re-
duction [30,31], etc. To date, there are few systematic summaries and reviews of SACs’
applications in environmental engineering. Therefore, in this review, we summarize recent
studies on SAC applications in gaseous and aqueous pollution control, respectively, focus-
ing on treatment efficiencies and reaction mechanisms. We further propose suggestions on
the synthesis strategies and discuss the challenges and directions for future SAC research
in the environmental engineering field.
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2. Progress of SACs in Gaseous Pollution Control
2.1. VOC Treatments

Volatile organic compounds (VOCs) are ubiquitous air pollutants that are mainly
emitted from fossil fuel combustion, transportation, and industrial and household activi-
ties [32,33]. There are a wide variety of VOCs, including non-methane hydrocarbons (e.g.,
alkanes, aromatics), oxygen-containing organic compounds (e.g., aldehydes, ketones, alco-
hols, ethers), halogenated hydrocarbons, nitrogen- and sulfur-containing compounds, etc.
The outdoor VOCs are important precursors of photochemical smog [34], and the indoor
VOCs are detrimental to human health, with the probability of causing cancer [35]. The
Chinese Fourteenth Five-Year Plan (2021–2025) [36] proposes to further advance the compre-
hensive management of VOC emissions and requires a more than 10% reduction of the total
VOC emissions compared to 2020. Given the adverse impacts of VOCs on the environment
and the new legislation in place, it is critical to develop efficient and applicable technologies
to reduce VOC emissions. Catalytic oxidation is one of the most promising approaches due
to its desirable features, such as high efficiency and energy savings [37], among traditional
VOC abatement technologies including adsorption, condensation, thermal incineration,
and biological degradation [33].

SACs can maximize atomic efficiency, minimize the usage of noble metals, and achieve
high activity and selectivity [9,38,39], thus attracting much attention in VOC treatments.
In recent years, several noble metal SACs have been developed for VOC catalytic oxi-
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dation and showed superior performance compared to their nanoparticle counterparts,
including Ag [40,41], Au [23,42], Pt [43–45], and Pd [46]. The single-atom Ag based on
nanostructured hollandite manganese oxide (Ag1/HMO) [40] prepared by a thermal dif-
fusion method achieved 100% conversion of benzene oxidation at 220 ◦C at a GHSV of
23,000 h−1 (Figure 2a). The isolated Ag adatoms possessed an excellent ability to activate
lattice oxygen and gaseous O2 owing to their upshifted 4d orbitals. Comparably, the
Ag atoms incorporated into cryptomelane-type manganese oxide (K/Ag–OMS-40) [41]
showed higher benzene conversion, excellent stability, and enhanced tolerance to chlorine
poisoning and moisture than 1 wt% Pd/Al2O3 (Figure 2b) [40,41]. The increased number of
Mn octahedral defects and newly formed Ag–O–Mn interaction entities accelerated charge
transfer [41], facilitating the benzene conversion.
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Figure 2. Catalytic performance of different SACs for several VOC treatments. (a) Conversion
of benzene (XC6H6) as a function of temperature over Ag1/HMO and HMO at different GHSVs
Reaction conditions: benzene, 200 ppm; O2, 20% and balanced by N2; flow rate, 100 mL min−1.
Copyright 2017, American Chemical Society [40]. (b) Comparison of C6H6 conversion between
K/Ag–OMS–40 (GHSV = 45,000 h−1) and 1 wt% Pd/Al2O3 (GHSV = 40,000 h−1) and stability test in
terms of chlorine and moisture tolerance at a temperature of 300 ◦C. Copyright 2018, Elsevier B.V. [41].
(c) Temperature-dependent toluene conversion by MnO2 and Pt-deposited MnO2 catalysts (toluene
inlet concentration: 10 ppm, 21% O2, N2 as balance gas, GHSV: 60 L g−1 h−1). Copyright 2019,
Elsevier B.V. [43]. (d) Benzene conversion as a function of on-stream reaction time in the presence or
absence of SO2 over the as-obtained samples. Copyright 2021, Elsevier B.V. [47].

Au SACs also play an important role in low-temperature HCHO oxidation. Au1/α-
MnO2 [42] and Au1/CeO2 [23] both exhibited remarkable activity and stability as the
doped Au facilitates the formation of oxygen vacancies, active oxygen species, and charged
Au species as active sites [23,42]. Au1/α-MnO2 completely degraded the 500 ppm HCHO
pollutant stream at 75 ◦C, with a WHSV of 6 L g−1 h−1. As for Au1/CeO2, among different
CeO2 morphologies, CeO2 rod-supported Au (Au/r–CeO2) as an optimal catalyst success-
fully achieved complete mineralization of HCHO at 85 ◦C. Additionally, Pt SACs exhibit
good VOC catalytic performance as well. For example, the Pt1/MnO2 [43] synthesized
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via hydrothermal process achieved 100% conversion of indoor-level toluene at ambient
temperature due to the formation of surface active oxygen species, including hydroxyl
radicals (•OH) (Figure 2c). Chen et al. [45] screened out 0.47 wt% Pt1/Mn–TiO2 as the opti-
mal catalyst with extraordinary activity and acceptable cost, which completely eliminated
HCHO (100 ppm) at room temperature.

Moreover, non-noble metal SACs are also applied in VOC catalytic oxidation. An Al
SAC-doped graphene was proposed through density functional theory (DFT) calculations
for the catalytic oxidation of HCHO at room temperature [48]. Through a pathway of
HCHO→HCOOH→CO→CO2, the energy barriers for breaking the C–H bond in HCHO
and the C–O bond in HCOOH were both 0.82 eV, serving as the kinetic limiting steps. A
bimetal single-atom Pd1Co1/Al2O3 catalyst with double active sites showed enhanced
catalytic performance and sulfur resistance for benzene oxidation, over which a 90%
benzene conversion was realized at 256 ◦C, and a gradual recovery of activity after the
introduction of 25 ppm SO2 was observed (Figure 2d) [47]. In situ temperature-programmed
experiments, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS),
and X-ray absorption fine structure (XAFS) characterizations demonstrated the synergistic
behaviors between Co1 and Pd1 sites. The O = Co = O species formed rapidly on the
Co1 site to activate oxygen, while benzene selectively tended to adsorb on the Pd1 site.
According to previous studies, due to the π-bond in the benzene molecule, a parallel or flat
configuration is formed on the close-packed transition metal surfaces [49]. The Pd1 and
Co1 double active sites inhibited the competitive adsorption between benzene and oxygen,
thus enhancing the reactivity. Meanwhile, the PdO–SO3 complex formed after the addition
of SO2 was decomposed into PdO, reactive oxygen species (ROS), and aluminum sulfite
at low temperatures, while ROS and PdO sites continued to participate in the reaction,
leading to high sulfur resistance.

2.2. CO Oxidation

Carbon monoxide (CO), an odorless and toxic gas due to its high affinity with
hemoglobin in the blood [50], widely exists in the exhaust of the automobile and mul-
tiple industrial processes [51]. Over the past few decades, CO oxidation methods have been
investigated to deal with CO emissions [52]. To overcome the low activity, poor stability,
and high cost of current catalysts [53,54], numerous SACs have attracted considerable
attention in CO oxidation both experimentally and theoretically, including noble metal
catalysts (Pt (Figure 3) [7], Au [55–58], Pd [59]), non-noble metal catalysts (Fe [60], Co [61],
Ni [62]), and metal-free catalysts (Si [63], B and S [64]).

Gold nanocatalysts have shown outstanding performance in low-temperature CO
oxidation [55–58]. As large Au particles are inert for O2 activation, it is important to reduce
the particle size. The Au1/FeOx SAC [65] with an extremely low loading of 0.015 wt%
achieved a high turnover frequency (TOF) of 0.49 s−1 at 24 ◦C, which was almost 10 times
higher than that of the Au/Fe2O3 catalyst with a loading of 4.4 wt% at 27 ◦C [66]. It
also achieved higher sintering resistance than Au nanocatalysts. By means of extensive
first-principles calculations [67], undergoing a local reconstruction, single-atom Au in Ni-
and Cu-doped Au@TiO2 were atomically deposited at oxygen vacancies on the TiO2 and
formed stable “O–Au–O” species. The oxidation states of the Au cation SAC can be tuned
via substrate doping with a transition metal to further improve the O2 activation. The
highly oxidized Au single atom showed magnetism and promoted activity and stability for
O2 activation and CO oxidation.
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The high cost of noble metals can be an obstacle to their practical application, so it is
necessary to exploit non-noble and non-mental catalysts. It was elucidated theoretically
that the Fe1/C2N monolayer can catalyze CO oxidation via a two-step mechanism due to
the localized metal 3d orbitals near the Fermi level [60]. The mechanism of CO oxidation
mediated by single Cu atom-doped clusters CuAl4O7–9

− was experimentally identified,
and CO was found to be crucial to stabilizing Cu in CuAl4O9

− around the +1 oxidation
state [68]. Moreover, the single-atom Si can be stably embedded into the center of N4 in
graphene (Si–GN4) and effectively regulate the electronic structure of the GN4 system,
enhancing O2 adsorption [63]. According to the first-principles method, Si–GN4 had
excellent stability and catalytic activity at high temperatures. The steps of the complete CO
oxidation on Si SAC were as follows: CO + O2→OOCO→CO2 + Oads, 0.57 eV, followed by a
second reaction: CO + Oads→CO2, 0.72 eV. Lee and Yan et al. [64] reported the CO oxidation
mechanism on a sulfur-doped hexagonal boron nitride (h–BN) non-mental catalyst. The
sulfur-doped h–BN accelerated the oxidation of CO by reducing the energy barrier of
O2 chemisorption.
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2.3. NO and N2O Reduction

High volumes of NOx exist in gaseous wastes from industrial activities and automobile
exhaust gas. Selective catalytic reduction (SCR) is the key industrial technology for NOx
removal by converting it to N2 with reducing gases (e.g., H2 and NH3) at high temperatures.
Conventionally, metal oxides and molecular sieves ((M)2/nO·Al2O3·xSiO2·pH2O) are
commonly used as supports to load active metals for NOx SCR. However, the additional
secondary metals (usually in the oxide form) tend to aggregate into large nanoparticles,
decreasing the distribution of active sites and inhibiting metal–metal interactions for good
NOx reduction performance.

Therefore, in recent years, researchers have started to design bimetallic catalysts
in the single-atom alloy (SAA) structure. In SAA, a small amount of an active metal is
well distributed on the surface of another less active or less expensive metal to improve
activity via enhancing metal–metal and metal–NOx interactions. For example, Wen et al.
investigated the reduction of NO with H2 on pure Ni and single-atom-Ir-doped Ni (Ir/Ni)
surfaces by DFT calculations and microdynamics models [69]. The results showed that the
doping of Ir greatly reduced the energy barrier of N2 generation and increased the energy
barrier of N2O production (Figure 4a,b). In another study, a Cu–Pd dual-atom alloy (DAA)
using Al2O3 as the support completely converted NO to N2 at 175 ◦C [70], with the N–O
bond breaking of the (NO)2 dimer determined as the rate-limiting step. Single-atom Pd
isolated by a large amount of Cu (Cu/Pd = 5) significantly improved the catalytic activity
and N2 selectivity. After N–O bond breaking, N2O is decomposed into N2 smoothly on
the Cu surface, which makes Cu and Cu-rich catalysts have high N2 selectivity. Both
single-atom Pd and Cu active sites contribute to this highly efficient deNOx system.

Tang’s group has systematically designed several SAAs for NOx–SCR. A single-atom
Mo1/Fe2O3 catalyst was synthesized for NO SCR [71], in which atomic Mo was anchored
on reducible α-Fe2O3(001), thus a single-atom Mo ion and an adjacent Fe ion were con-
structed as a dinuclear site. In Mo1/Fe2O3, Mo ions provided Brønsted acid sites that
converted to Lewis acid sites during SCR. This dinuclear structure showed high SCR TOFs
comparable to V2O5/TiO2. Further, this group assembled single-atom V1 and W1 loaded
on TiO2 (V1–W1/TiO2) [72], which realized tunable electronic interactions, thus performing
significantly higher SCR rates (Figure 4c). Experimental and theoretical results indicated
that the synergistic electron effect between V1 and W1 enriches high-energy spin charge
around the Fermi level, enhancing the adsorption of reactant (NH3 or O2) and acceler-
ating the surface reactions compared to individual V or W atoms. Besides, a dinuclear
Ce1–W1/TiO2 catalyst was also developed to explore the synergistic effect between Ce
and W in SCR [73]. The synergy of Ce1–W1 reduces the lowest unoccupied states of Ce1
near the Fermi level, boosting adsorption and oxidization of NH3, and renders the frontier
orbital electrons of W1, speeding up O2 activation. Due to the strong electronic interaction
within Ce1-W1 atom pairs, the TOF of Ce1–W1/TiO2 at 250 ◦C was four times higher than
the sum of Ce1/TiO2 and W1/TiO2 (Figure 4d).

With CO as the reducing agent, CO–SCR is regarded as a promising NO–SCR route
because of its capacity to control two pollutant gases at the same time. However, the
narrow reaction temperature window and the weak resistance to SO2 and O2 limit the
application of CO–SCR. Ji et al. [74] developed a novel Ir SAC (IrW–WO3/KIT-6), with
1% Ir loaded on mesoporous SiO2 (KIT-6), and formed Ir–W intermetallic nanoparticles.
At 250 ◦C and in the presence of 1% O2, NO was completely converted to N2 with 100%
selectivity. At a wide temperature window (250–400 ◦C), the NO conversion rate of 80% and
the N2 selectivity of 95% were achieved, better than those of Ir isolate-single-atomic-sites
(Ir1–WO3/KIT-6) and Ir nanoparticles (Irn–WO3/KIT-6); IrW–WO3/KIT-6 also showed
excellent SO2 resistance. Furthermore, the team also developed a Pt SAC with negatively
charged single-atom Pt (0.02 wt%) embedded on CuO squares and supported by CoAlO
nanosheets (Pt−CuO/CoAlO) [75], showing 91% NO conversion and 80% N2 selectivity
in 3% O2 at 200 ◦C. The interfacial electron transfer from CoAlO to CuO improved the
electron density near Pt, thus enhancing NO adsorption, while Cu served as the adsorption
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site for CO. The Pt−CuO/CoAlO also showed no activity loss after 200 ppm SO2 heating
for 15 h due to weakened SO2 adsorption on active sites.

The reaction between CO and NO also has implications for automobile exhaust treat-
ment. SACs were also found to be efficient in emission control, typically in three-way
catalysts (TWCs), achieving synergistic treatment of NO, CO, and hydrocarbons (HCs).
Wang et al. [76] reported a dual-site catalyst composed of strongly coupled atomic Pt and
Pd on CeO2, which was fabricated via a multi-step heating strategy. Compared with Pt
SAC and Pd SAC, Pt–Pd SAC showed a lower T90 of NO and C3H6 conversion, while the
T90 of CO oxidation was Pt–Pd SAC ≈ Pt SAC > Pd SAC.
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N2O largely exists in the gas exhausts of nitric acid, adipate, and caprolactam industrial
production and is also a byproduct during NH3–SCR to treat NOx. With an extremely
high global warming potential (GWP) that is 298 times CO2-equivalent and 25 times CH4-
equivalent, N2O is an important greenhouse gas [77]. For N2O direct decomposition
(deN2O), it is generally decomposed at high temperatures (500–600 ◦C) by metal-loaded
oxides or molecular sieves. In order to reduce the amount of noble metals, they are usually
loaded on carriers with large specific surface areas, such as NiO, Co3O4, Al2O3, CeO2, and
SiO2, to make them dispersed and improve deN2O activity. The catalytic performance of
SACs depends largely on the coordination environment of metal sites. For example, Xie
et al. obtained two different Rh1/CeO2 SACs with high and low coordination numbers (CN)
by adjusting synthesis procedures [78]. The Rh1/CeO2 with higher Rh CN (Rh/CeO2-H)
was more active in deN2O, which resulted from faster O2 desorption, more surface oxygen
vacancies, and higher reducibility (Figure 5a,b). Li’s group loaded rare earth elements
Sm [79] and Pr [80] onto Co3O4, respectively. By introducing Sm into Co3O4, the presence
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of Sm promoted the regeneration of the active site and improved the reducibility and
oxygen desorption capacity of Co3O4. The catalytic performance of Sm0.1–Co3O4 showed
~52% N2O decomposition at 325 ◦C and over 90% N2O decomposition at 375 ◦C (Figure 5c).
In addition, in Pr–Co3O4, the “Pr 4f–O 2p–Co 3d” network generated by Pr single-atom
doping in Co3O4 redistributed electrons in the Co3O4 lattice, which greatly improved the
N2O decomposition performance (Figure 5d). The T50 decreased from ∼430 ◦C of Co3O4 to
∼320 ◦C of Pr0.06Co, and the T90 decreased from ∼500 ◦C of Co3O4 to ∼367 ◦C of Pr0.06Co.
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Figure 5. Catalytic performance for N2O decomposition over Rh/CeO2-L and Rh/CeO2-H catalysts
under conditions of (a) 0.02% N2O + 5% CO2 and (b) 0.02% N2O + 5% O2 + 5% CO2; Ar balanced.
Weight hour space velocity (WHSV) was fixed at 100,000 mL g−1·h−1. Copyright 2023, Chinese
Society of Rare Earths [78]. (c) N2O decomposition activity normalized by specific surface area (SBET)
on Co3O4 and Sm-doped Co3O4 samples. Copyright 2021, Elsevier B.V. [79]. (d) N2O decomposition
activity normalized by SBET on Co3O4 and Pr-doped Co3O4 samples. Copyright 2022, American
Chemical Society [80].

2.4. CO2 Reduction

Electrochemical reduction of CO2 into various chemical feedstocks and fuels not
only reduces the negative environmental impact of CO2 but also alleviates the problem of
fossil fuel shortage [81–83]. In recent years, researchers have developed SACs as efficient
catalysts for the electrochemical reduction of CO2 (CO2RR). Numerous heterogeneous
catalysts, for example, metals [84–86], metal oxides [87,88], metal sulfides [89], metal
organic frameworks (MOFs) [90], and their composites [91], have been used. In general, Ni
and Fe SACs exhibited superior catalytic performance for CO evolution, while Co, Mn, and
Zn SACs were relatively inert to CO2RR [92].

In a study by Zhang et al. [93], an isolated nickel monatomic electrode was prepared
with high-density Ni(I) sites anchored to a nitrogen-doped carbon nanotube array and
further encapsulated in a nickel–copper alloy on carbon fiber paper (NiI–NCNT@Ni9Cu).
The nickel–copper alloy was encased in the carbon-fiber paper. The combination of the
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single-atomic Ni(I) site and the self-supported array structure resulted in excellent CO2RR
performance. The electron configuration of the d band of Ni was modified by introducing
Cu, which enhanced the adsorption of hydrogen, thus hindering the hydrogen evolution re-
action (HER). The specific current density of a single Ni atom electrode was 32.87 mA cm−2,
with a TOF of 1962 h−1 at an overpotential of 620 mV and a Faradaic efficiency of 97% at
around −0.73 V vs. RHE. Tang’s group [94] developed a Fe–N–C catalyst for CO2RR via
a novel one-step calcination method, which achieved high selectivity of CO2RR to CO.
Compared with pristine N–C material, Fe–N–C achieved a higher maximum Faradaic
efficiency of 73% and a Tafel slope of 68 mV dec−1, respectively. The excellent CO2RR
performance of the catalyst was ascribed to the active Fe–Nx sites, rich functional groups,
and abundant microporous structure.

As for noble metal catalysts, Au and Ag show relatively high CO2RR catalytic activity.
It was shown that when comparing Ag and Au, when the NP size decreases, Au NPs will
lead to the enhancement of the competitive HER, resulting in an increase in by-products,
while Ag NPs can selectively enhance CO2RR [95]. Zhang et al. synthesized Ag1 monatomic
catalyst (Ag1/MnO2) by thermal conversion of Ag NPs and surface reconstruction of
MnO2 [96]. Ag1/MnO2 exhibited a Faradaic efficiency of 95.7% at −0.85 V vs. RHE
(Figure 6b), with excellent stability in the reaction (Figure 6c). The Ag1/MnO2 showed
improved CO2RR performance than conventional Ag nanocatalysts (AgNP/MnO2) and
other reported Ag-based catalysts (Figure 6a,b,d). For current SACs in CO2RR, the low
density of active sites, poor conductivity, and mass transfer resistance towards single atomic
electrodes still limit their catalytic performance. In order to prevent metal aggregation on
the cathode during reductive reactions and maintain the atomic dispersion, most current
studies have only achieved a relatively low SAC metal loading below 5 wt%. Therefore,
further research is still needed to improve the metal loading capacity of SACs.
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Figure 6. (a) Linear Sweep Voltammetry (LSV) curves of MnO2, AgNP/MnO2, and Ag1/MnO2 in
a CO2-saturated 0.5 M KHCO3 electrolyte. (b) Faradaic efficiency of CO. (c) Long-term electrolysis
experiments on Ag1/MnO2 at electrolysis potentials of −0.9 V vs. RHE. (d) Tafel plots of three
samples. Copyright 2021, Angew Chem Int Ed Engl. [96].

3. Progress of SACs in Aqueous Pollution Control
3.1. H2O2-Based Fenton-like Processes

Fenton process with H2O2 generates strongly oxidizing •OH for aqueous organic
pollutant decomposition. The traditional Fe-based catalysts have been reported the most,
among which Fe SACs have a better catalytic ability than nanoparticle catalysts. Yin
et al. [97] reported a SAFe–SBA catalyst with single-atom Fe dispersed into the nanopores
of SBA-15. The well-dispersed Fe atoms promoted the decomposition of H2O2 into •OH,
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leading to a better catalytic performance of SAFe–SBA than aggregated iron sites (AGFe–
SBA). The degradation efficiency of both HBA and phenol reached 100% after 180 min
(Figure 7a,b). In addition, the Fe SACs formed by Fe sites embedded in g–C3N4 effectively
degraded a variety of dyes and organic pollutants (methylene blue (MB), methyl orange
(MO), rhodamine B (RhB), and phenol) (Figure 7c), owing to the improved production of
•OH from H2O2 activated by Fe(II)–Nx active sites [28].
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The narrow pH range (2–4) hinders the real application of the Fenton processes [100],
which can be improved by adjusting the support and coordination environment of the
catalyst. Ma et al. [98] found that dispersing SA Fe–g–C3N4 onto graphitized mesoporous
carbon composite (GMC) broadened the working pH window. The obtained catalyst
exhibited high catalytic activity in the range of pH = 4–10, attributable to the well-dispersed
Fe–Nx and π–π stacking of GMC that promoted the adsorption and decomposition of
H2O2 (Figure 7d). Besides, Wu and coworkers [26] prepared a high density of Cu SACs on
N-doped graphene (Cu–SA/NGO), which also achieved efficient H2O2 decomposition at
neutral pH facilitated by Cu–N4 active sites and low energy barriers of reaction (Figure 7e,f).
At acidic conditions, H2O2 can easily be adsorbed on Cu–N4 sites and generate OH* and
•OH, while at neutral conditions, OH* s formed when adsorbed H2O2 reacted with another
H2O2 molecule to form oxidative HO2*. Gong and coworkers [99] developed Mn–N4-
doped g–C3N4 (Mn–CN), which catalyzed the formation of •OH with H2O2 and additional
oxidant O3 and degraded oxalic acid (OA). Because of the dispersion of isolated Mn
atoms, Mn–CN showed excellent catalytic performance, and oxalic acid was completely
degraded within 45 min (Figure 7g,h). Different from the traditional H2O2 reaction, this
work proposed a new pathway: H2O2 adsorbed on Mn–N4 sites formed HOO–Mn–N4
species, which reacted with O3 to generate HO2

• and O3
•−, finally producing •OH.
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3.2. Persulfate-Based Fenton-like Processes

In recent years, persulfate-based AOPs have been widely applied in water purification,
which is mainly based on the chain reactions initiated by persulfate (PMS, PDS) molecules,
generating strongly oxidizing ROS including SO4

•−, •OH, O2
•−, and 1O2 [101,102]. The

process has a strong oxidation capacity and a wide range of solutions for environmental
adaptation. In persulfate-AOPs, Co-based, Fe-based, Cu-based, and Mn-based catalysts are
widely studied.

In PMS-based AOPs, Co-based SACs have been extensively studied [101]. Single Co
atoms anchored onto porous N-doped graphene showed dual reaction sites [103]: the Co
atom was the reaction site, while the adjacent pyrrolic N was the adsorption site (Figure 8a).
It activated PMS to degrade BPA with high efficiency because the dual reactive sites reduced
the transport distance of ROS and improved the mass transfer efficiency. Likewise, Kim’s
group [104] reported pyridine N-coordinated single-atom Co loaded on a polyromantic
macrostructure (Co–TPML) (Figure 8b), which also showed outstanding PMS activation
and achieved high pollutant removal efficiency, resulting from a high-density and ultrafine
dispersion of Co single atoms. With beneficial π-conjugation of TPML and strong metal–
support interactions, peroxide adsorption and activation were enhanced. Furthermore, this
group developed a single-atom Co-loaded 2D Graphene Oxide (GO)-based membrane [105],
in which vitamin C was applied as a mild reducing agent to improve the atomically Co
dispersion and maintain the structure of GO layers. This study observed that the Co1–
GO membrane showed excellent ability for 1,4-dioxane degradation with the addition of
PMS. The kinetics of 1,4-dioxane degradation were over 640 times greater than those in
suspension, which was the highest among reported studies in persulfate-based 1,4-dioxane
degradation. This catalyst–membrane combination was able to repel macromolecular
organic matter, reducing its scavenging effect on free radicals. In addition, studies have
found that the porous carbon material support can promote electron transfer [106], which
is conducive to improving the efficiency of PMS-based AOPs.
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Figure 8. (a) The proposed overall Fenton-like reaction mechanism on a single-Co-atom catalyst.
Copyright 2018, American Chemical Society [103]. (b) Adsorption configuration and charge density
of PMS on Co–TPML through coordination with H-adjacent (Type I) and S-adjacent (Type II) O atoms
in the peroxide bond, respectively. Yellow and cyan denote the electron accumulation and electron
depletion, respectively. Copyright 2020, American Chemical Society [104].

Compared with PMS, PDS is more difficult to activate with a short peroxide O–O
bond (1.322 Å) in the structure of –O3S–O–O–SO3– [107]. Because of its cheaper cost,
lower toxicity, and lower pH limits, PDS is expected to be more widely applied in actual
water treatment. Generally, in PDS/SAC systems, synergistic effects between the atomic
metal and the support play an important role [15]. Li and coworkers [108] developed Cu
single sites dispersed on carbon nitride (SAS–Cu1.0), showing remarkable performance
in tetracycline degradation due to the enhanced PDS adsorption and activation. Under
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UV light and 0.1 mM sodium persulfate, the tetracycline (TC) degradation rate of SAS-
Cu1.0 reached 82.5% in 30 min, while the degradation rates of carbon nitride (CN) and
CN–NanoCu were 53.5% and 78.1%, respectively. The result revealed that the degradation
mechanism on single-atom Cu involved both radical and nonradical pathways, leading to
the promotion of charge separation and transfer.

3.3. Electrocatalytic Hydrodehalogenation

Organic halides that contain C–X bonds (X = Cl, Br, I, and F), such as chloroben-
zene, 4-chlorophenol, and bromophenol, are commonly found in water bodies contami-
nated by pharmaceuticals, pesticides, surfactants, and after disinfection by chlorine [109].
Due to their strong carbon–halogen bonds and the ability to destruct biological enzymes,
organohalogens are difficult to destroy by biological methods, leading to their persistent
existence in water and posing a serious threat to human health, the ecological environment,
and agricultural production. To solve this problem, hydrodehalogenation is proposed as
an effective dehalogenation scheme in which two distinct partially charged Hδ− and Hδ+

atoms formed from H atoms are utilized to attack carbon–halogen bonds [110,111]. Direct
catalytic hydrodehalogenation is the most studied dehalogenation method at present. Nu-
merous mono-metal and bimetallic catalysts have been developed. However, high catalyst
costs, strict reaction conditions, and unsatisfactory catalytic efficiency make this technology
a dilemma. In comparison, electrocatalytic and photocatalytic hydrodehalogenation, which
are environmentally friendly and energy saving, have become a hot research field in recent
years. In 1975, Geer et al.’s experiment on hydrodehalogenation of hexachlorobezene (HCB)
by electrocatalysis proved that the complete degradation of chlorinated organic compounds
could be achieved by controlling the potential [112].

Transition metal-based SACs have been used due to their excellent electrocatalytic
hydrodehalogenation performance. Wang et al. [113] synthesized single-atom Co on sulfide
graphene (Co–SG), achieving high atomic H* production by electrochemical reduction
of H2O and electrolysis of hydrogen. With the synergistic effects among Co active sites,
S-doped graphene, and the interfacial structure, the conversion rate of 2,4-DCBA reached
91.1% and the TOC concentration was reduced by 80% (Figure 9a,b). Zhao and cowork-
ers [114] developed a Fe/Cu bimetallic single-atom catalyst dispersed on N-dope porous
carbon (FeCuSA–NPC), leading to a stronger chlorinated pollutant degradation effect.
In this process, dichlorination on the Cu single atom and hydroxyl radical oxidation on
the Fe single atom formed a synergistic effect, which led to a high removal activity for
3-chlorophenol (3-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP),
with kinetics between 545.1 and 1374 min−1 gmetal

−1.
Apart from transition metal catalysts, noble metal catalysts are also efficient in elec-

trocatalytic hydrodehalogenation, among which, Pd-based catalysts have been studied in
depth. Huang et al. [115] synthesized a single-atom Pd loaded on reduced graphene oxide
(Pd1/rGO), which was more effective in chlorinated phenol dichlorination and showed
higher atomic efficiency than Pd nanoparticle counterparts (Figure 9c). Mechanistic studies
showed that this promotion effect was attributed to two aspects: (1) a strong interaction
between the metal and support enhanced interfacial electron transfer through Pd–O bonds;
(2) Pd1 restrained H2 evolution, contributing to atomic H (H*) utilization (Figure 9d). Fur-
ther, Chu et al. [116] proposed that neighboring Pd single-atom catalysts, with shorter
distances and more adjacent active sites between atoms, performed higher activity and
selectivity in hydrogenating carbon–halogen bonds than isolated single-atom Pd. DFT
calculations (Figure 9e) revealed that the cooperative effect between neighboring Pd atoms
decreased the energies of water desorption and hydrogenated product desorption, which
were the key meta-stable reaction steps. Besides, the neighboring structure was conducive
to selectively hydrogenating the C–Cl bond without affecting the other bonds.
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3.4. Photocatalytic Hydrodehalogenation

Photocatalytic hydrodehalogenation realizes the fracture of carbon–halogen bonds through
photoexcitation and electron transfer. Numerous studies have proved that semiconductor
catalysts doped with noble metals display superior photocatalytic hydrodehalogenation.

Kim’s team has reported single-atom Pt supported on SiC (Pt1/SiC) [29] and TiO2
(Pt1/TiO2) [117], respectively, achieving hydrodehalogenation of perfluorooctanoic acid
(PFOA) by cleaving C–F bonds. As for Pt/SiC (Figure 10a), due to the high work function
of Pt (~5.65 eV), it tended to attract photogenerated electrons from the SiC conduction band,
and then H atoms were selectively reduced and formed Pt–H bonds through the Volmer
reaction. Finally, H atoms spillover from Pt–H bonds were transferred to SiC to form Si–H,
which was then redistributed with the C–F bond, thus achieving hydrodehalogenation.
Likewise, Pt single atoms in Pt/TiO2 drove the photogenerated electrons on the conduction
band to generate H atoms and spill over onto the TiO2 surface, further forming Ti–H bonds
to break C–F (Figure 10b). On the contrary, Pt nanoparticles consumed photogenerated
electrons to reduce O2, instead of hydrodehalogenation.

In addition, single-atom Ag was confirmed as an ideal catalyst to selectively de-
halogenate under visible-light irradiation by Wang et al. [118]. Under mild visible light
irradiation, AgF was successfully reduced to Ag(0) single atoms and Ag nanoparticles.
Theoretical and experimental investigations suggested that such mixed species (MS-Ag)
showed outstanding hydrodehalogenation and deiodination-arylation performance, result-
ing from the synergistic effects of the Ag single atoms and the light-harvesting unit of Ag
nanoparticles. Notably, the yield of selective hydrodehalogenation of 4-iodoanisole was up
to 99% when CsF was added.
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3.5. Nitrate and Nitrite Reduction

Nitrate (NO3
−) and nitrite (NO2

−) are common inorganic nitrogen-containing pollu-
tants in the aqueous phase and the main causes of eutrophication and algae blooms. Due
to the excessive use of agricultural fertilizers and improper treatment of sewage, NO3

− is
prevalent in groundwater and surface water bodies, posing a great threat to human health
and the environment. NO3

− in sewage can be converted into NO2
− by microorganisms,

which will destroy the oxygen transport ability of hemoglobin when entering the human
body, and even lead to poisoning or cancer. Nitrate reduction reaction (NO3RR) is a promis-
ing strategy to reduce the environmental pollution caused by NO3

−, while producing N2
or NH3 as a valuable energy source.

Single-atom electrocatalysts can realize efficient NO3RR and selectively obtain NH3,
such as Fe- and Cu-based SACs. Primarily, the active center of the Fe-based catalyst is Fe–
Nx. According to Wang et al. [30], isolated Fe single atoms in the form of Fe–N4 hindered
N–N coupling, resulting in higher affinity towards N–H coupling and NH3 formation.
Benefiting from these structure advantages, the nitrogen-coordinated Fe sites dispersed on
carbon matrix exhibited remarkable capacities in NO3RR with a Faradaic efficiency of ~75%
and a high NH3 yield of ~20,000 µg h−1 mgcat.

−1 (Figure 11a,b). In addition, Liu et al. [31]
prepared a highly active and selective Fe–CNS consisting of Fe single atoms loaded on S and
N-doped carbon supports. S-doping created more defects on the support surface, which
was beneficial to enhancing the stability of Fe single atoms. Along with Fe–N4, the presence
of S sites adjusted the coordination environment and formed FeN4S2 as the dominant
active site. The experimental results of NO3RR revealed that the prepared Fe–CNS catalyst
performed excellent activity with a nitrate removal capacity of 7822 mg-N g−1 Fe and a
high ammonia Faradaic efficiency of 78.4%. Yu et al. [119] found that nitrate preoccupied on
Fe(II)–Nx and hindered the adsorption of H2O, thus inhibiting the competitive reaction of
HER. In addition, the special thermodynamic and kinetic properties of the Fe SACs resulted
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in a more positive and narrower range of redox potentials than the Fe NPs (Figure 11c). As
a result, Fe SACs achieved a higher NH3 yield and selectivity, with a maximum yield rate
of 2.75 mgNH3 h−1 cm−2 and close to 100% Faradaic efficiency (Figure 11d). The TOFs of
the Fe–PPy SACs reached 0.006–0.7 s−1 at 0–−0.7 V vs. RHE, while the TOFs of the Fe NPs
were 0.00015–0.06 s−1 (Figure 11e).
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2020 Wiley-VCH [120]. (g) TOC and (h) calculated activation energy for NO3RR using Cu(I)–N3C1
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Besides, Cu-based SACs with the Cu–Nx coordination structure are also suitable for
NO3RR, according to previous studies. Feng et al. [120] reported a Cu SAC anchored on
nitrogen-doped carbon nanosheets (Cu–N–C) with high activity, selectivity, and stability in
NO3RR. XAFS analysis and DFT calculations revealed that the mixed coordination struc-
tures of Cu–N2 and Cu–N4 dispersed on carbon caused the adsorption of NO3

− and NO2
−

(Figure 11f), inhibiting the release of NO2
−. At −1.3 V vs. SCE with an initial 50 mg L−1

NO3-N, the selectivity of the NO2-N product was only 5%. Fan and coworkers [121] stud-
ied the NO3RR properties of atomic Cu supported on micro/mesoporous nitrogen-doped
carbon (Cu MNC). The Cu(I) sites (Cu(I)–N3C1) concentrated the charge around the center
Cu atoms, causing the adsorption of *NO3 and *H to adjacent Cu and C sites by balanced
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adsorption energy. Compared with Cu(II)–N4, Cu(I)–N3C1 decreased the activation energy
of rate-limiting steps, thus promoting the formation of NH3 (Figure 11g,h). When applied
to nitrate reduction (100 mg-N L−1), Cu MNC achieved a promising NH3 yield rate per
active site of 5466 mmol gCu

−1 h−1 and a conversion rate of 94.8% within 6 h.
As for noble metal SACs, isolated Ru sites dispersed on nitrogen-doped carbon (Ru

SA–NC) were demonstrated to be an effective catalyst for both nitrate and nitrite elec-
troreduction to NH3 [122]. Ru SA–NC achieved Faradaic efficiencies of 97.8% at −0.6 V
vs. RHE (NO2

− reduction) and 72.8% at −0.4 V vs. RHE (NO3
− reduction), respectively.

A bimetallic catalyst with a single-atom Ru-modified Cu nanowire array loaded on Cu
foam (Ru–Cu NW/CF) was proposed by Lee’s group [123], which showed efficient elec-
trocatalytic nitrite reduction. Due to the inhibition of N–N coupling by the active site of
single-atom Ru, at the overpotential of −0.6 V vs. RHE, the Faradaic efficiency reached
94.1% and the NH3 yield was up to 211.73 mg h−1 cm−2. Kamiya et al. [124] prepared
an atomically dispersed Pt-modified covalent triazine framework hybridized with carbon
nanoparticles (Pt–CTF/CP), which showed a NO2

− reduction activity comparable to that
of bulk Pt surfaces. It is worth noting that nitrate reduction reactions were almost not
detectable. Since nitrate adsorbed on the single Pt atom is in an unstable monodentate
form, the nitrate may not have enough adsorption energy to be activated.

4. Conclusions and Outlook

With close to 100% atomic efficiency and high catalytic activity, SACs are considered
to bring new opportunities for environmental pollution remediation and are becoming a
prevalent research frontier. The well-controlled atomically dispersed structure of SACs
fills the gap between heterogeneous and homogeneous catalytic reactions and provides a
new direction for understanding the catalytic mechanism at the atomic level. Compared
with bulk NPs, SACs’ unique electronic characteristics and atomic sites help them achieve
reactions that cannot be catalyzed by NPs. Additionally, with higher atomic utilization and
less metal loading, SACs have a lower cost of raw materials, showing economic advantages
in practical engineered applications. In the past decade, researchers have developed a
variety of SACs that have been successfully applied to solve practical environmental
problems, such as the purification of industrial gaseous pollutants and the treatment
of organic pollutants in wastewater. In general, SACs show excellent catalytic activity,
selectivity, and stability in various catalytic reactions.

However, current SACs still have non-negligible shortcomings that should be over-
come. Due to ultra-low metal loading, the catalytic efficiency of SACs is unsatisfactory.
To improve the reaction efficiency, it is a tough challenge to avoid single-atom aggrega-
tion when increasing the metal content. From the above discussions, we found that the
coordination structure and interactions between the atomic metal and the support have an
important impact on the physicochemical properties and catalytic performances of SACs.
Nevertheless, there is still a lack of clarity on the structure–catalytic correlation. Besides,
unlike laboratory experiments, complex compositions in the actual gas or water bodies
might interfere with the catalytic reaction via surface contamination and deactivation of the
catalyst. A long-term reaction may also lead to the loss of metal atoms or aggregation. In
engineering applications, the integration of SACs into existing devices or systems is also an
important issue. To promote further development of SACs in environmental engineering,
the following research directions are proposed:

(1) Development of new synthetic strategies: Increasing the number and density of
coordination sites can effectively improve the loading of metal single atoms. More
loading sites can be created by fabricating defects and unsaturated coordination cen-
ters. The methods for synthesizing stable SACs with relatively high metal loadings
should be further developed. Studies revealed that when the SAC content increases
from ~1% to ~5%, monatomic metals will form neighboring SACs or SAC ensembles
without metal−metal bonding. However, it still maintains high atomic utilization
and a unique coordination environment [101]. Recently, atom-trapping methods have
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been applied to load 1–3 wt% of SACs onto reducible supports (e.g., CeO2, FeOx),
preventing metal aggregation at high temperatures [17]. It was demonstrated that a
single-atom Cu catalyst prepared by atom-trapping on CeO2 effectively prevented sin-
tering and deactivation via the regulated charge state of the Cu through facile charge
transfer between the active site and the support [125]. Moreover, using graphene
quantum dots as the carbon carrier, the transition metal SAC content was further
increased to nearly 40% [126]. Appropriate supports, such as porous carbon and MOF,
can strengthen metal–substrate interactions. In addition, it is important to develop
a synthetic strategy that can precisely regulate the atomic active center and create
more selective metal active centers for a specific catalytic reaction. Through doping
heteroatoms and designing bimetallic sites, creating synergistic interactions between
various elements may greatly contribute to the enhancement of SAC performance.

(2) Study on catalytic mechanisms: At present, most of the characterization techniques
are ex situ, such as high-angle annular dark-field–scanning transmission electron
microscopy (HAADF–STEM) and X-ray absorption spectroscopy (XAS), which make
it difficult to provide in situ characterization of the alterations of the physicochem-
ical properties and electronic structures of SACs during the reactions. Hence, it is
necessary to develop advanced in situ characterization technology to further study
the complex pathways of catalytic reactions at the atomic level. Nowadays, some
cutting-edge in situ characterization techniques have been reported to detect the evo-
lution of catalyst sites and the interactions between active sites and reactants during
the reaction process. For example, Hensen et al. [59] used an in situ near ambient
pressure X-ray photoelectron spectrometer (NAP–XPS) to follow the surface electronic
structure of Pd–CeO2 SAC during CO oxidation and in situ infrared spectroscopy
to probe the interaction between surface sites and reactants. Thereby, the structure–
function relationships of Pd/CeO2 catalysts were established. In addition, in situ
and operando infrared and XAS were used to detect CO oxidation mechanisms on
an Ir single atom, detailing reaction steps [127]. Datye et al. [128] also used CO as
a probe molecule during in situ DRIFTS to effectively detect the property changes
of Pt1/CeO2 under reaction conditions. The model establishment and theoretical
calculations by DFT are beneficial to understanding the formation of the intermediate
products and energy barriers (i.e., the rate-determining step) during the reaction,
which can guide the design of future catalysts. However, when faced with compli-
cated environmental media and operating parameters, DFT is not suitable due to the
high cost of time. As a more handy and advanced technology, machine learning (ML)
and quantitative structure–activity relationship (QASR) can efficiently establish the
relationship between catalyst performance and certain specific descriptors, such as
operational parameters.

(3) Optimization for practical applications: To stabilize the interactions between metal
atoms and support, the synthesis methods of a certain metal–support combination
are specific, which may hinder the large-scale synthesis of SACs. Developing a simple
and general synthesis strategy is beneficial to reducing the cost of large-scale SAC
production. The integration of SACs into reactors or systems to achieve pilot-scale
and large-scale is another troublesome challenge to overcome. Besides, it is of great
importance to improve the adaptability to different complex environments and the
stability of the reaction system.
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