Facile Synthesis of Quinolinecarboxylic Acid–Linked Covalent Organic Framework via One–Pot Reaction for Highly Efficient Removal of Water–Soluble Pollutants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Pollutant Removal Evaluation
2.3. Adsorption Mechanism
2.4. Reusability
2.5. Application of QCA–COF
3. Materials and Methods
3.1. Chemical Reagents
3.2. Characterization and Chromatographic Conditions
3.3. Synthesis of QCA–COF
3.4. Synthesis of TAPB–PDA–COF
3.5. Organic Contaminants Removal Experiments
3.6. Computational Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Li, J.; Yang, Y.; Ma, W.; Li, G.; Lu, Q.; Lin, Z. One-pot room-temperature synthesis of covalent organic framework-coated superhydrophobic sponges for highly efficient oil-water separation. J. Hazard. Mater. 2021, 411, 125190. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhao, X.; Niu, H.; He, S.; Tang, Z.; Wu, F.; Giesy, J.P. Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J. Hazard. Mater. 2019, 369, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, R.; Wang, X.; Han, H.; Qiao, Z.; Sun, X.; Ji, W. An amine-functionalized olefin-linked covalent organic framework used for the solid-phase microextraction of legacy and emerging per- and polyfluoroalkyl substances in fish. J. Hazard. Mater. 2022, 423, 127226. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Wang, Y.; Ma, S.; Ou, J.; Shen, Y.; Ye, M.; Uyama, H. Integration of covalent organic frameworks into hydrophilic membrane with hierarchical porous structure for fast adsorption of metal ions. J. Hazard. Mater. 2020, 407, 124390. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Ou, J.; Chen, L.; Ye, M. Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal. J. Hazard. Mater. 2018, 355, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Bhanja, P.; Mishra, S.; Manna, K.; Mallick, A.; Saha, K.D.; Bhaumik, A. Covalent organic framework material bearing phloroglucinol building units as a potent anticancer agent. ACS Appl. Mater. Interfaces 2017, 9, 31411–31423. [Google Scholar] [CrossRef]
- Sun, X.; Wang, R.; Li, L.; Wang, X.; Ji, W. Online extraction based on ionic covalent organic framework for sensitive determination of trace per- and polyfluorinated alkyl substances in seafoods by UHPLC-MS/MS. Food Chem. 2021, 362, 130214. [Google Scholar] [CrossRef]
- Li, F.-F.; Cui, W.-R.; Jiang, W.; Zhang, C.-R.; Liang, R.-P.; Qiu, J.-D. Stable sp2 carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater. J. Hazard. Mater. 2020, 392, 122333. [Google Scholar] [CrossRef]
- Huang, L.; Shuai, Q. Facile approach to prepare sulfur-functionalized magnetic amide-linked organic polymers for enhanced Hg(II) removal from water. ACS Sustain. Chem. Eng. 2019, 7, 9957–9965. [Google Scholar] [CrossRef]
- Zhong, X.; Lu, Z.; Liang, W.; Hu, B. The magnetic covalent organic framework as a platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution. J. Hazard. Mater. 2020, 393, 122353. [Google Scholar] [CrossRef]
- Li, W.; Jiang, H.-X.; Geng, Y.; Wang, X.-H.; Gao, R.-Z.; Tang, A.-N.; Kong, D.-M. Facile removal of phytochromes and efficient recovery of pesticides using heteropore covalent organic framework-based magnetic nanospheres and electrospun films. ACS Appl. Mater. Interfaces 2020, 12, 20922–20932. [Google Scholar] [CrossRef] [PubMed]
- Waller, P.J.; Lyle, S.J.; Osborn Popp, T.; Diercks, C.S.; Reimer, J.A.; Yaghi, O.M. Chemical conversion of linkages in covalent organic frameworks. J. Am. Chem. Soc. 2016, 138, 15519–15522. [Google Scholar] [CrossRef] [PubMed]
- Haase, F.; Troschke, E.; Savasci, G.; Banerjee, T.; Duppel, V.; Dörfler, S.; Grundei, M.M.J.; Ochsenfeld, C.; Kaskel, S.; Lotsch, B.V. Topochemical conversion of an imine- into a thiazole-linked covalent organic framework enabling real structure analysis. Nat. Commun. 2018, 9, 2600. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chu, J.; Yin, Z.; Cai, X.; Zhuang, L.; Deng, H. Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 2018, 4, 1696–1709. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Cai, S.; Lei, X.; Altoe, V.; Hong, F.; Urban, J.J.; Ciston, J.; Chan, E.M.; Liu, Y. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 2018, 9, 2998. [Google Scholar] [CrossRef] [PubMed]
- Waller, P.J.; AlFaraj, Y.S.; Diercks, C.S.; Jarenwattananon, N.N.; Yaghi, O.M. Conversion of imine to oxazole and thiazole linkages in covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 9013–9099. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Pan, Q.; Wu, C.; Hao, W.; Xu, J.; Chen, R.; Liu, J.; Li, Z.; Zhao, Y. Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis. J. Am. Chem. Soc. 2020, 142, 5958–5963. [Google Scholar] [CrossRef]
- Yang, Z.; Gu, Y.; Yuan, B.; Tian, Y.; Shang, J.; Tsang, D.; Liu, M.; Gan, L.; Mao, S.; Li, L. Thio-groups decorated covalent triazine frameworks for selective mercury removal. J. Hazard. Mater. 2021, 403, 123702. [Google Scholar] [CrossRef]
- Shi, J.-L.; Chen, R.; Hao, H.; Wang, C.; Lang, X. 2D sp2 carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO. Angew. Chem. Int. Ed. 2020, 59, 9088–9093. [Google Scholar] [CrossRef]
- Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M.A.; Brady, M.A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 2017, 357, 673–676. [Google Scholar] [CrossRef]
- Acharjya, A.; Pachfule, P.; Roeser, J.; Schmitt, F.-J.; Thomas, A. Vinylene-linked covalent organic frameworks by base-catalyzed Aldol condensation. Angew. Chem. Int. Ed. 2019, 58, 14865–14870. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Li, H.; Ma, Y.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. Chemically stable polyarylether-based covalent organic frameworks. Nat. Chem. 2019, 11, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Guo, Y.-S.; Xie, H.-M.; Wang, X.; Jiang, X.; Guo, D.-S. Rapid microwave synthesis of dioxin-linked covalent organic framework for efficient micro-extraction of perfluorinated alkyl substances from water. J. Hazard. Mater. 2020, 397, 122793. [Google Scholar] [CrossRef]
- Wang, P.-L.; Ding, S.-Y.; Zhang, Z.-C.; Wang, Z.-P.; Wang, W. Constructing robust covalent organic frameworks via multicomponent reactions. J. Am. Chem. Soc. 2019, 141, 18004–18008. [Google Scholar] [CrossRef]
- Wang, K.; Jia, Z.; Bai, Y.; Wang, X.; Hodgkiss, S.; Chen, L.; Chong, S.Y.; Wang, X.; Yang, H.; Xu, Y.; et al. Synthesis of stable thiazole-linked covalent organic frameworks via a multicomponent reaction. J. Am. Chem. Soc. 2020, 142, 11131–11138. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-T.; Zou, J.; Wang, T.-H.; Ma, H.-C.; Chen, G.-J.; Dong, Y.-B. Construction of covalent organic frameworks via three-component one-pot Strecker and Povarov Reactions. J. Am. Chem. Soc. 2020, 142, 6521–6526. [Google Scholar] [CrossRef]
- Li, X.-T.; Zou, J.; Yu, Q.; Liu, Y.; Li, J.-R.; Li, M.-J.; Ma, H.-C.; Chen, G.-J.; Dong, Y.-B. Construction of acid-base bifunctional covalent organic frameworks via Doebner reaction for catalysing cascade reaction. Chem. Commun. 2022, 58, 2508–2511. [Google Scholar] [CrossRef]
- Ding, L.-G.; Wang, S.; Yao, B.-J.; Wu, W.-X.; Kan, J.-L.; Liu, Y.; Wu, J.; Dong, Y.-B. Covalent organic framework based multifunctional self-sanitizing face masks. J. Mater. Chem. A 2022, 10, 3346–3358. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, L.; Chu, T.; Niu, H.; Wang, J.; Cai, Y. Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration. Nat. Commun 2022, 13, 2615. [Google Scholar] [CrossRef]
- Das, P.; Chakraborty, G.; Roeser, J.; Vogl, S.; Rabeah, J.; Thomas, A. Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H2O2 production. J. Am. Chem. Soc. 2023, 145, 2975–2984. [Google Scholar] [CrossRef]
- Sun, Q.; Aguila, B.; Perman, J.; Earl, L.D.; Abney, C.W.; Cheng, Y.; Wei, H.; Nguyen, N.; Wojtas, L.; Ma, S. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J. Am. Chem. Soc. 2017, 139, 2786–2793. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Gao, J.; Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 2015, 7, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Shen, R.; Liu, R.; Shuai, Q. Thiol-functionalized magnetic covalent organic frameworks by a cutting strategy for efficient removal of Hg2+ from water. J. Hazard. Mater. 2020, 392, 122320. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Ma, Y.; Li, H.; Guan, X.; Yusran, Y.; Xue, M.; Fang, Q.; Yan, Y.; Qiu, S.; Valtchev, V. Postsynthetic functionalization of three-dimensional covalent organic framework for selective extraction of Lanthanide ions. Angew. Chem. Int. Ed. 2018, 57, 6042–6048. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jiang, Y.; Nalaparaju, A.; Jiang, J.; Huan, A. Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment. J. Mater. Chem. A 2019, 7, 24205–24210. [Google Scholar] [CrossRef]
- Li, W.-K.; Ren, P.; Zhou, Y.-W.; Feng, J.-T.; Ma, Z.-Q. Europium(III) functionalized 3D covalent organic framework for quinones adsorption and sensing investigation. J. Hazard. Mater. 2020, 388, 121740. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Bai, C.; Tian, Y.; Li, B.; Zhang, S.; Yang, X.; Ding, S.; Xia, C.; Tan, X.; et al. A novel benzimidazole-functionalized 2-D COF material: Synthesis and application as a selective solid-phase extractant for separation of uranium. J. Colloid. Interf. Sci. 2015, 437, 211–218. [Google Scholar] [CrossRef]
- Yue, J.-Y.; Wang, L.; Ma, Y.; Yang, P.; Zhang, Y.-Q.; Jiang, Y.; Tang, B. Metal ions-assisted carboxyl-containing covalent organic frameworks for the efficient removal of congo red. Dalton Trans. 2019, 48, 17763–17769. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Covalent organic frameworks (COFs) for environmental applications. Coordin. Chem. Rev. 2019, 400, 213046. [Google Scholar] [CrossRef]
- Wang, X.-L.; Sun, Y.-Y.; Xiao, Y.; Chen, X.-X.; Huang, X.-C.; Zhou, H.-L. Facile solution-refluxing synthesis and photocatalytic dye degradation of a dynamic covalent organic framework. Molecules 2022, 27, 8002. [Google Scholar] [CrossRef]
- Ji, W.; Xiao, L.; Ling, Y.; Ching, C.; Matsumoto, M.; Bisbey, R.P.; Helbling, D.E.; Dichtel, W.R. Removal of genx and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 12677–12681. [Google Scholar] [CrossRef] [PubMed]
- Karak, S.; Dey, K.; Torris, A.; Halder, A.; Bera, S.; Kanheerampockil, F.; Banerjee, R. Inducing disorder in order: Hierarchically porous covalent organic framework nanostructures for rapid removal of persistent organic pollutants. J. Am. Chem. Soc. 2019, 141, 7572–7581. [Google Scholar] [CrossRef] [PubMed]
- Mon, M.; Bruno, R.; Tiburcio, E.; Viciano-Chumillas, M.; Kalinke, L.H.G.; Ferrando-Soria, J.; Armentano, D.; Pardo, E. Multivariate metal-organic frameworks for the simultaneous capture of organic and inorganic contaminants from water. J. Am. Chem. Soc. 2019, 141, 13601–13609. [Google Scholar] [CrossRef]
- Yahya, S.; Beheshtiha, S.H.; Majid, M.; Dehghani, M. Sulfamic acid: An efficient and recyclable solid acid catalyst for the synthesis of quinoline-4-carboxylic acid derivatives in water. Mod. Chem. Appl. 2016, 4, 1000195. [Google Scholar]
- Itoh, S.; Fukui, Y.; Haranou, S.; Ogino, M.; Komatsu, M.; Ohshiro, Y. Synthesis and characterization of dimethyl 9,10-dihydro-9,10-dioxobenzo[f]quinoline-2,4-dicarboxylate. Effect of the pyrrole nucleus on the reactivity of coenzyme PQQ. J. Org. Chem. 1992, 57, 4452–4457. [Google Scholar] [CrossRef]
- Zhuang, S.; Liu, Y.; Wang, J. Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution. J. Hazard. Mater. 2020, 383, 121126. [Google Scholar] [CrossRef]
- Xu, Q.; Tao, S.; Jiang, Q.; Jiang, D. Designing covalent organic frameworks with a tailored ionic interface for ion transport across one-dimensional channels. Angew. Chem. Int. Ed. 2020, 59, 4557–4563. [Google Scholar] [CrossRef]
Pond Water [b] | Tap Water [b] | Industrial Wastewater [b] | |||||||
---|---|---|---|---|---|---|---|---|---|
Found/Spiked (ng/mL) | After Removal (ng/mL) | Removal (%) | Found/Spiked (ng/mL) | After Removal (ng/mL) | Removal (%) | Found/Spiked (ng/mL) | After Removal (ng/mL) | Removal (%) | |
RhB | ND [c] | ND [c] | - | ND [c] | ND [c] | - | ND [c] | ND [c] | - |
10.0 [e] | 0.18 | 98.2 | 10.0 [e] | 0.32 | 96.8 | 10.0 [e] | 0.31 | 96.9 | |
40.0 [e] | 0.54 | 98.6 | 40.0 [e] | 1.47 | 96.3 | 40.0 [e] | 1.35 | 96.6 | |
80.0 [e] | 1.32 | 98.4 | 80.0 [e] | 2.86 | 96.4 | 80.0 [e] | 3.25 | 95.9 | |
MB | ND [c] | ND [c] | - | ND [c] | ND [c] | - | ND [c] | ND [c] | - |
10.0 [e] | 0.39 | 96.1 | 10.0 [e] | 0.23 | 97.7 | 10.0 [e] | 0.28 | 97.2 | |
40.0 [e] | 0.65 | 98.4 | 40.0 [e] | 1.59 | 96.0 | 40.0 [e] | 1.94 | 95.2 | |
80.0 [e] | 1.44 | 98.2 | 80.0 [e] | 3.38 | 95.8 | 80.0 [e] | 3.24 | 96.0 | |
Gentamycin | ND [c] | ND [c] | - | 7.72 [d] | 0.25 | 96.7 | ND [c] | ND [c] | - |
10.0 [e] | 0.23 | 97.7 | 10.0 [e] | 0.76 | 95.7 | 10.0 [e] | 0.21 | 97.9 | |
40.0 [e] | 0.73 | 98.2 | 40.0 [e] | 1.23 | 97.4 | 40.0 [e] | 1.48 | 96.3 | |
80.0 [e] | 2.01 | 97.5 | 80.0 [e] | 3.76 | 95.7 | 80.0 [e] | 2.41 | 97.0 | |
2,4-D | ND [c] | ND [c] | - | ND [c] | ND [c] | - | 14.7 [d] | 0.29 | 98.0 |
10.0 [e] | 0.21 | 97.9 | 10.0 [e] | 0.49 | 95.1 | 10.0 [e] | 0.59 | 97.6 | |
40.0 [e] | 0.89 | 97.8 | 40.0 [e] | 1.13 | 97.1 | 40.0 [e] | 2.63 | 95.2 | |
80.0 [e] | 2.97 | 96.3 | 80.0 [e] | 3.62 | 95.5 | 80.0 [e] | 3.74 | 96.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Ji, W. Facile Synthesis of Quinolinecarboxylic Acid–Linked Covalent Organic Framework via One–Pot Reaction for Highly Efficient Removal of Water–Soluble Pollutants. Molecules 2023, 28, 3752. https://doi.org/10.3390/molecules28093752
Yang M, Ji W. Facile Synthesis of Quinolinecarboxylic Acid–Linked Covalent Organic Framework via One–Pot Reaction for Highly Efficient Removal of Water–Soluble Pollutants. Molecules. 2023; 28(9):3752. https://doi.org/10.3390/molecules28093752
Chicago/Turabian StyleYang, Mingzhu, and Wenhua Ji. 2023. "Facile Synthesis of Quinolinecarboxylic Acid–Linked Covalent Organic Framework via One–Pot Reaction for Highly Efficient Removal of Water–Soluble Pollutants" Molecules 28, no. 9: 3752. https://doi.org/10.3390/molecules28093752
APA StyleYang, M., & Ji, W. (2023). Facile Synthesis of Quinolinecarboxylic Acid–Linked Covalent Organic Framework via One–Pot Reaction for Highly Efficient Removal of Water–Soluble Pollutants. Molecules, 28(9), 3752. https://doi.org/10.3390/molecules28093752