Isomers of the Tomato Glycoalkaloids α-Tomatine and Dehydrotomatine: Relationship to Health Benefits
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Health Benefits
3.1.1. Antibiotic Effects
3.1.2. Preventive Effects against Hyperlipidemia, Atherosclerosis, Obesity, and Osteoporosis
3.1.3. Cancer-Preventive Properties In Vitro and In Vivo
4. Materials and Methods
4.1. Materials
4.2. Sample Preparation
4.3. LC/MS Analysis
4.4. LC-(Q) TOF/MS Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Friedman, M.; Levin, C.E.; McDonald, G.M. The Alpha-Tomatine Determination in Tomatoes by HPLC Using Pulsed Amperometric Detection. J. Agric. Food Chem. 1994, 42, 1959–1964. [Google Scholar] [CrossRef]
- Friedman, M.; Levin, C.E. Dehydrotomatine Content in Tomatoes. J. Agric. Food Chem. 1998, 46, 4571–4576. [Google Scholar] [CrossRef]
- Kozukue, N.; Han, J.-S.; Lee, K.-R.; Friedman, M. Dehydrotomatine and Alpha-Tomatine Content in Tomato Fruits and Vegetative Plant Tissues. J. Agric. Food Chem. 2004, 52, 2079–2083. [Google Scholar] [CrossRef]
- Friedman, M.; Kozukue, N.; Harden, L.A. Structure of the Tomato Glycoalkaloid Tomatidenol-3-β-Lycotetraose (Dehydrotomatine). J. Agric. Food Chem. 1997, 45, 1541–1547. [Google Scholar] [CrossRef]
- Friedman, M.; Kozukue, N.; Harden, L.A. Preparation and Characterization of Acid Hydrolysis Products of the Tomato Glycoalkaloid α-Tomatine. J. Agric. Food Chem. 1998, 46, 2096–2101. [Google Scholar] [CrossRef]
- Friedman, M.; Kozukue, N.; Mizuno, M.; Sakakibara, H.; Choi, S.-H.; Fujitake, M.; Land, K. The Analysis of the Content of Biologically Active Phenolic Compounds, Flavonoids, and Glycoalkaloids in Harvested Red, Yellow, and Green Tomatoes, Tomato Leaves, and Tomato Stems. Curr. Top. Phytochem. 2019, 15, 44–53. [Google Scholar]
- Kozukue, N.; Yoon, K.-S.; Byun, G.-I.; Misoo, S.; Levin, C.E.; Friedman, M. Distribution of Glycoalkaloids in Potato Tubers of 59 Accessions of Two Wild and Five Cultivated Solanum Species. J. Agric. Food Chem. 2008, 56, 11920–11928. [Google Scholar] [CrossRef]
- Cataldi, T.R.I.; Lelario, F.; Bufo, S.A. Analysis of Tomato Glycoalkaloids by Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 3103–3110. [Google Scholar] [CrossRef]
- Ferreres, F.; Taveira, M.; Gil-Izquierdo, A.; Oliveira, L.; Teixeira, T.; Valentão, P.; Simões, N.; Andrade, P.B. High-Performance Liquid Chromatography-Diode Array Detection-Electrospray Ionization Multi-Stage Mass Spectrometric Screening of an Insect/Plant System: The Case of Spodoptera Littoralis/Lycopersicon Esculentum Phenolics and Alkaloids. Rapid Commun. Mass Spectrom. 2011, 25, 1972–1980. [Google Scholar] [CrossRef]
- Iijima, Y.; Watanabe, B.; Sasaki, R.; Takenaka, M.; Ono, H.; Sakurai, N.; Umemoto, N.; Suzuki, H.; Shibata, D.; Aoki, K. Steroidal Glycoalkaloid Profiling and Structures of Glycoalkaloids in Wild Tomato Fruit. Phytochemistry 2013, 95, 145–157. [Google Scholar] [CrossRef]
- Caprioli, G.; Logrippo, S.; Cahill, M.G.; James, K.J. High-Performance Liquid Chromatography LTQ-Orbitrap Mass Spectrometry Method for Tomatidine and Non-Target Metabolites Quantification in Organic and Normal Tomatoes. Int. J. Food Sci. Nutr. 2014, 65, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Lelario, F.; Labella, C.; Napolitano, G.; Scrano, L.; Bufo, S.A. Fragmentation Study of Major Spirosolane-Type Glycoalkaloids by Collision-Induced Dissociation Linear Ion Trap and Infrared Multiphoton Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 2395–2406. [Google Scholar] [CrossRef]
- Yannai, S. (Ed.) Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients; Chapman and Hall/CRC: New York, NY, USA, 2003; ISBN 978-0-429-14923-8. [Google Scholar]
- Choi, S.H.; Ahn, J.-B.; Kozukue, N.; Kim, H.-J.; Nishitani, Y.; Zhang, L.; Mizuno, M.; Levin, C.E.; Friedman, M. Structure-Activity Relationships of α-, β(1)-, γ-, and δ-Tomatine and Tomatidine against Human Breast (MDA-MB-231), Gastric (KATO-III), and Prostate (PC3) Cancer Cells. J. Agric. Food Chem. 2012, 60, 3891–3899. [Google Scholar] [CrossRef]
- Friedman, M. Tomato Glycoalkaloids: Role in the Plant and in the Diet. J. Agric. Food Chem. 2002, 50, 5751–5780. [Google Scholar] [CrossRef]
- Thorne, H.V.; Clarke, G.F.; Skuce, R. The Inactivation of Herpes Simplex Virus by Some Solanaceae Glycoalkaloids. Antiviral Res. 1985, 5, 335–343. [Google Scholar] [CrossRef]
- Friedman, M.; Fitch, T.E.; Yokoyama, W.E. Lowering of Plasma LDL Cholesterol in Hamsters by the Tomato Glycoalkaloid Tomatine. Food Chem. Toxicol. 2000, 38, 549–553. [Google Scholar] [CrossRef]
- Friedman, M.; Fitch, T.E.; Levin, C.E.; Yokoyama, W.H. Feeding Tomatoes to Hamsters Reduces Their Plasma Low-Density Lipoprotein Cholesterol and Triglycerides. J. Food Sci. 2000, 65, 897–900. [Google Scholar] [CrossRef]
- Friedman, M.; Levin, C.E.; Lee, S.-U.; Kim, H.-J.; Lee, I.-S.; Byun, J.-O.; Kozukue, N. Tomatine-Containing Green Tomato Extracts Inhibit Growth of Human Breast, Colon, Liver, and Stomach Cancer Cells. J. Agric. Food Chem. 2009, 57, 5727–5733. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-H.; Lee, S.-H.; Kim, H.-J.; Lee, I.-S.; Kozukue, N.; Levin, C.E.; Friedman, M. Changes in Free Amino Acid, Phenolic, Chlorophyll, Carotenoid, and Glycoalkaloid Contents in Tomatoes during 11 Stages of Growth and Inhibition of Cervical and Lung Human Cancer Cells by Green Tomato Extracts. J. Agric. Food Chem. 2010, 58, 7547–7556. [Google Scholar] [CrossRef]
- Friedman, M.; McQuistan, T.; Hendricks, J.D.; Pereira, C.; Bailey, G.S. Protective Effect of Dietary Tomatine against Dibenzo[a,l]Pyrene (DBP)-Induced Liver and Stomach Tumors in Rainbow Trout. Mol. Nutr. Food Res. 2007, 51, 1485–1491. [Google Scholar] [CrossRef]
- Kim, S.P.; Nam, S.H.; Friedman, M. The Tomato Glycoalkaloid α-Tomatine Induces Caspase-Independent Cell Death in Mouse Colon Cancer CT-26 Cells and Transplanted Tumors in Mice. J. Agric. Food Chem. 2015, 63, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Chemistry and Anticarcinogenic Mechanisms of Glycoalkaloids Produced by Eggplants, Potatoes, and Tomatoes. J. Agric. Food Chem. 2015, 63, 3323–3337. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kanetake, S.; Wu, Y.-H.; Tam, C.; Cheng, L.W.; Land, K.M.; Friedman, M. Antiprotozoal Effects of the Tomato Tetrasaccharide Glycoalkaloid Tomatine and the Aglycone Tomatidine on Mucosal Trichomonads. J. Agric. Food Chem. 2016, 64, 8806–8810. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.C.; Nguyen, K.; Nguyen, D.; Hamada, S.; Kwon, O.; Kuang, I.; Gong, S.; Escobar, S.; Liu, M.; Kim, J.; et al. Antimicrobial Properties of Tomato Leaves, Stems, and Fruit and Their Relationship to Chemical Composition. BMC Complement. Med. Ther. 2021, 21, 229. [Google Scholar] [CrossRef]
- Friedman, M.; Tam, C.C.; Kim, J.H.; Escobar, S.; Gong, S.; Liu, M.; Mao, X.Y.; Do, C.; Kuang, I.; Boateng, K.; et al. Anti-Parasitic Activity of Cherry Tomato Peel Powders. Foods. 2021, 10, 230. [Google Scholar] [CrossRef]
- Friedman, M.; Tam, C.C.; Cheng, L.W.; Land, K.M. Anti-Trichomonad Activities of Different Compounds from Foods, Marine Products, and Medicinal Plants: A Review. BMC Complement. Med. Ther. 2020, 20, 271. [Google Scholar] [CrossRef]
- Bailly, C. The Steroidal Alkaloids α-Tomatine and Tomatidine: Panorama of Their Mode of Action and Pharmacological Properties. Steroids 2021, 176, 108933. [Google Scholar] [CrossRef]
- Friedman, M.; Sakakibara, H.; Mizuno, M.; Kim, D.-H.; Kozukue, M. Free Amino Acid, Phenolic, Flavonoid. Beta-Carotene, Lycopene, Dehydrotomatine, and Alpha tomatine Content of Peel Powders Prepared from Commercial Cherry Tomatoes. Curr. Top. Phytochem. 2020, 16, 1–16. [Google Scholar]
- Friedman, M. Antibiotic-Resistant Bacteria: Prevalence in Food and Inactivation by Food-Compatible Compounds and Plant Extracts. J. Agric. Food Chem. 2015, 63, 3805–3822. [Google Scholar] [CrossRef]
- Troost-Kind, B.; van Hemert, M.J.; van de Pol, D.; van der Ende-Metselaar, H.; Merits, A.; Borggrewe, M.; Rodenhuis-Zybert, I.A.; Smit, J.M. Tomatidine Reduces Chikungunya Virus Progeny Release by Controlling Viral Protein Expression. PLoS Negl. Trop. Dis. 2021, 15, e0009916. [Google Scholar] [CrossRef]
- Zrieq, R.; Ahmad, I.; Snoussi, M.; Noumi, E.; Iriti, M.; Algahtani, F.D.; Patel, H.; Saeed, M.; Tasleem, M.; Sulaiman, S.; et al. Tomatidine and Patchouli Alcohol as Inhibitors of SARS-CoV-2 Enzymes (3CLpro, PLpro and NSP15) by Molecular Docking and Molecular Dynamics Simulations. Int. J. Mol. Sci. 2021, 22, 10693. [Google Scholar] [CrossRef] [PubMed]
- Heal, K.G.; Taylor-Robinson, A.W. Tomatine Adjuvantation of Protective Immunity to a Major Pre-Erythrocytic Vaccine Candidate of Malaria Is Mediated via CD 8 + T Cell Release of IFN- γ. J. Biomed. Biotechnol. 2010, 2010, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Du, W.-X.; Avena-Bustillos, R.J.; Woods, R.; Breksa, A.P.; McHugh, T.H.; Friedman, M.; Levin, C.E.; Mandrell, R. Sensory Evaluation of Baked Chicken Wrapped with Antimicrobial Apple and Tomato Edible Films Formulated with Cinnamaldehyde and Carvacrol. J. Agric. Food Chem. 2012, 60, 7799–7804. [Google Scholar] [CrossRef] [PubMed]
- Crawford, K.G.; Kahlon, T.S.; Wang, S.C.; Friedman, M. Acrylamide Content of Experimental Flatbreads Prepared from Potato, Quinoa, and Wheat Flours with Added Fruit and Vegetable Peels and Mushroom Powders. Foods 2019, 8, 228. [Google Scholar] [CrossRef]
- Frosini, M.; Marcolongo, P.; Gamberucci, A.; Tamasi, G.; Pardini, A.; Giunti, R.; Fiorenzani, P.; Aloisi, A.M.; Rossi, C.; Pessina, F. Effects of Aqueous Extract of Lycopersicum Esculentum L. Var. “Camone” Tomato on Blood Pressure, Behavior and Brain Susceptibility to Oxidative Stress in Spontaneously Hypertensive Rats. Pathophysiology 2021, 28, 189–201. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kiyota, N.; Tsurushima, K.; Yoshitomi, M.; Horlad, H.; Ikeda, T.; Nohara, T.; Takeya, M.; Nagai, R. Tomatidine, a Tomato Sapogenol, Ameliorates Hyperlipidemia and Atherosclerosis in ApoE-Deficient Mice by Inhibiting Acyl-CoA:Cholesterol Acyl-Transferase (ACAT). J. Agric. Food Chem. 2012, 60, 2472–2479. [Google Scholar] [CrossRef]
- Yu, T.; Wu, Q.; You, X.; Zhou, H.; Xu, S.; He, W.; Li, Z.; Li, B.; Xia, J.; Zhu, H.; et al. Tomatidine Alleviates Osteoporosis by Downregulation of P53. Med. Sci. Monit. 2020, 26, e923996. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.R.; Mackey, B.E. Effect of Feeding Solanidine, Solasodine and Tomatidine to Non-Pregnant and Pregnant Mice. Food Chem Toxicol. 2003, 41, 61–71. [Google Scholar] [CrossRef]
- Wu, S.-J.; Huang, W.-C.; Yu, M.-C.; Chen, Y.-L.; Shen, S.-C.; Yeh, K.-W.; Liou, C.-J. Tomatidine Ameliorates Obesity-Induced Nonalcoholic Fatty Liver Disease in Mice. J. Nutr. Biochem. 2021, 91, 108602. [Google Scholar] [CrossRef]
- Lee, K.-R.; Kozukue, N.; Han, J.-S.; Park, J.-H.; Chang, E.-Y.; Baek, E.-J.; Chang, J.-S.; Friedman, M. Glycoalkaloids and Metabolites Inhibit the Growth of Human Colon (HT29) and Liver (HepG2) Cancer Cells. J. Agric. Food Chem. 2004, 52, 2832–2839. [Google Scholar] [CrossRef]
- Kúdelová, J.; Seifrtová, M.; Suchá, L.; Tomšík, P.; Havelek, R.; Řezáčová, M. Alpha-Tomatine Activates Cell Cycle Checkpoints in the Absence of DNA Damage in Human Leukemic MOLT-4 Cells. J. Appl. Biomed. 2013, 11, 93–103. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.R. Absence of Genotoxicity of Potato Alkaloids Alpha-Chaconine, Alpha-Solanine and Solanidine in the Ames Salmonella and Adult and Foetal Erythrocyte Micronucleus Assays. Food Chem. Toxicol. 1992, 30, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, X.; Li, D.; He, Y.; Li, Y.; Du, Z.; Zhang, K.; DiPaola, R.; Goodin, S.; Zheng, X. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells. PLoS ONE 2015, 10, e0144293. [Google Scholar] [CrossRef] [PubMed]
- Rudolf, K.; Rudolf, E. Antiproliferative Effects of α-Tomatine Are Associated with Different Cell Death Modalities in Human Colon Cancer Cells. J. Funct. Foods 2016, 27, 491–502. [Google Scholar] [CrossRef]
- Serratì, S.; Porcelli, L.; Guida, S.; Ferretta, A.; Iacobazzi, R.M.; Cocco, T.; Maida, I.; Tamasi, G.; Rossi, C.; Manganelli, M.; et al. Tomatine Displays Antitumor Potential in In Vitro Models of Metastatic Melanoma. Int. J. Mol. Sci. 2020, 21, 5243. [Google Scholar] [CrossRef]
- Yelken, B.Ö.; Balcı, T.; Süslüer, S.Y.; Kayabaşı, Ç.; Avcı, Ç.B.; Kırmızıbayrak, P.B.; Gündüz, C. The Effect of Tomatine on Metastasis Related Matrix Metalloproteinase (MMP) Activities in Breast Cancer Cell Model. Gene 2017, 627, 408–411. [Google Scholar] [CrossRef]
- Fujitsuka, M.; Iohara, D.; Oumura, S.; Matsushima, M.; Sakuragi, M.; Anraku, M.; Ikeda, T.; Hirayama, F.; Kuroiwa, K. Supramolecular Assembly of Hybrid Pt(II) Porphyrin/Tomatine Analogues with Different Nanostructures and Cytotoxic Activities. ACS Omega 2021, 6, 13284–13292. [Google Scholar] [CrossRef]
- Echeverría, C.; Martin, A.; Simon, F.; Salas, C.O.; Nazal, M.; Varela, D.; Pérez-Castro, R.A.; Santibanez, J.F.; Valdés-Valdés, R.O.; Forero-Doria, O.; et al. In Vivo and in Vitro Antitumor Activity of Tomatine in Hepatocellular Carcinoma. Front. Pharmacol. 2022, 13, 1003264. [Google Scholar] [CrossRef]
- Fujimaki, J.; Sayama, N.; Shiotani, S.; Suzuki, T.; Nonaka, M.; Uezono, Y.; Oyabu, M.; Kamei, Y.; Nukaya, H.; Wakabayashi, K.; et al. The Steroidal Alkaloid Tomatidine and Tomatidine-Rich Tomato Leaf Extract Suppress the Human Gastric Cancer-Derived 85As2 Cells In Vitro and In Vivo via Modulation of Interferon-Stimulated Genes. Nutrients 2022, 14, 1023. [Google Scholar] [CrossRef]
- Kozukue, N.; Kozukue, E.; Yamashita, H.; Fujii, S. Alpha-Tomatine Purification and Quantification in Tomatoes by HPLC. J. Food Sci. 1994, 59, 1211–1212. [Google Scholar] [CrossRef]
- Friedman, M.; Levin, C.E. Alpha.-Tomatine Content in Tomato and Tomato Products Determined by HPLC with Pulsed Amperometric Detection. J. Agric. Food Chem. 1995, 43, 1507–1511. [Google Scholar] [CrossRef]
Compound | Stereochemistry | Molecular Weight |
---|---|---|
Dehydrotomatine (tetrasaccharide) | Tomatidenol-3-O-[β-d-glucopyranosyl-(1→2)-β-d-xylopyranosyl-(1→3)]-β-d-glucopyranosyl-(1→4)-β-d-galactopyranoside | 1032.2 |
α-Tomatine (tetrasaccharide) | Tomatidine-3-O-[β-d-glucopyranosyl-(1→2)-β-d-xylopyranosyl-(1→3)]-β-d-glucopyranosyl-(1→4)-β-d-galactopyranoside | 1034.2 |
β1-Tomatine (trisaccharide) | Tomatidine-3-O-[β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-(1→4)]-β-d-galactopyranoside | 902.05 |
β2-Tomatine (trisaccharide) | Tomatidine-3-O-[β-d-xylopyranosyl-(1→3)-β-d-glucopyranosyl-(1→4)]-β-d-galactopyranoside | 872.03 |
γ-Tomatine (disaccharide) | Tomatidine-3-O-[β-d-glucopyranosyl-1→4)-β-galactopyranoside] | 739.90 |
δ-Tomatine (monosaccharide) | Tomatidine-3-O-β-d-galactopyranoside | 577.75 |
Tomatidine | 5α-tomatidan-3β-Ol |
Samples | Peak No. on HPLC and LC-MS | Retention a Time (min) | Peak Area (%) b (208 nm) | Peak Area (%) c [TIC Count (cps)] | [M-H]− (m/z) | MS/MS Fragments | Identification |
---|---|---|---|---|---|---|---|
Tomatine sample A | 1 | 7.52 | 0.97 (1.00) d | 0.32 (1.00) e | 1031.7 | nd c | Dehydrotomatine isomer |
2 | 8.61 | 1.12 (1.15) | 1.76 (5.50) | 1032.8 | 1033.4, 870.7, 739.8, 576.3 | α-Tomatine isomer | |
3 | 16.37 | 48.83 (50.34) | 15.68 (49.00) | 1030.8 | 1031.5, 899.8, 869.4, 737.4, 575.4 | Dehydro-tomatine | |
4 | 20.02 | 49.08 (50.60) | 82.24 (257.00) | 1033.7 | 1033.6, 901.7, 871.6, 739.5, 577.3 | α-Tomatine | |
Tomatine sample D | 1 | 7.41 | 2.78 (1.00) | 1.46 (1.00) | 1030.7 | 868.2, 574.2 | Dehydro-tomatine isomer |
2 | 8.47 | 1.81 (0.65) | 8.50 (5.82) | 1032.7 | 1033.7, 901.4, 870.5, 738.5, 576.4 | α-Tomatine isomer | |
3 | 15.82 | 38.25 (13.76) | 12.62 (8.64) | 1030.6 | 1030.9, 898.7, 869.8, 736.6, 574.2 | Dehydro-tomatine | |
4 | 19.39 | 57.16 (20.56) | 77.42 (53.03) | 1032.8 | 1033.8, 871.7, 738.5, 576.2 | α-Tomatine |
Samples | Peak No. on HPLC and LC-MS | Retention a Time (min) | Peak Area (%) b (208 nm) | Peak Area (%) c [TIC count (cps)] | [M-H]− (m/z) | MS/MS Fragments | Identification |
---|---|---|---|---|---|---|---|
Tomatine sample B | 1 | 6.75 | 0.64 (1.00) d | 0.46 (1.00) e | 1030.8 | 898.8, 868.9, 737.3, 574.2 | Dehydrotomatine isomer |
2 | 7.62 | 1.04 (1.63) | 2.19 (4.76) | 1033.2 | 1032.8, 900.7, 870.7, 738.5, 576.5 | α-Tomatine isomer | |
3 | 14.29 | 37.88 (59.19) | 14.63 (31.80) | 1031.4 | 1030.8, 898.5, 868.6, 736.6, 574.4 | Dehydrotomatine | |
4 | 18.77 | 60.45 (94.45) | 82.72 (179.82) | 1032.9 | 1032.6, 900.9, 870.9, 738.7, 576.5 | α-Tomatine | |
Tomatine sample C | 1 | 6.77 | 1.02 (1.00) | 0.74 (1.00) | 1030.8 | 898.8, 736.6, 574.2 | Dehydrotomatine isomer |
2 | 7.75 | 2.17 (2.13) | 2.49 (3.36) | 1032.7 | 1032.5, 900.4, 870.4, 738.7, 576.2 | α-Tomatine isomer | |
3 | 14.20 | 45.28 (44.39) | 17.03 (23.01) | 1031.5 | 1030.6, 898.6, 868.8, 736.8, 574.6 | Dehydrotomatine | |
4 | 18.65 | 51.53 (50.52) | 79.74 (107.76) | 1033.6 | 1033.6, 901.7, 871.8, 739.6, 577.4 | α-Tomatine |
Samples | Peak No. on HPLC and LC-MS | Retention a Time (min) | Peak Area (%) b (208 nm) | Peak Area (%) c [TIC Count (cps)] | [M-H]− (m/z) | MS/MS Fragments | Identification |
---|---|---|---|---|---|---|---|
New α-tomatine | 1 | 10.78 | 2.18 (1.00) d | 0.24 (1.00) e | 1030.6 | 1030.6, 899.0, 868.8, 736.7, 574.4 | Dehydrotomatine isomer |
2 | 12.32 | 1.22 (0.56) | 2.17 (9.04) | 1033.5 | 1032.7, 900.5, 870.6, 738.6, 576.4 | α-Tomatine isomer | |
3 | 22.78 | 37.15 (17.04) | 7.95 (33.13) | 1031.5 | 1031.6, 896.6, 869.6, 736.7, 574.7 | Dehydrotomatine | |
4 | 28.60 | 59.45 (27.27) | 89.64 (373.50) | 1033.7 | 1032.6, 900.7, 870.9, 738.8, 576.7 | α-Tomatine | |
Old α-tomatine | 1 | 10.65 | 0.91 (1.00) | 0.18 (1.00) | 1031.4 | 1031.4, 899.3, 869.2 | Dehydrotomatine isomer |
2 | 12.18 | 1.39 (1.53) | 2.36 (13.11) | 1032.7 | 900.4, 870.4, 738.8, 576.4 | α-Tomatine isomer | |
3 | 23.73 | 55.83 (61.35) | 15.59 (86.61) | 1030.8 | 1030.6, 898.6, 868.5, 736.5, 574.3 | Dehydrotomatine | |
4 | 29.36 | 41.87 (46.01) | 81.87 (454.83) | 1033.4 | 1032.5, 900.7, 870.8, 738.6, 576.6 | α-Tomatine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozukue, N.; Kim, D.-S.; Choi, S.-H.; Mizuno, M.; Friedman, M. Isomers of the Tomato Glycoalkaloids α-Tomatine and Dehydrotomatine: Relationship to Health Benefits. Molecules 2023, 28, 3621. https://doi.org/10.3390/molecules28083621
Kozukue N, Kim D-S, Choi S-H, Mizuno M, Friedman M. Isomers of the Tomato Glycoalkaloids α-Tomatine and Dehydrotomatine: Relationship to Health Benefits. Molecules. 2023; 28(8):3621. https://doi.org/10.3390/molecules28083621
Chicago/Turabian StyleKozukue, Nobuyuki, Dong-Seok Kim, Suk-Hyun Choi, Masashi Mizuno, and Mendel Friedman. 2023. "Isomers of the Tomato Glycoalkaloids α-Tomatine and Dehydrotomatine: Relationship to Health Benefits" Molecules 28, no. 8: 3621. https://doi.org/10.3390/molecules28083621
APA StyleKozukue, N., Kim, D. -S., Choi, S. -H., Mizuno, M., & Friedman, M. (2023). Isomers of the Tomato Glycoalkaloids α-Tomatine and Dehydrotomatine: Relationship to Health Benefits. Molecules, 28(8), 3621. https://doi.org/10.3390/molecules28083621